点和圆的位置关系教案
点和圆的位置关系教案
点和圆的位置关系教案点和圆的位置关系教案一、教学目标知识与技能:使学生了解点和圆的三种位置关系,掌握其定义及判定方法。
过程与方法:通过观察、操作、比较、归纳等方法,培养学生的数学思维能力和解决问题的能力。
情感态度与价值观:让学生感受数学的美,培养他们的探究精神和合作意识。
二、教学内容与重难点教学重点:点和圆的三种位置关系及其定义。
教学难点:如何判定点和圆的位置关系。
三、教学方法与手段教学方法:采用直观演示、探究发现、归纳总结的教学方法。
教学手段:使用PPT课件、实物模型等辅助教学。
四、教学过程导入新课:通过问题导入,激发学生学习兴趣。
教师可提出一些生活中的问题,如:“怎样描述一个物体的位置?”“我们能否说一个点在圆内或者圆外?”引导学生思考,进而引出点和圆的位置关系。
探究新知:通过观察和操作,让学生了解点和圆的三种位置关系,并掌握其定义。
教师可以让学生动手操作,比如在一张纸上画一个圆,将不同距离的点与圆比较,观察这些点与圆的位置关系。
同时,教师可以借助PPT课件,通过动画演示,让学生更直观地了解点和圆的三种位置关系。
归纳总结:通过观察和操作,让学生总结出点和圆的三种位置关系的定义及判定方法。
教师可以通过提问的方式引导学生进行归纳总结,如:“在上述操作中,我们可以发现哪些点与圆的位置关系?”“这些位置关系的定义是什么?”等等。
巩固练习:通过练习题,让学生进一步巩固所学知识。
教师可以准备一些练习题,如:“在下列各点中,哪些点在圆内?哪些点在圆外?哪些点在圆上?”等等。
课堂小结:通过回顾本节课所学内容,让学生再次明确本节课的重点和难点。
教师可以引导学生回顾本节课所学知识,如:“本节课我们学习了什么内容?”“点和圆的三种位置关系是什么?”等等。
五、评价与反馈评价方式:采用多种评价方式相结合的方式进行评价,包括课堂表现、作业情况、测试成绩等。
反馈方式:通过口头反馈和书面反馈相结合的方式进行反馈,针对不同层次的学生进行不同的反馈方式和内容。
24.2.1点与圆的位置关系 导学案
24.2.1点与圆的位置关系导学案学习目标1.理解并掌握点和圆的三种位置关系.2.理解不在同一直线上的三点确定一个圆及其运用3.了解三角形的外接圆和三角形外心的概念4.了解反证法的证明思想解决这个问题,需要研究点和圆的位置关系.新知探究下图中点和圆的位置关系有哪几种?设点到圆心的距离为d,圆的半径为r,量一量点和圆三种不同位置关系时,d 与r有怎样的数量关系.反过来,由d与r的数量关系,怎样判定点和圆的位置关系呢?问题1:如何过一个点A作一个圆?过点A可以作多少个圆?问题2:如何过两点A,B作一个圆?过两点可以作多少个圆?问题3:过不在同一直线上的三点能不能确定一个圆?归纳:定理:_______________的______个点确定一个圆.经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的_________________,叫做这个三角形的______.画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察其外心的位置.思考:经过同一条直线上的三个点能作出一个圆吗?反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.警示误区假设否定的是命题的结论,而不是已知条件.在推理论证时,要把假设作为新增条件参加论证.典例精析1.平面内,已知⊙O的直径为20cm,PO=12cm,则点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.不能确定2.下列说法中,正确的是()A.三点确定一个圆B.圆有且只有一个内接三角形C.三角形的外心到三角形三边的距离相等D.三角形有且只有一个外接圆3. 如图,△ ABC 内接于⊙ O,∠C=45°,AB=4,求⊙ O 的半径..课堂小结谈谈本节课的收获和感想作业布置见精准作业单。
《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?
