实变函数和泛函分析基础第三版答案
实变函数与泛函分析基础(第三版)----第五章_复习指导.docx
主要内容本章的中心内容是建立一种新的积分——勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上i般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下儿个方面:(1)勒贝格积分是一种绝对收敛积分,即兀兀)在E上可积当且仅当|/(兀)|在E上可积(/(x)在E上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设/(力在E上可积,则对任意£>0,存在》〉0,使当e u E且加£<5时,恒有(3)勒贝格积分的唯一性.即£|/(x)|ck = 0的充要条件是/(x) = 0 a.e. T E・由此可知,若f(x)与巩兀)几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近•设/(兀)是可积函数,对任意£>0,存在[°,切上的连续函数從无),使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4. 1),勒贝格控制收敛定理(定理5. 4. 2),和法都定理(定理5.4. 3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.|H|、关于勒贝格积分同黎曼积分之间的关系.我们知道,若[°,切上的有界函数/(兀)黎曼可积,则必勒贝格可积口二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可 积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化 为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要/(x, y)在R 〃xRq 上可积即 可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒 贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、 设/(x)是可测集E^R n上的非负简单函数,则f /(x)cLr -定存在。
实变函数论课后答案第三版
1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈)又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅. 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。
第三版实变函数论课后答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第三版实变函数论课后答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容证明:的充要条件是. 证明:若,则,故成立.反之,若,则,又,若,则,若,则.总有.故,从而有。
证毕证明.证明:,从而,故,从而,所以.另一方面,,必有,故,从而,所以.综合上两个包含式得. 证毕证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在,所以从而有.反过来,若,则使,故,,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则(相应地). 证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.必要性若,而则存在. 所以即所以这与矛盾,所以.设,求.又如果,,问是什么.解:若,则.若,则从,易知..令..证明: 因为的任何子集. 所以有,而,故,又.任取的一子集,,且.显,故只用证的确是一个域. (1) ,且的子集,若,则(是的子集,故)又的子集,.显然是的子集,所以.又若为的子集或.则.这里是的子集.或.所以.若中除的子集外,还有,则.若中有,不影响.故是域,且.证毕.6.对于的子集,定义的示性函数为证明:(1)(2)证明:,若则。
且只有有限个,使得所以使得时从而有故若,则且有无限个故所以 .故(1)成立.(2)的证明:,若则.且有无穷个使得,所以注意到所以 .若,则且只有有限个使得所以使得时,所以 .所以(2)也成立.也可以这样证(2):注意 ..7.设f(x)是定义于E上的实函数,a为一常数,证明(1)(2).证明:(1)我们有,故存在使(因为)所以.从而有;反过来:若,则所以(1)成立.下证(2)我们有从而有反过来,若8.若实函数序列在上收敛于,则对于任意常数都有证明:先证第一个等式由定理8知我们有对成立。
实变函数与泛函分析基础》习题解答
α∈Γ
α∈Γ
U ⇔ x ∈ f −1(Cα ) . α∈Γ
②
x ∈ f −1(C − D) ⇔ f (x) ∈C − D ⇔ f (x) ∈C
,
且
f (x) ∈ D ⇔ x ∈ f −1(C) ,且 x ∈ f −1(D) ⇔ x ∈ f −1(C) − f −1(D) .
③ f −1(C C ) = f −1(Y − C) = f −1(Y ) − f −1(C) = [ f −1(C)]C .
α∈Γ
α∈Γ
α∈Γ
α∈Γ
U U U U U Bα ⊂ ( Aα U Bα ) ,所以 ( Aα ) U ( Bα ) ⊂ ( Aα U Bα ) .
α∈Γ
α∈Γ
α∈Γ
α∈Γ
α∈Γ
∩ ∩ ② 因 ∀ α ∈ Γ : ( Aα ) ∩ ( Bα ) ⊂ Aα ∩ Bα , 所 以
α∈Γ
α∈Γ
∩ ∩ ∩ ∩ ∩ ( Aα ) ∩ ( Bα ) ⊂ ( Aα ∩ Bα ) . 另 方 面 : 因 ( Aα ∩ Bα ) ⊂ Aα ,
(4) ⇒ (1) : 因 { f (x1)} = f ( X ) − f ( X −{x}) , 所 以
f (x1) ∈ f ( X −{x}) .故 x ≠ x1时 f (x) ≠ f (x1) .
