时程分析法输入地震记录的选择与实例

合集下载

建筑结构时程分析法中天然地震波的选择

建筑结构时程分析法中天然地震波的选择

0 引 言
作 为高层 建筑 和重 要结 构抗震 设计 的一种 补 充 计算 , 用 时程 分 析法 的主要 目的在 于 检 采
验规 范反应谱 法 的计算 结果 、 补反应谱 法 的不 足 和进行 反 应 谱法 无法 做到 的结 构 非 弹性 地 弥
震 反应 分析 。而且 , 用 时程 分 析法还具 有许 多优 点 , 采 其最 主要 的是 它 的计 算结 果能更 真实 地
足现 行抗 震设 计有关 规范 ( 5 0 1 2 i ) GB 0 1 - 0 0 或地震 安全性 评价 中经 土层 反应 分 析得 到相 应结 果 的相关 要求 。
1 1 选 择地 震记 录时应 充分 考虑 建筑物 所在地 的场 地特性 .
地震 波有 自己的特性 , 而结 构也 有 自身动 力 特性 , 且 位 于特 定 场地 土 上 。 比如 , 软 土 并 将 场 地波 作用到 刚性 场地 上 , 之结 构具有 共振效 应 , 加 刚性结 构在 高频 分量为 主 的地 震波 激励下 可能获 得较 强烈 响应 , 性结 构在 低频分 量 为 主 的地震 波 激励 下 可 能获 得 强烈 响应 。在选 择 柔 地震 波 时 , 需要 了解其 在 何 种 场地 上 获得 , 谱 特性 如 何 , 频 在结 构 所在 场 地 可否 重 现 ( 林建 生
地 震 地 磁 观 测 与 研 究
第 3 2卷 第 4期
21 0 1年 8月
SEI SM 0 L0 GI CA L ND A GE0 M AG NETI C 0BS RVATI E ON AND RES EARCH
V01 2 NO .3 .4 A ug . 2 1 01
d i1 . 9 9 J i n 1 0 —2 6 2 1 . 4 0 5 o:0 3 6 / . s. 0 33 4 . 0 1 0 . 0 s

ANSYS地震时程分析

ANSYS地震时程分析

在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。

首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01-0.413893E-02 -0.168195E+00 0.261523E+01-0.574753E-02 -0.157890E+00 0.809014E-01-0.731227E-02 -0.152996E+00 0.119975E+01-0.876865E-02 -0.138102E+00 0.130902E+01-0.101067E-01 -0.131582E+00 0.143611E+00 .......................然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据:0.100000E-010.200000E-010.300000E-010.400000E-010.500000E-010.600000E-01.......................编写如下的命令流文件,并命名为acce.inp*dim,ACCEXYZ,TABLE,2000,3 !01行*vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行*vread,ACCEXYZ(1,0),time,txt !04行(e16.6) !05行ACCEXYZ(0,1)=1 !06行ACCEXYZ(0,2)=2 !07行,同上ACCEXYZ(0,3)=3 !08行,同上finish/SOLUANTYPE,transbtime=0.01 !定义计算起始时间etime=15.00 !定义计算结束时间dtime=0.01 !定义计算时间步长*DO,itime,btime,etime,dtimetime,itimeAUTOTS,0NSUBST,1, , ,1KBC,1acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE*ENDDO最后,在命令窗口里输入/input,acce,inp即可对结构进行地震动力分析。

时程分析法输入地震记录的选择与实例_邓军

时程分析法输入地震记录的选择与实例_邓军

时程分析法输入地震记录的选择与实例邓 军 唐家祥(华中理工大学土木建筑工程学院 武汉 430074)摘 要:从场地条件、设防烈度、持时及地震记录的反应谱与规范反应谱的拟合程度等方面考虑,提出了一种为时程分析法选择实际地震记录的方法。

经实际工程检验,其结果符合规范要求。

关键词:时程分析法 地震记录 反应谱C HOICE AND MEASUREMENT OF SEISMIC RECORDS FOR TIME -HISTORY ANALYSISDeng Jun Tang Jiaxiang(College of Civi l Engineering,Huazhong University of S cience and Technology Wuhan 430074)Abstract :Accordi ng to the site condition ,the fortified intensity,the duration,an d the fitting degree between theresponse spectra of seismic records and those of the code,this paper presents one w ay of selecting seismic records for time -history analysis method.In practical applications,the results satisfied the code.Keywords :time -history analysis method seismic records response spectrum第一作者:邓 军 男 1975年4月出生 硕士收稿日期:1999-11-090 前 言我国新修订的2000年5建筑抗震设计规范6[1](以下简称/规范)第51112条第三款规定符合表3.4.3的不规则建筑、甲类建筑和表5.1.2所列高度范围的高层建筑,应采用时程分析法进行补充计算。

ANSYS Example02地震分析算例 (ANSYS)

ANSYS Example02地震分析算例 (ANSYS)

02地震分析算例(ANSYS)土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常遇到的问题。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a)模态分析(b)谱分析(c)地震反应谱输入(d)地震时程输入(e)时程动力分析(1)在ANSYS窗口顶部静态菜单,进入Parameters菜单,选择Scalar Parameters选项,在输入窗口中填入DAMPRATIO=0.02,即所有振型的阻尼比为2%(2)ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3)在Element Types窗口中,选择Beam 188单元,选择Options,进入Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4)在Element Types窗口中,继续添加Mass 21集中质量单元(5)下面输入材料参数,进入ANSYS主菜单Preprocessor->Material Props-> MaterialModels菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic属性,输入材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

