数学物理方法考试模拟试题答案
物理解题方法:数学物理法习题试卷含答案
物理解题方法:数学物理法习题试卷含答案一、高中物理解题方法:数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
已知磁场的磁感应强度大小为,不计带电粒子的重力。
求: (1)带电粒子的比荷; (2)C 点的坐标。
【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。
2.[选修模块3-5]如图所示,玻璃砖的折射率23n =,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示).【答案】83310/v m s =;3sin i =【解析】 【分析】 【详解】 根据c n v =,83310/2v m s = 全反射条件1sin C n=,解得C=600,r =300, 根据sin sin i n r =,3sin 3i =3.如图所示,现有一质量为m 、电荷量为e 的电子从y 轴上的()0,P a 点以初速度0v 平行于x 轴射出,为了使电子能够经书过x 轴上的(),0Q b 点,可在y 轴右侧加一垂直于xOy 平面向里、宽度为L 的匀强磁场,磁感应强度大小为B ,该磁场左、右边界与y 轴平行,上、下足够宽(图中未画出).已知002mv mv eB eB<α<,L b <.求磁场的左边界距坐标原点的可能距离.(结果可用反三角函数表示)【答案】01(1cos )cot mv x b L a eB θθ⎡⎤=----⎢⎥⎣⎦(其中θ=arcsin 0eBL mv )或2022mv ax b a eB=-- 【解析】 【分析】先根据洛伦兹力提供向心力求解出轨道半径表达式;当r >L 时,画出运动轨迹,根据几何关系列式求解;当r≤L 时,再次画出轨迹,并根据几何关系列式求解. 【详解】设电子在磁场中做圆周运动的轨道半径为r ,则02v m e rBv =,解得0mv r eB =(1)当r >L 时,磁场区域及电子运动轨迹如图所示由几何关系有:0L eBLsin r mv θ== 则磁场左边界距坐标原点的距离为[]11x b L a r cos cot θθ=----() 解得:011mv x b L a cos cot eB θθ⎡⎤=----⎢⎥⎣⎦()(其中0eBL arcsin mv θ=) (2)当r≤L 时,磁场区域及电子运动轨迹如图所示由几何关系得磁场左边界距坐标原点的距离为222()x b r a r =--- 解得2022mv ax b a eB=-- 【点睛】本题关键分r >L 和r≤L 两种情况讨论,画出轨迹是关键,根据几何关系列方程求解是难点.4.如图所示,MN 是两种介质的分界面,下方是折射率2n =的透明介质,上方是真空,P 、B 、P '三点在同一直线上,其中6PB h =,在Q 点放置一个点光源,AB 2h =,QA h =,QA 、PP '均与分界面MN 垂直。
物理数学物理法题20套(带答案)
(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(3)当滑动变阻器接入电路的阻值为多大时,电源的输出功率最大,最大功率是多少。
【答案】(1)2 W。(2)2.5 W。(3)3.125 W。
解得
所以第一次速度为零时所处的y轴坐标为0。
6.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为 d,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求A沿倾斜轨道下滑的加速度与碰后沿轨道上滑的加速度大小之比;
(2)若倾斜轨道与水平面的夹角为θ,求A与倾斜轨道间的动摩擦因数μ;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B在此碰上。求改变前后动摩擦因数的比值。
【答案】(1) ;(2) ;(3) 或者
【解析】
【详解】
(1)速度为 的粒子沿 轴正向发射,打在薄板的最远处,其在磁场中运动的半径为 ,由牛顿第二定律
①
②
联立,解得
③
(2)如图a所示
速度为 的粒子与 轴正向成 角射出,恰好穿过小孔,在磁场中运动时,由牛顿第二定律
④
而
⑤
粒子沿 轴方向的分速度
⑥
联立,解得
由圆周运动向心力公式,有
Fmax-mg=
得
Fmax= mg
(2)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有
高考物理数学物理法模拟试题含解析
高考物理数学物理法模拟试题含解析一、数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。
距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。
求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。
(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。
(2)如图所示211()22L qU y mR v=⋅且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB mr=合,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。
数学物理方法
《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。
1.z 为复数,则( )。
A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。
2.下列积分不为零的是( )。
A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。