5.
y
=
π tan
x.
2
6. N (0,0,1), A(ξ ,η,ζ ), B(x, y,0) , A 为 单 位 球 面 上 的 点 , 即
④ x ∈ A ⇒ f (x) ∈ f ( A) ⇒ x ∈ f −1[ f ( A)] .
⑤ y ∈ f [ f −1(C)] ⇒ ∃ x ∈ f −1(C) : f (x) = y ⇒ y = f (x) ∈ C .
实变函数论课后答案第三版.doc
r , s ; r
Q, s
Q
U Aj,其中
Aj
ri, rj
; i
1,2,L nL
为可列集,
j1
故作为可数个
Aj的并QQ
U Aj为可数集。(第
20页定理
5)。
j1
2.以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素.
证明:设
k
k
1 m 1 i m
使得i m
1
,令i
, ,利用条件
时 ,fix0a
k
lim fix0
f
x0
,有
i
fx0a1, 再令k,得fx0a,所以x0E x; fxa,
k
所以I U I E x; fix
1
aE x; f x a
k 1 m 1 i m
k
故(2)得证。
注意:实际上有:对E撒谎能够任何实函数列fnx有
,3,4.
若S
1
; n
1,2,3,L
, A0
1
;为奇数
1,
1
,
1
,L
1
,L,
n
n
3
5
2i
1
则从1,1,1,L
1,L
c
1,1,L
1,L,
3
5
2i
1
2
4
2i
易知F A
, S, 1,1,1,L
2i
1,L ,1,1,L
1,L.
3
5
1
2
4
2i
A
1 ,
1
实变函数与泛函分析基础第三版答案
9、设 X 是可分距离空间, F 为 X 的一个开覆盖,即 F 是一族开集,使得对每个 x X ,有 F 中的开集 O ,
使 x O ,证明必可从 F 中选出可数个集组成 X 的一个开覆盖。
证明:记
r
d (E, F )
inf
xE , yF
d (x,
y)
0
。 x
E
,以 x
1 2
d ( x,
F)
为半径作点
x
的邻域
U (x, x ) ,令 O U (x, x ) ,则 O 是开集且 E O 。同理可作开集 G ,使得
xF
F
G
U (y, y )( y
的开球U (1,1) {x X ; d (1, x) 1} 的的闭包是[0,1] ,而 S (1,1) {x X ; d (1, x) 1} [0,1] {2}
2、设 C[a,b] 是区间[a, b] 上无限次可微函数全体,定义 d ( f , g)
r0
1 2r
max
a t b
|f 1 |
(r)(t) h(r)(t) h(r)(t) g(r)(t) | f (r )(t) h(r )(t) h(r )(t) g (r )(t)
|
r0
1 2r
max
a t b
| 1
f |
(r)(t) h(r)(t) | | h(r) (t) g (r) (t) | f (r) (t) h(r) (t) | | h(r) (t) g (r) (t)
《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)
ob 得 分试卷一:一、单项选择题(3 分×5=15 分)1、1、下列各式正确的是()∞ ∞∞ ∞(A ) lim A n = ⋃ ⋂ A k ; (B ) lim A n = ⋂ ⋃ A k ; n →∞n =1 k =n n →∞n =1 k =n∞ ∞∞ ∞(C ) lim A n = ⋂ ⋃ A k ; (D ) lim A n = ⋂ ⋂ A k ;n →∞n =1 k =nn →∞n =1 k =n2、设 P 为 Cantor 集,则下列各式不成立的是()(A ) P = c (B) mP = 0 (C) P '= P(D) P = P3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{ f n (x )} 是 E 上的a .e . 有限的可测函数列,则下面不成立的是()(A )若 f n (x ) ⇒ f (x ) , 则 f n (x ) → f (x )(B) sup { f n (x )} 是可测函数n(C ) i nf { f n (x )} 是可测函数;(D )若 f n (x ) ⇒ nf (x ) ,则 f (x ) 可测5、设 f(x)是[a , b ] 上有界变差函数,则下面不成立的是()(A) f (x ) 在[a , b ] 上有界(B) f (x ) 在[a , b ] 上几乎处处存在导数(C ) f '(x ) 在[a , b ] 上 L 可积 (D)⎰af '(x )dx = f (b ) - f (a )二. 填空题(3 分×5=15 分)1、(C s A ⋃ C s B ) ⋂ ( A - ( A - B )) =2、设 E 是[0,1]上有理点全体,则 E '=, E =, E = .3 、 设 E 是R n 中 点 集 , 如 果 对 任 一 点 集T 都 有得 分,则称E 是L 可测的4、f (x) 可测的条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设 f (x) 为[a, b]上的有限函数,如果对于[a, b]的一切分划,使f (x) 为, 则称[a, b]上的有界变差函数。
实变函数与泛函分析基础_第三版综合练习题