(6)继续给Material Model Number 1添加Density属性,输入密度为7800。

时程分析法

时程分析法

第九章时程分析法第一节时程分析法的概念振型分解法仅限于计算结构在地震作用下的弹性地震反应。

时程分析法是用数值积分求解运动微分方程的一种方法,在数学上称为逐步积分法。

这种方法是从t=0时刻开始,一个时段接着一个时段地逐步计算,每一时段均利用前一时段的结果,而最初时段应根据系统的初始条件来确定初始值。

即是由初始状态开始逐步积分直至地震终止,求出结构在地震作用下从静止到振动、直至振动终止整个过程的地震反应。

时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。

时程分析法能给出结构地震反应的全过程,能给出地震过程中各构件进入弹塑性变形阶段的内力和变形状态,因而能找出结构的薄弱环节。

时程分析法分为弹性时程分析法和弹塑性时程分析法两类。

第一阶段抗震计算“小震不坏”中,采用时程分析法进行补充计算,这时计算所采用的结构刚度和阻尼在地震作用过程中保持不变,称为弹性时程分析。

在第二阶段抗震计算“大震不倒”中,采用时程分析法进行弹塑性变形计算,这时结构刚度和阻尼随结构及其构件所处的非线性状态,在不同时刻可能取不同的数值,称为弹塑性时程分析。

弹塑性时程分析能够描述结构在强震作用下在弹性和非线性阶段的内力、变形,以及结构构件逐步开裂、屈服、破坏甚至倒塌的全过程。

第二节时程分析法的适用范围一、时程分析法的适用范围时程分析法是根据选定的地震波和结构恢复力特性曲线,对动力方程进行直接积分,采用逐步积分的方法计算地震过程中每一瞬时的结构位移、速度和加速度反应,从而可观察到结构在强震作用下弹性和非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的全过程。

但此法的计算工作十分繁重,须借助计算机,费用较高,且确定计算参数尚有许多困难,目前仅在一些重要的、特殊的、复杂的以及高层建筑结构的抗震设计中应用。

《建筑抗震设计规范》对时程分析法的适用范围规定如下:9-2 全国注册结构工程师专业备考加油站辅导教材《建筑抗震设计规范》的条文说明:与振型分解反应谱法相比,时程分析法校正与补充了反应谱法分析的不足。

地震响应的反应谱法与时程分析比较

地震响应的反应谱法与时程分析比较

地震响应的反应谱法与时程分析比较地震响应分析是地震工程领域中一项重要的研究内容,用于描述地震荷载对结构物产生的动态响应。

常用的地震响应分析方法有反应谱法和时程分析法。

反应谱法和时程分析法在地震响应分析中各有优缺点,本文将对两种方法进行比较。

首先,反应谱法是一种基于地震输入和结构特性的简化方法,适用于结构相对简单、不涉及复杂非线性行为的分析。

反应谱法通过建立结构的响应谱与地震输入谱进行比较,确定结构的最大响应,并用于设计结构的抗震能力。

反应谱法的优点在于简化计算过程,能够提供结构的峰值加速度、速度以及位移等重要参数。

同时,反应谱法可以通过改变地震输入谱来研究结构的响应变化情况,从而进行参数分析和优化设计。

然而,反应谱法也有一些缺点,例如只考虑了结构的最大响应,对于结构的时间历史响应和非线性行为的分析能力有限。

相比之下,时程分析法是一种更为精确和全面的地震响应分析方法。

时程分析法基于结构的动力学特性,通过模拟地震波在结构上的传播和结构的动力响应,计算出结构各个时刻的加速度、速度和位移等响应参数。

时程分析法适用于复杂结构和涉及非线性行为的分析,能够提供结构的详细时程响应,并能够考虑结构的动力参数变化和非线性效应。

时程分析法的优点在于可以全面考虑结构的动态响应特性,对于复杂结构和高等级抗震设计具有更好的适应性。

然而,时程分析法需要大量的计算资源和长时间的计算周期,对于大型结构和大规模的地震模拟较为困难,并且需要考虑更多的输入参数和模型假设,使得计算过程更加复杂和繁琐。

总的来说,反应谱法和时程分析法在地震响应分析中各有优劣。

反应谱法适用于结构相对简单、不涉及复杂非线性行为的分析,计算简化,能够提供结构的峰值响应参数。

时程分析法适用于复杂结构和涉及非线性行为的分析,可以提供更为详细的结构时程响应,但计算复杂度较高。

在实际工程中,根据不同的需求和分析对象,可以选择合适的方法进行地震响应分析。

在抗震设计中,反应谱法常用于结构的初步设计和抗震性能评估,时程分析法常用于重要工程和要求准确分析的结构。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

时程分析法计算地震反应的简单实例时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度78003,2.1e11,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160,在6m、9m、12m处分别有120的集中质量。

反应谱按7度多遇地震,取地震影响系数为0.08,第一组,类场地,卓越周期0.45s。

图1 计算对象第一部分:反应谱法几点说明:本例建模过程使用;添加反应谱必须在中加关键词实现,不支持反应谱;*不可以在中添加,不支持此关键词读入。

的反应谱法计算过程以及后处理要比方便的多。

操作过程为:(1)打开,点击。

(2)进入模块,点击,命名为,3D、、。

(3),在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入模块,,:,>>,:7800>>>>,‘s :2.1e11,’s :0.3.(5),:1,:,:,, : 1, ,按图1尺寸输入界面尺寸,。

在选择I,选择。

(6),选择全部,,弹出的对话框选择:1,。

(7),选择全部,默认值确定。

(8) >> ,在弹出的对话框里勾选,,以可视化梁截面形状。

(9)添加集中质量,>>>>,:1,:,,选择(0,3)位置点,:160,。

,:2,:,,选择0,6;0,9;0,12位置点(按多选),,:120,,。

(10) >> ,选(),。

(11) >> ,:1,选,在选项卡中,选择频率提取方法,本例选用法,,选,输入10。

再,,:2,选,在选项卡中,选择单向,选择()法,:(反应谱的,后面再中添加),方向余弦(0,0,1),:1.进入选项卡,阻尼使用直接模态(),勾选,:1,:8,:0.02。

(12)进入模块,>> ,:,选择,选择,选择,选择0,0点,,勾选u13所有6个自由度。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。

反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。

图1 计算对象第一部分:反应谱法几点说明:λ本例建模过程使用CAE;λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱;λ*Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。

λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。

操作过程为:(1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。

continue(3) Create lines,在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.(5) Create section,name:Section-1,category:beam,type:beam,Continuecreate profile, name: Profile-1, shape:I,按图1尺寸输入界面尺寸,ok。

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。

目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。

本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。

关键词:时程分析、有限元软件、钢筋混凝土剪力墙Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same.Keywords: time history analysis, finite element software, reinforced concrete shear walls一、引言在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。