3.下列方程是波动方程的是( )。
A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。
4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。
A 1个;B 2个;C 3个;D 4个。
5.二维拉普拉斯方程的定解问题是( )。
A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。
6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。
A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。
7.傅里叶变换在物理学和信息学中能实现( )。
A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。
8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。
A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。
9.下列表述中不正确的是( )。
A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。
数学物理法练习题含答案及解析
数学物理法练习题含答案及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='=【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F的表达式,讨论F取最小值的条件.4.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端拴着质量分别为m、2m的小球A和小物块B,开始时B先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B对地面的压力恰好为零,A在水平面内做匀速圆周运动.已知重力加速度为g,不计一切阻力.(1)求A做匀速圆周运动时绳与竖直方向夹角θ;(2)求摇动细管过程中手所做的功;(3)轻摇细管可使B在管口下的任意位置处于平衡,当B在某一位置平衡时,管内一触发装置使绳断开,求A做平抛运动的最大水平距离.【答案】(1)θ=45°;(2)2(1)4mgl-;(3) 2l。
物理数学方法试题及答案
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
高中物理数学物理法题20套(带答案)及解析
高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
(物理)物理数学物理法题20套(带答案)含解析
(物理)物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
物理数学物理法专题练习(及答案)含解析
物理数学物理法专题练习(及答案)含解析一、数学物理法1.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。
如图所示,自行车尾灯左侧面切割成角反射器阵列,为简化起见,假设角反射器的一个平面平行于纸面,另两个平面均与尾灯右侧面夹45o 角,且只考虑纸面内的入射光线。
(1)为使垂直于尾灯右侧面入射的光线在左侧面发生两次全反射后沿原方向返回,尾灯材料的折射率要满足什么条件?(2)若尾灯材料的折射率2n =,光线从右侧面以θ角入射,且能在左侧面发生两次全反射,求sin θ满足的条件。
【答案】(1) 1.414n ≥;(2)sin 2sin15θ≤o 【解析】 【详解】(1)垂直尾灯右侧面入射的光线恰好发生全发射时,由折射定律minsin 90sin 45n =oo① 解得min 2 1.414n ==②故尾灯材料的折射率1.414n ≥(2)尾灯材料折射率2n =其临界角满足1sin C n =③ 30C =o光线以θ角入射,光路如图所示设右侧面折射角为β,要发生第一次全反射,有2C ∠≥④要发生第二次全反射,有4C ∠≥⑤解得015β≤≤o ⑥由折射定律sin sin n θβ=⑦ 解得sin 2sin15θ≤o ⑧2.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
高中物理数学物理法题20套(带答案)
2r1max 2r2mincosα
联立解得ΔU应满足的条件
答:(1)碳12的比荷为 ;(2)碳12在底片D上的落点到O的距离的范围为 ;(3)若要使这两种粒子的落点区域不重叠,则 U应满足 。
【点睛】
本题考查带电粒子在复合场中的运动,加速场运用动能定理,粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力结合几何关系,第三问难点在于找出粒子不重叠的条件,即:打中底片时离O点的距离应需满足:碳14的最近距离大于碳12的最远距离。
上的亮斑刚消失设紫光的临界角为 ,画出光路图
则有
当 时, 面上反射角 ,反射光线垂直射到 面上后入射到 上,则
解得
7.如图所示,一对带电平行金属板A、B与竖直方向成 角放置,两板间的电势差 。B板中心有一小孔正好位于平面直角坐标系xoy的坐标原点O点,y轴沿竖直方向。现有一带负电的粒子P,其比荷为 ,从A板中心 处静止释放后,沿垂直于金属板的直线 进入x轴下方第四象限的匀强电场E中,该匀强电场方向与A、B板平行且斜向上。粒子穿过电场后,从Q点(0,-2)离开电场(Q点图中未标出),粒子的重力不计。试求:
周期为
所以运动时间为
高中物理数学物理法题20套(带答案)含解析
试题分析:把人的拉力F沿AO方向和BO方向分解成两个分力,AO绳上受到的拉力等于沿着AO绳方向的分力,BO绳上受到的拉力等于沿着BO绳方向的分力.根据平衡条件进行分析即可求解.