实变函数综合练习题《实变函数》综合训练题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A ) (A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃=(C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆2、若nE R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP =4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是nR 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE >2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E >(C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积(B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积(D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导三、填空题(将正确的答案填在横线上) 1、设X 为全集,A ,B 为X的两个子集,则\A B =C A B ⋂ 。
实变函数论课后答案第三版
1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。
实变函数论课后答案第三版
1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。
实变函数与泛函分析基础第三版答案[最新]
泛函分析习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X = ,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C ab ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1tf t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
实变函数论与泛函分析曹广福1到5章课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有)(inf 0=⇒=⇒∉≥x A x m n k m A nm A k χχ,故)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =; 当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数与泛函分析基础(第三版)第五章 复习指导
主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有ε<⎰ex x f d )((3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使εϕ<-⎰],[d )()(b a x x x f此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4.1),勒贝格控制收敛定理(定理5.4.2),和法都定理(定理5.4.3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。
(完整版)实变函数与泛函分析基础第三版第七章答案
习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。
0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。
[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。
()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析 习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C ab ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
3、设B 是度量空间X 中的闭集,证明必有一列开集12,,,n O O O 包含B ,而且1n n O B ∞==。
证明:设B 为度量空间X 中的闭集,作集:1{|(,)},(1,2,)n O x d x B n n=<=…… ,n O 为开集,从而只要证1n n B O ∞==;可实上,由于任意正整数n ,有n B O ⊂,故:1n n B O ∞=⊂。
另一方面,对任意的01n n x O ∞=∈,有010(,)d x B n≤<,(1,2)n =…… 令 n →∞有0(,)0d x B =。
所以0x B ∈(因B 为闭集)。
这就是说, 1n n O B ∞=⊂综上所证有:1n n B O ∞==。
4、设(,)d x y 为度量空间(,)X d 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离。
证明:首先由(,)d x y 为度量空间(,)X d 上的距离且(,)(,)1(,)d x y d x y d x y =+,因此显然有(,)d x y 且(,)0d x y =的充要条件是(,)0d x y =,而(,)0d x y =的充要条件是x y =,因此(,)0d x y =的充要条件是x y =。