时程分析方法

时程分析方法

时间尺度
时间尺度是指描述时间变化所使用的度量单位,如秒、分、小时、天、月、年等。
在时程分析中,选择合适的时间尺度对于模拟和分析结果的准确性和可靠性至关重 要。
根据研究对象的特性和需求,选择合适的时间尺度可以更好地反映系统的动态特性 和变化规律。
时间权重
1
时间权重是指在进行时程分析时,对不同时间点 的数据赋予不同的权重,以反映其在整个时间序 列中的重要程度。
发展历程
时程分析方法自20世纪70年代提出以来,经过不断改进和完善,已经成为一种相对成熟的结构地震 响应分析方法。
现状
随着计算机技术的不断发展,时程分析方法的计算效率和精度得到了显著提高,广泛应用于各类工程 结构的抗震设计和评估中。同时,该方法也在不断发展和完善,以适应更复杂和多变的工程需求。
CHAPTER 02
精度。
案例二:物流需求预测
总结词
基于回归分析的物流需求预测模型
详细描述
该案例使用时程分析方法,通过分析历史物流需求数 据,建立回归分析模型,预测未来物流需求的变化趋 势。该模型考虑了多种影响因素,如经济增长、贸易 活动等,以更准确地预测物流需求。
案例三:城市交通流量预测
总结词
基于神经网络的城市交通流量预测模型
特点
考虑了地震动的不确定性,能够模拟 地震动的时变特性、空间变化特性以 及随机性,提供更精确的结构地震响 应评估。
适用范围与限制
适用范围
适用于各种类型的结构体系,包括单 层和多层结构、线性与非线性体系等。
限制
由于时程分析需要大量的计算资源, 对于大型复杂结构的分析可能存在计 算效率问题。
发展历程与现状
模型验证与优化
验证模型
使用独立的数据集对建立的模型进行验 证,评估模型的预测能力和拟合度。

时程分析计算精辟解读(值得收藏)

时程分析计算精辟解读(值得收藏)