《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?一、教学目标:1. 让学生了解点和圆的位置关系,理解圆心距与半径之间的数量关系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 点和圆的位置关系。
2. 圆心距与半径之间的数量关系。
三、教学重点与难点:重点:点和圆的位置关系,圆心距与半径之间的数量关系。
难点:如何运用这些知识解决实际问题。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究点和圆的位置关系。
2. 利用直观教具,如圆规、直尺等,帮助学生理解圆心距与半径之间的数量关系。
3. 创设实际问题情境,培养学生运用数学知识解决问题的能力。
五、教学过程:1. 导入:利用多媒体展示一些生活中的圆形物体,如硬币、圆桌等,引导学生关注点和圆的位置关系。
2. 新课导入:讲解点和圆的位置关系,介绍圆心距与半径之间的数量关系。
3. 实例分析:分析一些实际问题,如在平面直角坐标系中,判断两个圆的位置关系。
4. 小组讨论:让学生分组讨论,总结判断两个圆位置关系的方法。
5. 归纳总结:引导学生归纳总结判断两个圆位置关系的方法,以及圆心距与半径之间的数量关系。
6. 练习巩固:布置一些练习题,让学生运用所学知识解决问题。
7. 课堂小结:对本节课的内容进行小结,强调重点和难点。
8. 课后作业:布置一些课后作业,巩固所学知识。
9. 教学反思:教师在课后对自己的教学进行反思,看是否达到教学目标,学生是否掌握了所学知识。
六、教学评价:1. 采用课堂提问、练习解答等方式,评价学生对点和圆位置关系的掌握程度。
2. 通过课后作业、小测验等形式,评估学生对圆心距与半径之间数量关系的理解。
3. 关注学生在实际问题中运用数学知识解决问题的能力,以及合作交流、归纳总结的能力。
七、教学拓展:1. 利用信息技术手段,如几何画板等,让学生更加直观地了解点和圆的位置关系。
《点和圆的位置关系》教案设计:过关技巧:掌握判定圆是否相切的两种方法
《点和圆的位置关系》教案设计:过关技巧:掌握判定圆是否相切的两种方法教学目标:1. 理解点和圆的位置关系的概念;2. 掌握判定圆是否相切的两种方法;3. 能够运用所学知识解决实际问题。
教学内容:1. 点和圆的位置关系的概念;2. 判定圆是否相切的两种方法。
教学过程:一、导入(5分钟)1. 引导学生回顾点和圆的位置关系的概念,即点在圆内、点在圆上、点在圆外;2. 提问:如何判断两个圆是否相切呢?二、新课讲解(15分钟)1. 讲解判定圆是否相切的两种方法:方法一:利用圆心距和半径的关系;方法二:利用切线与半径的关系。
2. 举例说明两种方法的运用。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识;2. 引导学生思考如何将所学知识应用于实际问题。
四、总结与反思(5分钟)1. 让学生总结本节课所学的知识点;2. 提问:如何判断两个圆是否相切?相切有哪些性质?五、课后作业(课后自主完成)1. 完成课后练习题,巩固所学知识;2. 思考如何将所学知识应用于实际问题。
教学评价:1. 课后收集学生的练习作业,评估掌握程度;2. 在下一节课开始时,进行小测验,检验学生对知识的掌握情况。
教学资源:1. PPT课件;2. 练习题;3. 教学视频(可选)。
教学建议:1. 在讲解判定圆是否相切的两种方法时,要注意举例清晰明了,让学生易于理解;2. 课堂练习环节,可以设置不同难度的题目,满足不同学生的学习需求;3. 课后作业要注重实践应用,让学生学会将所学知识运用到实际问题中。
六、案例分析:生活中的圆相切现象(10分钟)1. 展示生活中常见的圆相切现象图片,如硬币、甜甜圈等;2. 引导学生分析这些现象中圆相切的特征;3. 提问:你能想到哪些实际问题可以用圆相切的性质来解决吗?七、小组讨论:探索圆相切的性质(15分钟)1. 让学生分组讨论,探索圆相切的性质;2. 每组分享自己的发现,如相切圆的切线垂直、相切圆的半径相等等;3. 总结各组的发现,得出圆相切的性质。
《点和圆的位置关系(第一课时)》教案
《点和圆的位置关系(第一课时)》教案下图是射击靶的示意图,它是由许多同心圆构成的,这些圆的圆心相同,半径不同.你知道击中靶的不同位置的成绩是如何计算的吗?解决这个问题,需要研究点和圆的位置关系.请同学们观察点和圆的位置关系,对这六个点进行分类.我们得到点和圆有三种位置关系:点在圆外、点在圆上、点在圆内.点和圆的位置关系的几何特征、代数特征.概念点和圆的位置关系设⊙O 的半径为r,点P 到圆心的距离为d,则有点P 在圆外等价于d>r;点P 在圆上等价于d=r;4 分钟3 分钟练习类比探究点P 在圆内等价于d<r.巩固练习1. 画出由所有到已知点O的距离大于或等于2cm,并且小于或等于3cm的点组成的图形.(请用刻度尺和圆规)2.体育课上,小明和小丽的铅球成绩分别是6.4m和 5.1m,他们投出的铅球分别落在图中哪个区域内?小明的铅球落在6分到7分的区域,小丽的铅球落在5分到6分的区域。