把人的拉力F沿AO方向和BO方向分解成两个分力.如图甲所示
由平衡条件得:AO绳上受到的拉力为
BO绳上受到的拉力为
若B点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:
(1)棱镜的折射率;
(2)F点到C点的距离。
【答案】(1) ;(2)
【解析】
【详解】
(1)由几何知识可知,光束从 点入射的入射角 ,做出光路图:
设对应折射角为 ,则光束在 边的入射角为
在 边上的入射角
在 边上的折射角
由折射定律,可知在 点入射时
在 点入射时
解得
折射率为
(2)由几何知识,可知
解得
7.如图所示,电流表A视为理想电表,已知定值电阻R0=4Ω,滑动变阻器R阻值范围为0~10Ω,电源的电动势E=6V.闭合开关S,当R=3Ω时,电流表的读数I=0.5A。
(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(3)当滑动变阻器接入电路的阻值为多大时,电源的输出功率最大,最大功率是多少。
【答案】(1)2 W。(2)2.5 W。(3)3.125 W。
【解析】
【分析】
【详解】
(1)定值电阻R1消耗的电功率为P1=I2R1= ,可见当滑动变阻器接入电路的阻值为0时,R1消耗的功率最大,最大功率为:
12.如图所示,在xOy坐标系平面内x轴上、下方分布有磁感应强度不同的匀强磁场,磁场方向均垂直纸面向里。一质量为m、电荷量为q的带正电粒子从y轴上的P点以一定的初速度沿y轴正方向射出,粒子经过时间t第一次从x轴上的Q点进入下方磁场,速度方向与x轴正方向成45°角,当粒子再次回到x轴时恰好经过坐标原点O。已知OP=L,不计粒子重力。求:
最新物理数学物理法题20套(带答案)
最新物理数学物理法题20套(带答案)一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。
两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。
已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。
求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。
【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4C n == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
高中物理数学物理法专项训练100(附答案)
高中物理数学物理法专项训练100(附答案)一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有:x vt hx H-=,得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv t H h=-=1.25m/s ; 【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.3.[选修模块3-5]如图所示,玻璃砖的折射率23n =,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示).【答案】83310/2v m s =⨯;3sin 3i =【解析】 【分析】 【详解】 根据c n v =,83310/v m s =⨯ 全反射条件1sin C n=,解得C=600,r =300, 根据sin sin i n r =,3sin i =4.人在A 点拉着绳通过一个定滑轮匀速吊起质量50kg m =的物体,如图所示,开始时绳与水平方向成60o 角,当人拉着绳由A 点沿水平方向运动2m s =而到达B 点时,绳与水平方向成30o 角,求人对绳的拉力做了多少功?(不计摩擦,g 取210m/s )【答案】732J 【解析】【分析】 【详解】人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h ,物体上升的高度等于滑轮右侧绳子增加的长度,即sin 30sin 60h hh ∆=-o o 又tan 30tan 60h h s =-o o 所以人对绳的拉力做的功(31)732J W mg h mg s =∆=⋅-≈5.质量为M 的木楔倾角为θ,在水平面上保持静止,质量为m 的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F 拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】 【分析】对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】(1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N联立以上各式解得:()sin 2cos mg F θθα=-.当α=θ时,F 有最小值,F min =mg sin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mg sin 4θ. 【点睛】木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题.6.2016年7月5日,美国宇航局召开新闻发布会,宣布已跋涉27亿千米的朱诺号木星探测器进入木星轨道。