时程分析计算精辟解读(值得收藏)时程分析法是20世纪60年代逐步发展起来的抗震分析方法.用以进行超高层建筑的抗震分析和工程抗震研究等.至80年代,已成为多数国家抗震设计规范或规程的分析方法之一.“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法.“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的.规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算.所以有较多设计人员对应用时程分析法进行抗震设计感到生疏.近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了.1输入地震动准则输入地震动准则即为结构时程分析选择输入地震加速度记录时程(简称地震波)的基本要求,包括:地震环境(场地类别和地震分组)、数量、持续时间、检验方法等.地震波的合理选择是时程分析结果能否既反映结构最大可能遭遇的地震作用,又满足工程抗震设计基于安全和功能要求的基础.在这里不提“真实”地反映地震作用,也不提计算结果的“精确”性,正是基于对结构可能遭遇地震的极大不确定性和计算中结构建模的近似性.在工程实际应用中经常出现对同一个建筑结构进行时程分析时,由于输入地震波的不同,造成计算结果的数倍乃至数十倍之差,使工程师无所适从.《建筑抗震设计规范》(GB50011—2010)(简称2010规范)5.1.2-3条要求“采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的2/3,多组时程曲线的平均地震影响系数曲线(即反应谱)应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”.1.1“选波”要求1.1.1地震环境要求2010规范在构建设计反应谱时,按不同场地类别和震级、震中距从全球强震加速度记录数据库中挑选了数百条地面加速度记录,求出每条记录的反应谱.同时收集这些记录台站的地质剖面和地震震级、震中距等参数,按照2010规范的场地类别划分标准,场地分成Ⅰ~Ⅳ类和远、中、近震分组,共计12组,再经平滑处理得到2010规范5.1.5条的地震影响系数曲线,即设计反应谱.时程分析法输入地震波的选择应遵循上述构建设计反应谱的原则,考虑建设场地与记录台站场地的地震环境.1.1.2数量要求对于高度不是太高、体型比较规则的高层建筑,取2+1,即选用不少于2条天然地震波和1条拟合目标谱的人工地震波,计算结果宜取包络值.对于超高、大跨、体型复杂的建筑结构,取5+2,即不少于7组地震波,其中,天然地震波数量不少于总数的2/3,计算结果取平均值.1.1.3持续时间要求为了充分地激励建筑结构,一般要求输入的地震动有效持续时间为结构基本周期的5倍左右.对于结构动力时程分析,只有加速度记录的强震部分的时长,即有效持续时间才有意义.最常用的有效持续时间定义是:取记录最大峰值的10%~15%作为起始峰值和结束峰值,在此之间的时间段为有效持续时间.图1表示编号为US185地震加速度记录的波形,用于7度小震下结构时程分析,最大加速度峰值是35gal,取首、尾两个峰值为3.5gal之间的时间长度为有效持续时间,大约为30s,可用于基本周期小于6s的结构.ps:持续时间不是指整个时程的记录时间图1加速度记录有效持续时间的定义1.1.4统计特征要求规范规定,时程分析所采用的地震波的平均反应谱与振型分解反应谱法所采用的反应谱应“在统计意义上相符”.如前所述,天然地震波具有千变万化的特征,不同结构的动力特性也千差万别.对同一个结构,输入不同的地震波进行时程分析会得到完全不同的结果.所以,遵循“在统计意义上相符”的原则选择天然地震波时,只要求所选的天然地震加速度记录的反应谱值在对应于结构主要周期点(而不是每个周期点)上与规范反应谱相差不大于20%.这个要求只是一种参考,便于数据库管理员在数据库中挑选合适的记录.一般情况下,照此要求选择的地震波可以满足时程分析要求.但是,不宜将此作为检验地震波的标准,检验标准仍然是规范规定的结构底部剪力.为什么既要求有天然地震波,又要求有人工地震波作为输入?原因是,所谓人工地震波,是应用数学方法,将足够多的具有不同周期的正弦波叠加组合形成一个平稳或非平稳的随机时间历程,对叠加组合过程不断进行迭代修正,使它的反应谱逐步逼近规范的设计反应谱.当拟合精度达到在各个周期点上的反应谱值与规范反应谱值相差小于10%,即认为“在统计意义上相符”了.这样合成的人工地震波具有足够多的周期分量,可以均匀地“激发”结构的各个振型响应.但是,由于人工地震波是“拟合”设计反应谱的加速度时间过程,不具备天然地震波的完全非平稳随机过程特性,特别是缺少强烈变化的短周期成分.因此它只能在设计反应谱的“框架”内激励结构,无法“激发”结构的高阶振型响应,所以时程分析要求以天然地震波为主,同时辅以人工地震波作为地震动输入.ps:人工波对低阶振型激发较好,而对于高阶振型的激发不够(如肖总所说),因此对于高阶振型部分,必须仰仗天然波来激发.本人理解,作者建议采用EPA,就是为了保证天然波对于高阶振型的激发.弹性时程分析与振型分解反应谱分析的关系,实质上是事物的特殊性与一般性的关系,多条地震波时程分析结果的平均值近似于反应谱法计算结果,输入的地震波数量越多,这种近似性越好.ps:现在很多软件能够根据规范相关要求,自动选波,比如YJK弹性时程分析时就可以做相关的自动选波.自动筛选最优地震波组合这块就给设计师在筛选地震波这块提供了相当大的便利.选择框中列出了程序根据特征周期归类后的波库中天然波和人工波,用户可从中选择参与筛选的备选地震波到中间列表框.如全选,筛选出的地震波组合可能多一些,但计算时间稍长.可根据规范在对话框下部设定地震波组合的人工波数,天然波数.按照规范要求,实际强震记录的数量不应少于总数的2/3.若选用不少于二组实际记录和一组人工模拟的加速度时程曲线作为输入,计算的平均地震效应值不小于大样本容量平均值的保证率的85%以上.YJK计算程序即根据设置好的限定条件计算每条地震波的基底剪力与结构周期点上所对应的反应谱值.最终满足要求的所有组合结果将在该按钮下方的列表框中按最优至次优的顺序显示.列表中的组合可以通过选择地震波组合按钮选择,选中的地震波组合包含的地震波将在下方列表框中显示.如下图所示图1自动筛选最优地震波组合对话框根据《建筑抗震设计规范》GB50011-2010中的规定,程序遵循的地震波组合筛选原则如下:1:单条地震波满足限制条件每条地震波输入的计算结果不会小于65%,不大于135%.2:多条地震波组合满足限制条件(1)“在统计意义上相符”,即多组时程波的平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大于20%,即:>80%并<120%(2)多条地震波计算结果在结构主方向的平均底部剪力一般不小于振型分解反应谱计算结果的80%,不大于120%.(3)按照平均底部剪力与振型分解反应谱法计算的底部剪力偏差最小的原则对已经满足上述限制的组合再进行排序,默认选出偏差最小的组合作为最有组合.