3.已知⊙O的面积为25π:(1)若PO=5.5,则点P在;(2)若PO=4,则点P在;(3)若PO= ,则点P在圆上;(4)若点P不在圆外,则PO_________.答案:圆外,圆内,5,≤5.类比探究两点确定一条直线.几点确定一个圆?我们知道,已知圆心和半径,可以作一个圆.经过一个已知点A能不能作圆,这样的圆你能作出多少个?经过两个已知点A,B能不能作圆?如果能,圆心分布有什么特点?3 分钟2 分钟4 巩固练习课堂小结思考经过三个已知点A,B,C作圆.巩固练习4.如图,已知矩形ABCD的边AB=3 cm,AD=4 cm.(1)以点A为圆心,3 cm为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4 cm为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5 cm为半径作圆A,则点B、C、D与圆A的位置关系如何?解:(1)B在圆上,D在圆外,C在圆外(2)B在圆内,D在圆上,C在圆外(3)B在圆内,D在圆内,C在圆上课堂小结点和圆的位置关系设⊙O 的半径为r,点P 到圆心的距离为d,则有:点P在圆外d>r;点P 在圆上d=r;点P在圆内d<r.过点作圆过一点,过两点可以画无数个圆.知能演练提升一、能力提升1.用反证法证明“两条直线相交只有一个交点”应该先假设()A.两条直线相交至少有两个交点B.两条直线相交没有两个交点C.两条直线平行时也有一个交点D.两条直线平行没有交点2.有一题目:“已知点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC,如图.由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同的值3.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)4.有两个圆的圆心都是点O,其半径分别是2 cm和6 cm,若点P在小圆外且在大圆内,则OP的取值范围是.5.如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.为6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AB=13,AC=5,以点C为圆心,6013半径的圆和点A,B,D的位置关系是怎样的?★7.已知线段AB和直线l,过A,B两点作圆,并且使圆心在直线l上.(1)当AB∥l时,这样的圆能作几个?(2)当AB与直线l斜交时,这样的圆能作几个?(3)当AB与直线l垂直,且直线l不过线段AB的中点时,这样的圆能作几个?(4)当直线l是线段AB的垂直平分线时,这样的圆能作几个?二、创新应用★8.阅读下面材料:对于平面图形A,若存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,若存在两个或两个以上的圆,使图形A上任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.如图中的三角形被一个圆所覆盖,四边形被两个圆所覆盖.回答下列问题:(1)边长为 1 cm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为1 cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)边长分别为2 cm,1 cm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm,这两个圆的圆心之间的距离是 cm.知能演练·提升一、能力提升1.A2.A3.D4.2 cm<OP<6 cm因为点P在小圆外,所以OP>2 cm.又点P在大圆内,所以OP<6 cm.5.50如图,设过A,B,C三点的外接圆的圆心为O,由对称性可知直线l经过圆心O,且点C的对称点D也一定在圆上,即圆O为完全覆盖这个平面图形的最小圆(包含其内部).连接AO,CO.由垂径定理(或对称性),得CM=30,AN=40.∵CM 2+OM 2=AN 2+ON 2,∴302+OM 2=402+(70-OM )2,解得OM=40.∴OC=√302+402=50.即能完全覆盖这个平面图形的圆面的最小半径是50 mm .6.解 在Rt △ABC 中,∵AC=5>6013,∴点A 在圆外.∵∠ACB=90°,AB=13,AC=5,∴CB=√AB 2-AC 2=√132-52=12>6013. ∴点B 在圆外.∵S △ABC =12AB ·CD=12AC ·CB , ∴CD=AC ·CB AB =6013.∴点D 在圆上.7.解 (1)当AB ∥l 时,线段AB 的垂直平分线与直线l 有唯一的公共点,这样的圆可作一个.如图①.(2)当AB 与直线l 斜交时,线段AB 的垂直平分线与直线l 有唯一的公共点,这样的圆可作一个.如图②.(3)当AB 与直线l 垂直,且直线l 不过线段AB 的中点时,线段AB 的垂直平分线与直线l 没有公共点,这样的圆不存在.如图③.(4)当直线l 是线段AB 的垂直平分线时,直线l 上的任一点都可作圆心,这样的圆有无数个.如图④.二、创新应用8.(1)√22 (2)√33 (3)√22 1。