高中物理数学物理法模拟试题及解析
高中物理数学物理法模拟试题及解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos157712gLS rt T π︒==︒【点睛】考察粒子在复合场中的运动。
【物理】物理数学物理法题20套(带答案)及解析
代入数据得
T≈382.8K
7.半径为R的球形透明均匀介质,一束激光在过圆心O的平面内与一条直径成为60°角射向球表面,先经第一次折射,再经一次反射,最后经第二次折射射出,射出方向与最初入射方向平行。真空中光速为c。求:
(1)球形透明介质的折射率;
(2)激光在球内传播的时间。
【答案】(1) ;(2)
对 光,根据折射定律
解得
(2) 、 在玻璃砖中传播的速度分别为
、 在玻璃砖中传播的路程
则 、 在玻璃砖中传播的时间分别为
13.如图所示,在xOy坐标系平面内x轴上、下方分布有磁感应强度不同的匀强磁场,磁场方向均垂直纸面向里。一质量为m、电荷量为q的带正电粒子从y轴上的P点以一定的初速度沿y轴正方向射出,粒子经过时间t第一次从x轴上的Q点进入下方磁场,速度方向与x轴正方向成45°角,当粒子再次回到x轴时恰好经过坐标原点O。已知OP=L,不计粒子重力。求:
【解析】
【分析】
【详解】
(1)激光在球形透明介质里传播的光路如图所示:
其中A、C为折射点,B为反射点,连接A与C,作OD平行于入射光线,则
解得
设球形透明介质的折射率为n,根据折射定律
解得
(2)由于 ,所以AC垂直于入射光线,即
பைடு நூலகம்又由于
所以 为等边三角形,即激光在球内运动路程为
设激光在介质中传播速度为t,则
【物理】物理数学物理法题20套(带答案)及解析
一、数学物理法
1.如图所示,圆心为O1、半径 的圆形边界内有垂直纸面方向的匀强磁场B1,边界上的P点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷 、速率 的带负电的粒子,忽略粒子间的相互作用及重力。其中沿竖直方向PO1的粒子恰能从圆周上的C点沿水平方向进入板间的匀强电场(忽略边缘效应)。两平行板长 (厚度不计),位于圆形边界最高和最低两点的切线方向上,C点位于过两板左侧边缘的竖线上,上板接电源正极。距极板右侧 处有磁感应强度为 、垂直纸面向里的匀强磁场,EF、MN是其左右的竖直边界(上下无边界),两边界间距 ,O1C的延长线与两边界的交点分别为A和O2,下板板的延长线与边界交于D,在AD之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。求:
(物理)物理数学物理法题20套(带答案)及解析
(物理)物理数学物理法题20套(带答案)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R ',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,ABCD 是柱体玻璃棱镜的横截面,其中AE ⊥BD ,DB ⊥CB ,∠DAE=30°,∠BAE=45°,∠DCB=60°,一束单色细光束从AD 面入射,在棱镜中的折射光线如图中ab 所示,ab 与AD 面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示)(1)这束入射光线的入射角多大?(2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】试题分析:(1)设光在AD 面的入射角、折射角分别为i 、r ,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示:ab 光线在AB 面的入射角为45°,设玻璃的临界角为C ,则: sinC===0.67sin45°>0.67,因此光线ab 在AB 面会发生全反射 光线在CD 面的入射角r′=r=30°根据n=,光线在CD 面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6°3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
数学物理方法综合试题及答案 ()
复变函数与积分变换 综合试题(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设cos z i =,则( )A . Im 0z =B .Re z π=C .0z =D .argz π= 2.复数3(cos,sin )55z i ππ=--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .443(cos ,sin )55i ππD .443(cos ,sin )55i ππ--3.设C 为正向圆周|z|=1,则积分⎰c z dz||等于( )A .0B .2πiC .2πD .-2π 4.设函数()0zf z e d ζζζ=⎰,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答:5.1z =-是函数41)(z zcot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4z π<<保角映射成单位圆内部|w|<1的为( )A .4411z w z +=-B .44-11z w z =+C .44z i w z i -=+D .44z iw z i +=-7. 