在搜索过程中,当程序提示未搜索到符合要求的地震组合时,用户可根据抗震规范规定适当增加相邻特征周期的可选地震波或者放宽主次方向地震峰值加速度值以满足以上的限制条件.点击“查看计算结果文本”,程序将打开结果文件,内容包括了地震波在筛选地震波组合时计算的地震波基底剪力,周期点谱值及地震波组合计算的统计结果.用户可根据该计算统计结果适当改变地震波组合方案.图2筛选方案排序示例对于未筛选出满足要求的地震波组合工程,用户可尝试从以下几方面检查参数设置或者进行适度调整.(1)主次波峰值加速度对应地震烈度是否与前处理中地震烈度设置一致.(2)前处理中周期折减系数是否过小.(3)根据规范相关阐述,在选取不到恰当地震波组合情况下,可选取相邻特征周期地震波或增大减小地震波峰值加速度以满足剪力即谱值要求.1.2天然地震波加速度值的调整如前所述,结构时程分析法补充计算被用于校核振型分解反应谱法的计算结果.反应谱法以反应谱作为输入地震动,时程分析以加速度时程(地震波)作为输入,需要对它的加速度值进行调整.2010规范以中国地震动参数区划图定义的地面峰值加速度GPA为设防地震(中震)基本地震峰值加速度,如表3.2.2所示;表5.1.2-2分别给出多遇地震(小震)和罕遇地震(大震)加速度峰值,与之相对应的规范设计反应谱是基于大量的天然地震加速度记录,并经平滑处理和统计平均后构建的,是地震动的预期均值.对每一条天然地震波加速度时程进行调整的步骤是:根据规范给定的加速度峰值GPA,按比例调整后求得其加速度反应谱,经平滑处理得到归一化的反应谱.运用式(1)求得有效峰值加速度EPA,以其为基准对地震波加速度时程进行再调整,得到结构时程分析所需要的加速度时程.需要指出的是,有效峰值加速度EPA不等于地面峰值加速度GPA,当地震波的短周期成分显著时,GPA大于EPA.如前所述,人工地震波是采用拟合规范反应谱的数值合成方法得到的加速度时程,按GPA比例调整后即可作为时程分析的输入地震动.美国地震危险区划图定义,有效峰值加速度EPA、加速度反应谱最大值Sa(对应于中国规范的地震影响系数)和放大系数β存在如下关系:式中:Sa(0.2)为周期0.2s处的谱加速度值;β为动力放大系数,取2.50(中国规范取2.25).下面以位于7度区III类场地(Tg=0.70s)的设计地震分组为第三组的某一高层建筑为例,大震作用下结构弹塑性时程分析选用7组输入地震波,其归一化的加速度反应谱及其平均、平滑处理后的结果如图2所示.图2地震加速度反应谱表1和图3是每条地震波调整前后的地震动参数与规范的对比(大震作用GPA 取2.20m/s2).可以看到,尽管各条地震波的三个参数差别较大,但经平滑平均后接近于规范反应谱,且EPA<GPA.由此也可证明,2010规范对地震波数量的要求是必要而且合理的.ps:上表的平均值为平均谱所得的值.如amax,并不是每个波amax的平均,而是由平均谱求得的,因为每个谱的极值点不会都在同一个周期,故平均谱的amax比每个波amax的平均值小.图3地震动参数对比1.3检验要求《建筑抗震设计规范》(GB50011—2001)(简称2001规范)和2010规范提出:弹性时程分析时,每条时程曲线计算所得底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得底部剪力的平均值不应小于振型分解反应谱计算结果的80%.具体操作时,当采用一组(单向或两向水平)地震波输入进行时程分析,结构主方向基底总剪力为同方向反应谱CQC计算结果的65%~130%,多组地震波输入的平均值为80%~120%.不要求结构主、次两个方向的基底剪力同时满足这个要求.需要说明的是,对结构可以按第一、二主振型认定主、次方向,而一组地震记录的两个水平方向无法区分主、次方向.ps:X向为主时仅要求X向满足,Y向为主是仅要求Y向满足.1.4选波实例下面以两组天然地震波和一组人工合成地震波为例说明选波过程及效果.(1)图4为所选择的一组3分量天然地震波时程及反应谱,其中编号US2570和US2571为两向水平分量,US2569为竖向分量,需要按小震作用所对应的最大加速度峰值进行调整,除有特殊要求外,通常取两向水平峰值与竖向峰值之比为1.00:0.85:0.65.从波形和反应谱可以看到,竖向分量的短周期成分十分显著,水平分量在短周期部分的波动也很显著,各向分量的反应谱曲线相差明显.图4第一组天然地震波和反应谱(2)图5为另一组3分量天然地震波时程及反应谱,其中编号US184和US185为两向水平分量,US186为竖向分量.同样可以看到,竖向和水平分量在短周期部分的波动很明显,但是两个水平分量的反应谱曲线比较一致.两组地震波反应谱的明显差异反映了天然地震波特征的不确定性,用于结构时程分析时,很难做到两向水平输入的地震波均能满足规范要求,一般只要求结构主方向的底部总剪力满足规范要求即可.图5第二组天然地震波和反应谱(3)图6为三条人工地震波及反应谱.图6三条人工地震波及反应谱2时程分析输出结果解读结构时程分析一般要求进行小震作用下弹性和大震作用下弹塑性计算.对计算结果的解读可以判断结构的动力响应和损伤情况.2.1小震作用下的计算结果(1)楼层水平地震剪力分布:对于高层建筑,通常可由此判断结构是否存在高阶振型响应并发现薄弱楼层.图7为某幢高层建筑结构小震弹性时程分析得到的楼层剪力分布,可见结构存在高阶振型响应,应对结构上部相关楼层地震剪力加以调整放大.图7楼层地震剪力分布(2)弹性层间位移角分布:如图8所示,上部结构部分楼层的层间位移角大于规范限值.从图7和图8可以看到,输入3组地震波进行时程分析,结构高阶振型响应明显,上部楼层剪力和位移均放大了,应对反应谱法结果进行调整,采用包络设计.图8弹性层间位移角分布2.2大震作用下的计算结果(1)层间位移角分布:按照规范要求进行大震作用下结构的时程分析,主要是弹塑性变形计算,力的计算并不重要.计算结果通常给出弹性和弹塑性层间位移角分布的对比,如图9所示.X向最大层间位移角为1/178,Y向为1/138,均满足规范限值1/100.一般情况下,最大弹性位移角大于弹塑性位移角.图9弹塑性层间位移角分布(弹塑性/弹性)(2)结构顶点位移时程曲线:从结构顶点位移时程曲线除了可以看出位移是否满足规范限值外,更重要的是可以判断结构整体刚度退化程度,并推测结构的塑性损伤程度.如图10所示,弹塑性位移时程曲线表明,结构的周期逐步变长,说明有部分构件累积损伤,导致结构整体刚度退化.图10结构顶点位移时程曲线对比(弹性/弹塑性)(3)构件损伤:通常要求给出主要抗侧力构件,如剪力墙、框架柱、支撑、环带桁架、伸臂桁架等,以及耗能构件,如连梁、框架梁等的损伤,以应力比、应变、损伤因子等表示.图11表示某高层建筑核心筒剪力墙受压、受拉和框架柱的损伤.图11核心筒剪力墙和框架柱损伤(4)能量分布:有的软件可以提供在地震作用下结构的能量分布情况.如图12所示,从上至下的区域分别表示结构动能、弹性应变能、与质量M相关的粘滞阻尼耗能、与刚度K相关的粘滞阻尼耗能、塑性耗能.其中,塑性耗能属于不可恢复的能量耗散,所占比例越大,表明结构整体破坏越严重.图12结构能量分布。