人教版点和圆的位置关系获奖教案设计(共两篇)
人教版点和圆的位置关系获奖教案设计(共两篇)《点和圆的位置关系》教案一.学习目标:1.理解点和圆的三种位置关系,并会运用它解决一些实际问题;2.会过不在同一直线上的三个点作圆,理解三角形的外心和外接圆的概念3.结合本节内容的学习,体会数形结合、分类讨论的数学思想.二.学习重点:点和圆的位置关系.教学过程:一.导入新知:多媒体出示射击靶的图片,利用上面射击点和圆环的位置关系,引出课题且板书课题。
二.探究新知:1.请同学黑板上摆出点与圆的所有位置关系。
2. 多媒体出示动画点与圆的所有位置关系。
3.师生归纳点与圆的所有位置关系。
设⊙O 的半径为 r,点 P 到圆心的距离为 d,则有:点 P 在圆外 d>r ;点 P 在圆上 d=r ;点 P 在圆内 d<r .4.作圆:已知圆心和半径,可以作一个圆.(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师给出结果)(1)圆经过已知点A,可以作几个?(学生先独立操作,后老师引导给出结果)(2)圆经过已知点 A、B.(3)已知点 A、B、C,可以作几个圆?(分两种情况讨论)已知三点共线已知三点不共线结论:不在同一条直线上的三个点确定一个圆.如何经过不在同一条直线上的三个点 A、B、C 作圆?(老师引导学生找到作图方法,演示作图过程)①连接 AB、BC;②分别作线段 AB、BC 的垂直平分线DE 和 FG,DE 和FG 相交于点 O;③以点O 为圆心,OA 为半径作圆,⊙O 就是所要求作的圆.(4)归纳概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角圆.外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.三。
例题讲解:例1 已知⊙O 的半径为 5,圆心 O的坐标为(0,0),若点 P的坐标为(4,2),点 P 与⊙O 的位置关系是().A.点 P 在⊙O 内 B.点 P 在⊙O上C.点 P 在⊙O 外 D.点 P 在⊙O 上或⊙O 外例2 直角三角形的外心是______的中点,锐角三角形的外心在三角形______,钝角三角形的外心在三角形_________.四.课堂小结(1)点和圆的位置关系:设⊙O 的半径为 r,点 P 到圆心的距离为 d,则点 P 在圆外 d>r;点 P 在圆上 d=r;点 P 在圆内 d<r.(2)不在同一条直线上的三个点确定一个圆.(3)理解三角形外接圆和三角形外心的概念.(五).布置作业教科书第 95 页练习第 2,3 题.一、基础知识1.认识点和圆的位置关系及相关概念,会利用点和圆的位置关系和数量关系解题①点P在圆上d=r②点P在圆外d>r③点P在圆内d<r(注:d是点P到圆心的距离,r是圆的半径,其中从左往右推到“”是圆的位置关系的性质;从右往左推到“”是点和圆的位置的判定方法)判断点和圆的位置关系有两种:①当题目给出点和圆的图形时,根据图形判断②当没有图形,题目给出数量时,通过比较点和圆心的距离与半径的大小关系判断2.理解并掌握确定圆的条件过一点可以做无数个圆,过两点也可以做无数个圆不在同一条直线上的三个点确定一个圆(注:三个点必须是不在同一直线上;确定是“有且只有”的意思)3.认识三角形的外接圆,掌握外心的定义及特征经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形的外心,外心是三角形三条垂直平分线的交点,它到三角形三个顶点的距离相等4.认识反证法二、重难点分析本课教学重点:确定圆的条件及利用点和圆的位置关系和数量关系解题。
初中数学《点和圆的位置关系》教案
初中数学《点和圆的位置关系》教案点和圆的位置关系教学目标(一)教学知识点了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.(二)能力训练要求1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.(三)情感与价值观要求1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果.教学重点1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.2.掌握过不在同一条直线上的三个点作圆的方法.3.了解三角形的外接圆、三角形的外心等概念.教学难点经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.教学方法教师指导学生自主探索交流法.教具准备投影片三张第一张:(记作3.4A)第二张:(记作3.4B)第三张:(记作3.4C)教学过程Ⅰ.创设问题情境,引入新课[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.Ⅱ.新课讲解1.回忆及思考投影片(3.4A)1.