线性变换[]i i z z i z ae z i z i z aθω---==-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<18.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )xv x y e y y x y =+,则(,)uxy=( )A.(cos sin )ye y y x y -)B.(cos sin )xe x y x y -C.(cos sin )xe y y y y - D.(cos sin )xe x y y y -(cos sin )sin (cos sin cos )x x x ve y y x y e y x ve y y y x y y∂=++∂∂=-+∂[][]cos sin cos cos sin sin cos sin cos sin cos sin (1)x x x iy iy iyz w u v v v i i z x x y xe y y y x y iy y ix y i y e y i y x y ix y iy y y y e e xe iye e z ∂∂∂∂∂=+=+∂∂∂∂∂=-++++=++++-⎡⎤=++⎣⎦=+()()()()cos sin cos sin sin cos z x iy x x w ze x iy e e x iy y i y e x y y y i x y y y u iv+==+=++=-++=+⎡⎤⎣⎦()cos sin x u e x y y y =-9.()1(2)(1)f z z z =--在021z <-< 的罗朗展开式是()A.∑∞=-01n nnz )( B.∑∞=-021n nz )z (C.∑∞=-02n n)z ( D .10(1)(2)nn n z ∞-=--∑10.320cos z z dz ⎰=( )A.21sin9 B.21cos9 C.cos9 D.sin9二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
数学物理方法样卷
x(t)
=
1 H(t) (2et
−
2 cos 2t
−
) sin 2t
5
三、求解初值问题:
utt = uxx uu|tt|=t=00==x12
(−∞ < x < +∞)
(本小题 15 分)
解: 由达朗贝尔公式:
1 u = [φ(x + at) + φ(x − at)] +
1
∫
x+at
ψ(ξ) dξ
2
l
Xn(x)
=
sin
nπ l
x
Tn(t)
=
Cn
cos
nπa l
t
+
Dn
sin
nπa l
t
利用解的叠加原理, 可得满足方程和边界条件的级数形式解
u(x,
t)
=
∑ ∞
( Cn
cos
nπa t
l
+
Dn
sin
nπa l
) t
sin
nπ l
x
n=0
由初始条件 ut|t=0 , 得 Dn = 0 ,
由
u|t=0
x(t)
=
1 H(t) (et
) − cos t − sin t
2
三、求解初值问题:
utt − a2uxx = 0 uu(t(xx,,00))==ceo−s1x
(−∞ < x < +∞)
(本小题 15 分)
······2 分 ······3 分 ······5 分 ······2 分 ······3 分
X′′(x) + λX(x) = 0
数学物理方法复习题答案
数学物理方法复习题答案一、单项选择题(每题2分,共10分)1. 以下关于复数的表述中,错误的是:A. 复数可以表示为a+bi的形式,其中a和b是实数,i是虚数单位B. 两个复数相等当且仅当它们的实部和虚部分别相等C. 复数的模是实部和虚部平方和的平方根D. 复数的共轭是将虚部的符号改变答案:D2. 傅里叶级数展开中,函数f(x)在区间[-L, L]上的傅里叶系数an的计算公式为:A. \(\frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pix}{L}\right) dx\)B. \(\frac{1}{2L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pix}{L}\right) dx\)C. \(\frac{1}{2L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pix}{L}\right) dx\)D. \(\frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pix}{L}\right) dx\)答案:C3. 以下哪个函数是偶函数:A. \(e^x\)B. \(\sin(x)\)C. \(x^2\)D. \(\cos(x)\)答案:C4. 拉普拉斯变换的定义是:A. \(F(s) = \int_{0}^{\infty} e^{-st} f(t) dt\)B. \(F(s) = \int_{-\infty}^{\infty} e^{-st} f(t) dt\)C. \(F(s) = \int_{0}^{\infty} e^{st} f(t) dt\)D. \(F(s) = \int_{-\infty}^{\infty} e^{st} f(t) dt\)答案:A5. 以下哪个积分是不定积分:A. \(\int e^x dx\)B. \(\int \frac{1}{x} dx\)C. \(\int \sin(x) dx\)D. \(\int \cos(x) dx\)答案:B二、填空题(每题3分,共15分)1. 复数 \(3 + 4i\) 的模是 ________。