结构抗震设计时程分地震波的选择

结构抗震设计时程分地震波的选择

(1 )设计用地震记录的选择和调整用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。

(一)实际地震记录的选择方法选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录到的地震加速度时间过程。

但是,这种机会极少。

为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。

他的文章给出了相应的地震数据的记录目录。

(二)实际地震记录的调整1.强度调整。

将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。

即令其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值为记录的加速度峰值。

这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。

也就是所说的(强度修正。

将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。

如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴拉长”或缩短”以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。

另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。

这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。

另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。

即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。

有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。

谈时程分析中地震波的选取

谈时程分析中地震波的选取

谈时程分析中地震波的选取赵婷婷;谭军;金春峰【摘要】介绍了地震动的主要特性及结构抗震设计中需考虑的要素,并分析了人工合成地震波的原因及方法,归纳了时程分析中几种地震波的选用原则,给出了时程分析中地震波选取的最优方案.【期刊名称】《山西建筑》【年(卷),期】2017(043)014【总页数】3页(P41-43)【关键词】时程分析;地震波;地震动;反应谱【作者】赵婷婷;谭军;金春峰【作者单位】中电投工程研究检测评定中心,北京100142;中电投工程研究检测评定中心,北京100142;中电投工程研究检测评定中心,北京100142【正文语种】中文【中图分类】TU311.3地震是一种严重的自然灾害,抗震设防是有效减轻震害的途径,而抗震设防的首要任务就是地震动的输入。