线段垂直平分线的性质及作法.2.作圆的关键是什么?[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.作法:如下图,分别以A、B为圆心,以大于AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段A B的垂直平分线,直线CD上的任一点到A 与B的距离相等.[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片3.4B)(1)作圆,使它经过已知点A,你能作出几个这样的圆?(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A 作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB 的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB 的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.[师]大家的分析很有道理,究竟应该怎样找圆心呢?3.过不在同一条直线上的三点作圆.投影片(3.4C)作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆[他作的圆符合要求吗?与同伴交流.[生]符合要求.因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.不在同一直线上的三个点确定一个圆.4.有关定义由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).Ⅲ.课堂练习已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?解:如下图.O为外接圆的圆心,即外心.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.Ⅳ.课时小结本节课所学内容如下:1.经历不在同一条直线上的三个点确定一个圆的探索过程.方法.3.了解三角形的外接圆,三角形的外心等概念.Ⅴ.课后作业习题3.6Ⅵ.活动与探究如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
《点和圆的位置关系》教案设计
《点和圆的位置关系》教案设计第一章:引言1.1 教学目标让学生了解点和圆的基本概念。
引导学生通过观察和思考,探索点和圆的位置关系。
1.2 教学内容点和圆的定义。
点和圆的位置关系的观察和描述。
1.3 教学方法通过实物展示和图片引出点和圆的概念。
让学生观察和描述点到圆的位置关系,引导学生运用自己的语言表达。
1.4 教学评估观察学生对点和圆概念的理解程度。
评估学生对点和圆位置关系的观察和描述能力。
第二章:点在圆内2.1 教学目标让学生理解点在圆内的位置关系。
引导学生通过实际操作,验证点在圆内的性质。
2.2 教学内容点在圆内的定义。
点在圆内的性质和特点。
2.3 教学方法通过实际操作,让学生感受点在圆内的位置关系。
引导学生通过观察和思考,总结点在圆内的性质和特点。
2.4 教学评估观察学生对点在圆内的理解程度。
评估学生通过实际操作验证点在圆内的能力。
第三章:点在圆上3.1 教学目标让学生理解点在圆上的位置关系。
引导学生通过实际操作,验证点在圆上的性质。
3.2 教学内容点在圆上的定义。
点在圆上的性质和特点。
3.3 教学方法通过实际操作,让学生感受点在圆上的位置关系。
引导学生通过观察和思考,总结点在圆上的性质和特点。
3.4 教学评估观察学生对点在圆上的理解程度。
评估学生通过实际操作验证点在圆上的能力。
第四章:点在圆外4.1 教学目标让学生理解点在圆外的位置关系。
引导学生通过实际操作,验证点在圆外的性质。
4.2 教学内容点在圆外的定义。
点在圆外的性质和特点。
4.3 教学方法通过实际操作,让学生感受点在圆外的位置关系。
引导学生通过观察和思考,总结点在圆外的性质和特点。
4.4 教学评估观察学生对点在圆外的理解程度。
评估学生通过实际操作验证点在圆外的能力。
第五章:总结和拓展5.1 教学目标让学生总结点和圆的位置关系的特点。
引导学生思考点和圆的位置关系的应用。
5.2 教学内容点和圆的位置关系的总结。
点和圆的位置关系的拓展应用。
人教版九年级数学上册24.2.1点与圆的位置关系(教案)
此外,对于教学难点,我发现通过具体例子的逐步解析,学生们能够更好地理解和记忆点到圆心距离的计算方法。但是,我也发现有些学生在面对更复杂的问题时,仍然会感到困惑。这提醒我,在今后的教学中,需要更加注重对学生解题思路和方法的培养,而不仅仅是知识点的传授。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“点与圆位置关系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“如何利用点与圆位置关系设计最优的花园布局?”