数学物理方法模拟试卷答案
一 填空题1 2222222u u u a t xy ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭ 2 定解条件 3 92,0 4 .2123i --= 5 4 6⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-ππ65sin 65cos 4i 7 82π- 86i π 9510 1 11 2i ± 12 0 13 π 二 计算题(共7题,每小题6分,共42分) 1 解 根据1d [()](),d nn n n x J x x J x x-=可以判断 2221d [()](),d x J x x J x x= 所以2212()d ()x J x x x J x c =+⎰ 2 解: 根据勒让德多项式的通用表达式()2022!()(1)2!()!(2)!Mmn m n nm n m P x x m n m n m -=-=---∑,可以写出 331()(53)2P x x x =- 所以1122330011()((53))224x P x dx x x x dx =-=⎰⎰ 3 解,2ay x x u +=∂∂,2by ax y u +=∂∂,2dy cx x v +=∂∂,2y dx yv +=∂∂ , , xvy u y v x u ∂∂-=∂∂∂∂=∂∂欲使 =+ay x 2,2y dx +=--dy cx 2,2by ax +.2 ,1 ,1 ,2=-=-==d c b a 所求4 解 π2(1)i nn e n α=-因为2(1)(c o ss i n ),i n n nππ=-+2π(1)c o s ,n a n n =-所以2(1)s i n .n b n nπ=- 而0lim ,1lim ==∞→∞→n n n n b a π2(1),i n n e nα=-所以数列.1lim =∞→n n α且 5 解 ,3sin 3cos 1⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=ππi z 因为 ,6s i n 6c o s 2⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=ππi z⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛--=⋅63sin 63cos 21ππππi z z 所以 ,i -=6 解 在+∞<<z 0内将)(z f 展成洛朗级数:234565521122!3!4!5!6!z e z z z z z z z z ⎛⎫-=+++++++- ⎪⎝⎭5432111111,2!3!4!5!6!z z z z z z =-+++++++ 1]0),(Res[-=c z f 所以.241!41== 722Ln(1)(1)i i i i e++=2[ln1Arg(1)]i i i i e+++=12ln2224 i i k i eππ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=4ln 22 k i eππ⎛⎫-++ ⎪⎝⎭= ()()44 cos ln 2sin ln 2k ei ππ⎛⎫-+ ⎪⎝⎭=⋅+⎡⎤⎣⎦.,2,1,0 ±±=k 其中 (1) ln2. i i +故的辐角的主值为三 解⎰=+-2112d 16s i n )1(z z z zπ⎰=++-=211d 116sinz z z z z π116sin 2-=-⋅=z z zi ππ ;21i π=⎰=--2112d 16sin)2(z z z zπ⎰=--+=211d 116sinz z z z zπ116sin 2=+⋅=z z z i ππ ;21i π=(3)由闭路复合定理, 得=-⎰=22d 16sinz z z zπ⎰=+-2112d 16sinz z z zπ⎰=--+2112d 16πsinz z z zi i ππ2121+= .i π=四 解 令 (,)()()u x t X x T t = 带入方程得 2()''()''()()X x T t a X x T t = 令2''()''()()()X x T t X x a T t λ==- 2''()()0''()()0X x X x T t a T t λλ+=+=带入边界条件 (0)()0,()()0X T t X l T t == (0)0,()0X X l == ''()()0(0)0,()0X x X x X X l λ+===分情况讨论:(1) 0λ<()X x Be =+00A B Be+=+=00A B X ===(2) 0λ=()X x Ax B =+ 00A B X ===(3) 0λ> 令2λβ= ß为非零实数()cos sin X x A x B x ββ=+0sin 0A B l