影响地震的因素有断层位置、震中距、波传递途径的地质条件、板块运动形式、场地土构造和场地类别等。

在不同的地震作用下,不同场地得到的地震记录具有较大的区别,即使在同一次地震作用下,同一场地得到的地震记录也不尽相同。

因此,对未来的地面运动进行准确地预见是很难实现的。

在进行结构时程分析时,对同一结构输入不同的地震波,所得到的计算结果相差甚远。

因此,选择合理的地震波是保证时程分析中计算结果可靠的必要条件。

国内外学者的大量研究表明,虽然对未来地震动进行准确的定量是难以实现的,但只要所选用的地震波的主要参数能够大体上符合地震动的主要参数,所得到的时程分析结果可以较为真实地反映出结构在真实地震作用下的地震反应,计算得到的位移及内力能够满足工程设计对其精度的要求。

地震动有三要素,分别为地震动的幅值、频谱特性和持续时间。

1.1 地震动幅值地震动幅值可以是地震动加速度、速度或位移中三者之一的峰值或某种意义下的等代值[1],是对地震动强度最为直观的描述。

加速度峰值(PGA)为加速度时程的最大值,通常为地震动高频成分的幅值,大量研究表明:由于高频地震波只存在于震源附近,在传播过程中衰减较快,且与建筑物自振频率相差较大,对建筑物的影响较小。

弹性时程分析——YJK盈建科软件操作

弹性时程分析——YJK盈建科软件操作

弹性时程分析——YJK软件操作篇操作菜单1上部结构计算——弹性时程分析2常用活动菜单——计算参数+计算分析3结果菜单——WDYDA+层位移+层位移角+层剪力+层弯矩+反应谱对比计算参数根据《建筑抗震设计规范》(GB50011-2010)表5.1.2-2,多遇地震,自动对主次方向的峰值加速度取值1第一级对话框——参数输入-弹性时程分析信息次方向的峰值加速度取值取为默认值时,CQC 法结果是考虑了主次波组合情况下的计算结果。

WZQ 中CQC 法的计算结果始终是单向地震下的分量计算结果,未考虑双向地震组合。

所以两份文件的CQC 法计算结果只有在单向地震情况下,次方向的峰值加速度取值取为0时保持一致2只计算主方向地震效应:程序对结构地震波效应的计算结果分为0°与90°两种情况,每种情况又各自有主次两个方向分量的效应。

在后续对弹性时程结果的运用中,次方向的效应一般不会用到3第二级对话框——地震波选择对话框1本级菜单一般条件下无需进行调整2查看反应谱——PGA、EPA、加速度谱、速度谱、位移谱第三级对话框——自动筛选最优地震波组合1地震波组合晒选限制条件➢单条地震波基底剪力满足规范要求——±35%➢地震波组合平均基地剪力满足规范要求——±20%➢平台与第一周期领域平均值筛选——《结构时程分析法输入地震波的选择控制指标》——仅供参考!①一是同欧洲规范,对地震记录加速度反应谱值在[0.1, Tg]平台段的均值进行控制,要求所选地震记录加速度谱在该段的均值与设计反应谱相差不超过10%②二是对结构基本周期T1附近[T1-DT1,T1+DT2 ]段加速度反应谱均值进行控制,要求与设计反应谱在该段的均值相差不超过10%③由于实际结构在大震作用下常进入非线性状态,结构刚度发生退化,结构基本周期随之不断延长,在选取DT1和DT2时,可使DT2=0.5s>=DT1。

Tol为限值1地震波组合晒选限制条件➢单条考虑各地震波组合在第1,2阶周期的平均反应谱值➢必要时,适当增加相邻特征周期的可选地震波或者放宽主次方向地震峰值加速度值以满足以上的限制条件选波文本结果一:wavecombin 2选波文本结果二:wdynaSpec3原则上,任一组合均满足规范要求!计算结果文本结果——wdyna 、wdynaSpec 1内力及位移图形结果——层位移+层位移角+层剪力+层弯矩2地震波与反应谱对比结果3。

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应谱法。

时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。

进行时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。

时程曲线的选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。

本文通过介绍常用的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。

关键词:时程分析,地震波,反应谱,动力计算1 地震反应分析方法的发展过程结构的地震反应取决于地震动和结构特性。

因此,地震反应分析的水平也是随着人们对这两个方面认识的深入而提高的。

结构地震反应分析的发展可以分为静力法、反应谱法、动力分析法这三个阶段。

在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。

[1]目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其中以加速度反应谱应用得最多。

反应谱是指:单自由度弹性体系在给定的地震作用下,某个最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。

反应谱理论是指:结构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。

其优点是物理概念清晰,计算方法较为简单,参数易于确定。

反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时等无关。

[1]时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。

由于此法是对运动方程直接求解,又称直接动力分析法。

地震安评中天然地震波选取方法研究

地震安评中天然地震波选取方法研究

地震安评中天然地震波选取方法研究摘要:大型振动台物理模拟试验是揭示强震作用下边坡动力响应和失稳破坏过程的最为有力的手段之一,而动力荷载的选择又对于岩质边坡振动台试验研究具有重要的影响。

天然地震波是在天然地震时,数字地震台网记录到的地震波,天然地震波可以反映地震真实动力输入,也是动力荷载输入的数据基础。

普遍认为场地条件对天然地震波的传播有较大的影响,经过土层场地或基岩场地不同介质时,波会发生散射、反射和偏转,地震动幅值特性和地震动频谱特性都会发生改变,并直接影响到地震灾害的分布。

因此,不同场地条件下的天然地震动参数具有不同的特性,不同的参数特性会引起不同的地震反应结果。

本文主要分析地震安评中天然地震波选取方法。

关键词:地震安全性评价;时程分析;输入地震波引言《建筑抗震设计规范》(GB50011-2010)中明确指出:为保证甲类建筑和超高层建筑的抗震安全,在进行抗震设计验算时除了采用反应谱法外,还应采用时程分析法计算多遇地震下结构的抗震承载力。

时程分析法分析结果的可靠性,主要取决于建筑结构模型和输入地震动的精确性,输入地震波不同,时程分析法所得结构地震反应相差甚远,计算出的弹塑性位移和内力相差可达几倍、甚至几十倍之多。