其次由函数()1tf t t=+在[0,)+∞上单调增加有 (,)(,)(,)(,)1(,)1(,)(,)(,)(,)1(,)(,)1(,)(,)(,)(,)(,)(,)1(,)1(,)d x y d x z d y z d x y d x y d x z d y z d x z d y z d x z d y z d x z d y z d x z d y z d x z d y z d x z d y z +=≤+++≤+++++≤+≤+++即三角不等式成立。
所以(,)d x y 也是X 上的距离。
5、证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f 的各阶导数。
证明:由题2距离的定义:()()()()01|()()|(,)max 21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑则有: 若{}n f 上述距离收敛于f ,则()()()()0|()()|1(,)m a x 0()21|()()|r r n n r r r a t b r nf t f t d f f n f t f t ∞≤≤=-=→→∞+-∑。
所以对任何非负整数r 有:()()()()|()()|max 2(,)0()1|()()|r r rn n r r a t b nf t f t d f f n f t f t ≤≤-≤→→∞+-。
由此对任何非负实数r 有()()max |()()|0()r r n a t bf t f t n ≤≤-→→∞。
从而对任何非负整数r ,n f 的各阶导数()r n f 在[,]a b 上一致收敛于f 的各阶导数()r f 。
反之:若对每个r ,n f 的各阶导数()r n f 在[,]a b 上一致收敛于f 的各阶导数()r f,则对每个0,1,2,r =有()()max |()()|0()r r n a t bf t f t n ≤≤-→→∞,则0,,r r N n N ε∀>∃∀>有:()()max |()()|r r n a t bf t f t ε≤≤-<从而对任意的非负实数r 有:()()()|()()|max 1|()()|1r r n r a t b nf t f t f t f t εε≤≤-≤+-+。
又由于 从而;()()()()00|()()|11(,)max 21|()()|2r r n n r r r r a t b r r n f t f t d f f f t f t ∞∞≤≤==-=≤<∞+-∑∑,于是0,R ε∀>∃有: 112r R ∞+<∞∑。
从而取01max(,,),R N N N N =n N >时()()()()0|()()|1(,)max21|()()|r r n n r r r a t b r nf t f t d f f f t f t ∞≤≤=-=+-∑()()()()()()()()01|()()||()()|11max max21|()()|21|()()|r r r r Rn n r r r r r r a t b a t b r r R n nf t f t f t f t f t f t f t f t ∞≤≤≤≤==+--=++-+-∑∑1011112(1)23.1+221+2RR r rr r R εεεεεεεε∞+==+≤+≤-+<+=∑∑ 于是0,,N n N ε∀>∃∀>有(,)n d f f ε<。
从而点列{}n f 按题2中距离收敛于[,]f C a b ∞∈。
7、设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。
证明:记,(,)inf (,)0x E y F r d E F d x y ∈∈==>。
x E ∀∈,以1(,)2x d x F δ=为半径作点x 的邻域(,)x U x δ,令(,)x x FO U x δ∈=,则O 是开集且E O ⊂。
同理可作开集G ,使得1(,)((,))2y y y FF G U y d y E δδ∈⊂==。
余证O G =Φ,如若不然即O G ≠Φ,则存在P O G ∈,由O 及G 的作法可知,必有,x E y F ∈∈,使得(,),(,)x y P U x P U y δδ∈∈,即1(,)(,)2x d x P d x F δ<=,1(,)(,)2y d y P d y E δ<=。
从而有 1(,)(,)(,)[(,)(,)]2d x y d x P d y P d x F d y E ≤+<+另一方面(,)(,)d x F d x y ≤,(,)(,)d y E d x y ≤,从而有1(,)[(,)(,)](,)2d x y d x F d y E d x y ≥+>,由于,(,)(,)inf (,)0x E y Fd x y d E F r d x y ∈∈>==>,故得矛盾。
因此OG =Φ。
9、设X 是可分距离空间,F 为X 的一个开覆盖,即F 是一族开集,使得对每个x X ∈,有F 中的开集O ,使x O ∈,证明必可从F 中选出可数个集组成X 的一个开覆盖。
证明:因X 是可分距离空间,所以在X 中存在可数稠密子集12{,,}nB x x x =。
因F 是X 的一个开覆盖。
因此x X ∀∈,存在F 中的开集O ,使得x O ∈且x 是O 的内点。
存在0r >,使(,)x U x r O ∈⊂,因B 在X 中稠密,从而可在(,)4r U x 上取出B 中的点k x ,再取有理数r ',使得42r rr '<<(此处的有理数r '与,k x x 均有关系)于是(,)(,)k x U x r U x r O '∈⊂⊂,由x X ∈的任意性从而满足该条件的开集O 的全体覆盖X 。