β== (1,2,3,)n n l πβ== 222n lπλ=222(1,2,3,)n n n lπλ== ()s i n (1,2,3,)n n n X x B xn lπ==下边讨论T 的方程2222''()()0n n a n T t T t l π+=()'cos'sin (1,2,3,)n n n n at n atT t C D n l lππ=+= 所以 (,)(cos sin )sin (1,2,3,)n n n n a n a n u x t C t D t x n l l l πππ=+= 11(,)(,)(cossin )sin (1,2,3,)n n n n n n a n a n u x t u x t C t D t x n l l lπππ∞∞====+=∑∑ 01(,)(,0)sin0n t n n u x t u x C x lπ∞=====∑ 210(,)sin n n t u x t n a n D x x t l lππ∞==∂==∂∑020sin d 0l n n C x x l lπ==⎰ 202sin d l n n D x x x n a lππ=⎰=-2l 3()+ + 2n 2π2()-1n 2()-1()+ 1n n 4π4a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 1D 2B 3D 4C 5A 6C 7A 8D 9A 10D
二(10分)已知一个解析函数)(z f 的实部是y x sin e u =,求该解析函数。
.解:
y e y u y e x u x x cos sin ==∂∂∂∂(2分)
由C -R 条件,有x u y v ∂∂∂∂=,y
u x v ∂∂∂∂-=,(2分) ∴. )(cos sin x y e ydy e dy x u dy y v v x x ϕ∂∂∂∂+-====⎰⎰⎰
(2分) 再由y e y
u x y e x v x x cos )(cos -=-='+-=∂∂ϕ∂∂, 得,)(,0)(C x x =='ϕϕ于是
∴C y e v x +-=cos (2分)
)()cos (sin )(C e i C y e i y e z f z x x +-=+-+=(2分)
三 求解一维无界弦的自由振动,设弦的初始位移为φ(x ),初始速度为-a φ’(x)。
解:定解问题为:
分)
(分)分)2)sin()]sin())[sin((21)]sin()[sin(212()(21)]()([21),(6()
cos()
sin(0002at x at x at x a a
at x at x d a at x at x t x u x a u x u u a u at x at
x t t t xx tt -=--+-+-++=+-++=⎪⎩⎪⎨⎧-===-⎰+-==ξξψϕϕ
四 定解问题为 u tt -a 2u xx =0
u │x=0=0, u x │x=l =0
u │t=0=0
u t │t=0=v o (8分)
用分离变量法求解本征值为 λn =(2n+1/2l)2π2 n=0,1,2,。
本征函数为X n =sin(2n+1/2l)πx
u(x,t)=A 0+B 0t+x l n l at n B l at n A n n n πππα
212sin ))2/1(sin )2/1(cos (1
++++∑= (6分) 由u │t=0=0得 A 0 +x l n A n n πα212sin 1
+∑==0 (1分) 由u t │t=0=v o 得B 0+x l n B l a n n n ππα212sin )2/1(1++∑==v o (1分) 将右边展为傅立叶级数得 An=2/l ξπξξφd l
n l
⎰0sin )(=0 (1分) Bn=2/(n+1/2)πa ξπξξψd l n l ⎰+0)2/1(sin )(=-a n l V 220)2
1(2π+ (1分) u(x,t)= x l n l at n B n n ππα212sin ))2/1(sin 1++∑= 五 (20分)半径为0ρ,高为L 的圆柱体,下底和侧面保持零度,上底温度分布为2)(f ρρ=,求解柱体内各点的稳恒温度分布。
边界条件中与ϕ无关,所以m=0
解:以圆柱体的对称轴为 z 轴,下底中心为原点,建立柱坐标。
⎪⎩⎪⎨⎧===<<<=∆===分)
(分)(分)(分)(定解问题为:2|2,0|2,0|20,,02000ρρρρρL z z u u u L z u 分)(3)sin cos ()]()()][[1ϕϕρρm F m E k N D k J C e B e A u n n n n m n n m n z k n z k n n n +∙++=∑∞=-分)(有限由2)sin cos ()()][10ϕϕρρm F m E k J C e B e A u u n n n n m n z k n z k n n n +∙+=→∑
∞=-→分)(由上下底条件得:2)
()()()(001201⎪⎩⎪⎨⎧+=+=-∞=∞=∑∑ρρρn L k n n L k n n n n n k J e B e A k J B A n n 分)(,根据完备性可求出:1n n B A 分)(2/0)0(ρn n x k =分)(2)()][0
0∑∞=-+=n n z k n z k n k J e B e A u n n ρ得由00==ρρu。