因此,地震波的合理选择是时程分析结果能否满足工程抗震设计要求的必要前提。

但是,由于地震动是时频非平稳随机过程,不仅受到震源性质、传播介质和场地条件等诸多因素的影响,还要考虑地震环境、地震波数量、地震幅值和持时等综合因素。

因此合理选择输入地震动进行结构时程分析是地震安评工作中面临的巨大挑战。

1、工程中常用的选波方法概述时程分析法实施的前提是地震波输入的确定性,地震动输入时程选取的好坏直接决定了建筑结构未来遭受地震时动力响应的合理性。

一般认为,应从地震动峰值、频谱特性及持时等三要素与抗震规范给出的设计反应谱相近作为选波的控制条件,从而使选择的多样本地震动输入下结构地震反应具有一定的群聚效应,否则多波验算结果产生过大的离散性将很难指导设计。

地震记录初至拾取方法对比和研究

地震记录初至拾取方法对比和研究

地震记录初至拾取方法对比和研究地震记录初至拾取方法是指从地震信号中识别和提取初至波(地震波第一次到达记录仪器的时间)的技术。

这种技术在地震学研究中具有重要意义,因为它可以帮助研究者更好地理解和分析地震事件的各种特征。

本文将介绍地震记录初至拾取方法的发展历程、比较分析、应用情况及未来展望。

传统的地震记录初至拾取方法主要基于人工操作,通过观察地震记录图的波形变化来识别初至波。

随着计算机技术和数字信号处理技术的发展,越来越多的自动化方法被提出。

这些方法主要包括基于小波变换、基于信号处理滤波器和基于机器学习等技术。

小波变换是一种将信号分解成不同频率组成的方法,通过调整小波基和分解层数,可以将信号中的不同成分分离出来。

基于信号处理滤波器的方法则是通过设计特定的滤波器,将地震信号中的初至波进行提取。

而基于机器学习的方法则是通过训练机器学习模型,让它自动学习和识别地震记录中的初至波。

传统方法和最新技术各有优缺点。

传统方法虽然容易理解和操作,但需要大量的人力和时间,且容易受到主观因素的影响。

而最新技术虽然可以提高提取效率,但需要特定的计算机技术和信号处理知识,且需要进行大量的数据训练。

因此,在实际应用中,应根据具体需求和条件选择合适的方法。

地震记录初至拾取方法在实践中得到了广泛的应用。

例如,在地震预警系统中,初至拾取技术可以快速识别地震事件,为政府和公众争取到宝贵的预警时间。

另外,初至拾取方法也被广泛应用于地震学研究,包括地震震源机制、地震波传播特性等方面的研究。

然而,在实际应用中,初至拾取方法也面临着一些挑战。

一方面,地震事件通常伴随着大量的噪声干扰,这些干扰可能会影响初至波的识别和提取。

另一方面,地震事件的复杂性也给初至拾取带来了很大的难度,因为不同类型的地震事件可能需要采用不同的方法进行处理和分析。

随着科学技术的不断发展,地震记录初至拾取方法也将不断进步和完善。

未来,这种方法将会朝着更加自动化、智能化、高精度和高效率的方向发展。

ANSYS地震分析实例

ANSYS地震分析实例

ANSYS地震分析实例土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输进(d) 地震时程输进(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor-&gt;Element type-&gt;Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输进材料参数,进进ANSYS主菜单Preprocessor-&gt;Material Props-&gt; Material Models菜单,在Material Model Number 1中添加Structural-&gt; Linear-&gt; Elastic-&gt;Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0. 38 0. 37 0. 41 0. 26 0. 81 0. 19
41. 82 45. 2 49. 46 98. 56 73. 04 51. 75
3结 语 以上所叙选择方法既满足了新规范所规
定的应按建筑场地和所处地震环境及其平均 地震响应系数曲线应与振型分解反应谱法所 采用的地震影响系数曲线在统计意义上相符 的要求, 又同时满 足了场地特征及结构物特 性, 使该选择方法 及所选地震记录具有了工 程使用价值。经大量工程实例证明, 用本文 方法所选的地震记录进行时程分 析计算, 弹 性计算的结果与振型分解反应谱法的计算结 果比较, 偏差小于 ? 20% , 满足规范要求。并 且, 弹塑性计算结果的离散性很小, 可供工程
图 1 框架尺寸 m
先对其进行振型分解反应谱法计算。最 大底部剪力 Qs = 1 407164 kN, 基本 周期为 1191 s。
然后, 进行时 程分析计算。从地震记录 数据库中选用 Ó 类场地与第 2 个频段( 即周
图 3 任选地震记录的反应谱 ) ) ) EQ0431; , ,EQ 1877;---- EQ2029
图 4 计算的层间剪力 1- 时程分析法; 2- 反应谱法
图 2 对应 Ó 类场地, 第 2 频段地震记录的反应谱 ) ) ) EQ 0121; , ,EQ 1118;---- EQ0398
期为[ 1 s, 2 s] ) 对应的 3 条地震记录, 数据见 表 3 第 1、2、3 条。反应谱见图 2。并将其调
表 2 最大加速度 峰值调整表
m/ s2
设防烈度 多遇地震 罕遇地震
7
8
0. 35( 0. 53) 0. 70( 1. 06)
2. 20( 3. 20) 4. 40( 6. 40)
9 1. 40 6. 20
113 所选地震记 录的反应谱曲线应基本拟 合规范反应谱
新规范规定, 所选地震记录 其平均地震 影响系数曲线应与振型分解反应谱法所采用 的地震影响系数曲线在统计意义上相符。由 于要在统计意义上相符, 而样本容量又不大,
时程分析法输入地震记录的选择与实例
邓 军 唐家祥
( 华中理工大学土木建筑工程学院 武汉 430074)
摘 要: 从场地条件、设防烈度、持时及地震记录的反应谱与规范反应谱 的拟合程度等 方面考虑, 提 出了一种为时程分析法选择实际地震记录的方法。经实际工程检验, 其结果符合规范要求。
关键词: 时程分析法 地震记录 反应谱
( Q 平均2 - Q s) / Q s = 55. 03% > 20% ,
得时程分析法底部剪力分别为: Q 4 = 3 340. 7 kN , Q 5 = 2 855. 99 kN ,
R2/ Q 平均2 = 0. 60 很显然, 无论是均 值还是方差都不符合规范
Q 6 = 349. 88 kN ,
Abstract : A ccording t o the site condit ion , t he fortif ied int ensity, t he durat ion, an d t he fit ting degree bet ween t he response spectra of seismic records and those of the code, t his paper present s one w ay of selecting seismic records for t ime-hist ory analysis met hod. In pract ical applications, the result s sat isf ied t he code. Keywords : time-hist ory analysis method seismic records response spect rum
EAR THQ U AK E
213. 808
K ERN
CO U N T Y
5 EQ1877
1952- 7- 21 134 SOUT - 113. 307
EAR THQ U AK E
SA N JO SE EAR TH-
6 EQ2029
1955- 9- 4 81 N59E
Q U AK E
105. 799
10
因而要求所选每一条地震记录的反应谱基本 上能拟合规范反应谱。这样既保证了均值上 能相符, 又控 制了 离散 性, 使 方差 很小。否 则, 可能会出现离 散水平不小于平均水平的 情况。
经大量地震记录的 统计分析, 要在反应 谱整个频率 段上进行控制是很难的。因而, 将反应谱划分为 6 个频率段: [ 0 s, 1 s] 、[ 1 s, 2 s] 、[ 2 s, 3 s] 、[ 3 s, 4 s] 、[ 4 s, 5 s] 、[ 5 s, 6 s] 。分别在每一段上进行控制。这样可在每 一段上找出拟合条件最好的地震记录。结构 的基本周期在哪个范围内, 则选用哪个范围 内的地震记录。从弹性分析的角度看, 结构 的最大响应主要由前几个振型来决定[ 5] , 因 而按此原则选波, 就决定了与振型分解反应 谱法的可比性, 并能使计算结果相接近, 满足 规范所要求的不小于振型分解反应谱法计算 结果的 80% 。又因按结构的基本周期来决定 所处频段, 反映了结构特性。根据 大量工程 实例的分析, 据此 原则所选地震记录进行时 程分析, 其平均底 部剪力与振型分解反应谱 法算出的底部剪力偏差在 ? 20% 以内, 离散
CHOICE AND MEASUREMENT OF SEISMIC RECORDS FOR TIME-HISTORY ANALYSIS
Deng Jun Tang Jiaxiang ( College of Civil Engineering, Huazhong U niversity of S cience and Technology Wuhan 430074)
2 工程实例 某 9 层现浇混凝土 办公楼, 框 架结构, 7
度抗震, Ó 类场地, 近震, 主筋 Ò 级, 箍筋 Ñ 级, 框架尺寸见图 1。
幅至表 2 的最大加速度值 0135 m/ s2。由剪 切模型弹性时程分析法计算程序算得 3 条记 录底部剪力分别为:
Q 1 = 1 402158 kN , Q 2 = 1 297. 71 kN ,
Q 3 = 1 528. 03 kN , Q 平均1 = 1 409. 44 kN , R1 = 94. 15 kN , ( Q 平均1 - Q s) / Qs = 0. 13% < 20% ,
R1/ Q 平均1 = 01067 由计算结果可看出, 两种方法结果基本 一致, 并且离散性很小。用两种方 法计算的 剪力与层间相对位移见图 4、图 5。
的要求。
表 3 地震记录参数
序 号
记录标号
地震名称
发震日期
台站 编号
记录 方向
峰值加速度/ ( m#s- 2)
卓越周期/ s
持时/ s
SA N
FERN AN DO
1 EQ0121
1971- 2- 9 279 S16E - 1 148. 06
EAR THQ U AK E
BORR EGO M OU NT AIN
Ó 0. 40 0. 35~ 0. 50
Ô 0. 65 0. 50~ 0. 80
112 输入的地震 记录应适应建筑物所处的 地震分区
国内外大量文献资 料表明, 应将记录的 峰值与规范规定相接近作为选波的控制条件 之一, 使 地震 烈度 基本 上 一致。而 2000 年 / 规范0中, 也规定 了时程分析法最大加速度 调整系数, 见表 2。因而在选取地震记录时, 加速 度峰值 过大或 过小的 记录 不应考 虑进 来。在进行时程分析时, 对地震 记录进行调 幅, 使其峰值加速度达到表 2 的要求。
新规范进一步强调了采用时程分析法进 行抗震计算的必要性, 并且随着高层建筑及 不规则建筑的发展, 采用时程分析法进行结 构抗震计算已是大势所趋, 而计算机的发展 又为进行时 程分析提供了技术基础。但是, 广大工程设计人员在使用时程分析法时却发 现, 采用不同的地震记录, 得到的 内力、位移
Industr ial Constructio n 2000, V ol1 30, N o18
工业建筑 2000 年第 30 卷第 8 期
性也比较小。这比在整个频段控制, 以及在 其它频段进行控制所选地震记录计算结果要 好得多。 114 选择方法总结
先去掉加速度峰值 过大或过小, 且持时 过短的地震记录, 然后, 根据反应谱卓越周期 选出适应 Ñ 、Ò 、Ó 、Ô 类场地的地震记录, 再 将[ 0 s, 6 s] 频段划分为 6 段, 对每一类场地, 在每一个频段上选出拟合得最好的 3 条地震 记录, 以供工程使用。
2 EQ1118
1968- 4- 8 280 N33E
EAR THQ U AK E
40. 027
SA N
FERN AN DO
3 EQ0398
1971- 2- 9 425 S36E
EAR THQ U AK E
- 82. 328
SA N
FERN AN DO
4 EQ0431
1971- 2- 9 459 S90W
1 时程分析法输入地震记录的选择方法 111 输入的地震 记录应反映抗震建筑所在
第一作者: 邓 军 男 1975 年 4 月出生 硕士 收稿日期: 1999- 11- 09
工业建筑 2000 年第 30 卷第 8 期 9
地的场地特性 由于地震是突发的 随机过程, 每一次地
震的地震动特性都是不同的, 其频谱特征取 决于震源机制, 传播介质和场地条 件。对于 未来可能发生的地震, 正确预测它的波形是 很困难的, 但场地 却能通过一定的方法来划 分、确定。因而按场地特性来选择地震记录, 可使已发生的实际地震记录与未来可能发生 的地震有其相似性。
相关文档
最新文档