最后,我感到在总结回顾环节,学生们对于本节课的学习内容有了很好的吸收和理解。不过,我也在思考如何能够在课后更好地跟进学生的学习情况,及时解答他们的疑问,确保每个学生都能够真正掌握点与圆位置关系这一几何基础知识。
3.重点难点解析:在讲授过程中,我会特别强调点到圆心距离的计算方法和判断准则这两个重点。对于难点部分,我会通过具体的图形示例和计算步骤来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与点与圆位置关系相关的实际问题,如判断某个点是否在一个给定的圆内。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生可以用尺子和圆规在纸上画出一个圆,并在圆的不同位置标出点,然后测量这些点到圆心的距离,验证判断准则。
四、教学流程
《点和圆的位置关系》教案设计
《点和圆的位置关系》教案设计第一章:引言1.1 教学目标:让学生了解点和圆的定义。
引导学生通过观察和思考,探索点和圆的位置关系。
1.2 教学内容:点和圆的定义。
点和圆的位置关系的观察和探索。
1.3 教学方法:通过实物模型和图示,引导学生观察和理解点和圆的定义。
利用几何画板或实物道具,让学生通过实际操作,探索点和圆的位置关系。
1.4 教学评估:观察学生在观察和探索过程中的表现,了解他们对点和圆的理解程度。
通过提问和学生回答,检查学生对点和圆位置关系的理解。
第二章:点的定义和性质2.1 教学目标:让学生了解点的定义和性质。
引导学生通过观察和思考,理解点在平面上的位置和运动。
2.2 教学内容:点的定义和性质。
点在平面上的位置和运动。
2.3 教学方法:通过实物模型和图示,引导学生观察和理解点的定义和性质。
利用几何画板或实物道具,让学生通过实际操作,观察点在平面上的位置和运动。
2.4 教学评估:观察学生在观察和操作过程中的表现,了解他们对点的定义和性质的理解程度。
通过提问和学生回答,检查学生对点在平面上的位置和运动的掌握。
第三章:圆的定义和性质3.1 教学目标:让学生了解圆的定义和性质。
引导学生通过观察和思考,理解圆的特点和性质。
3.2 教学内容:圆的定义和性质。
圆的特点和性质的观察和探索。
3.3 教学方法:通过实物模型和图示,引导学生观察和理解圆的定义和性质。
利用几何画板或实物道具,让学生通过实际操作,探索圆的特点和性质。
3.4 教学评估:观察学生在观察和操作过程中的表现,了解他们对圆的定义和性质的理解程度。
通过提问和学生回答,检查学生对圆的特点和性质的掌握。
第四章:点和圆的位置关系4.1 教学目标:让学生了解点和圆的位置关系。
引导学生通过观察和思考,探索点和圆的位置关系。
4.2 教学内容:点和圆的位置关系的定义和判定。
点和圆的位置关系的观察和探索。
4.3 教学方法:通过实物模型和图示,引导学生观察和理解点和圆的位置关系的定义和判定。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案
24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
点和圆的位置关系教学设计
点和圆的位置关系教学设计这是点和圆的位置关系教学设计,是优秀的数学教案文章,供老师家长们参考学习。
点和圆的位置关系教学设计第1篇学习目标:1、理解点与圆的位置关系由点到圆心的距离决定;2、理解不在同一条直线上的三个点确定一个圆;3、会画三角形的外接圆,熟识相关概念学习重点:点与圆的位置关系,三点定圆的定理学习难点:反证法的运用学具准备:圆规,直尺教学过程:一、探究点与圆的位置关系1,提出问题:爱好运动的向银元、叶少雄、李易然三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?这一现象体现了平面内的位置关系.2,归纳总结:如图1所示,设⊙O的半径为图1r,点到圆心的距离为d,A点在圆内,则d r,B点在圆上,则d r,C点在圆外,则d r反之,在同一平面上,已知圆的半径为r,则: .....若d>r,则A点在圆;若d<r,则B点在圆;若d=r,则C点在圆。
结论:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外_____d>r;点P在圆上_____d=r;点P在圆内_____d例:如图用4位同学摆成矩形ABCD,边AB=3厘米,AD=4厘米(1第一文库网)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?ABD A D C A B D C C B二、探究确定圆的条件1,问题:过一点可作几条直线?过两点呢?三点呢?类比问题:那么究竟多少个点就可以确定一个圆呢?试一试:画图准备:圆的确定圆的大小,圆的确定圆的位置;也就是说,若如果圆的这个圆就确定了。
画图:2、画过一个点的圆。
已知一个点A,画过A点的圆.小结:经过一定点的圆可以画个。
人教版数学九年级上册24.2《点和圆的位置关系》教学设计
人教版数学九年级上册24.2《点和圆的位置关系》教学设计一. 教材分析人教版数学九年级上册第24.2节《点和圆的位置关系》是中学数学中重要的一部分,主要介绍了点与圆的位置关系,包括点在圆内、点在圆上和点在圆外三种情况。
本节内容是学生学习圆的性质和应用的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,具备了一定的逻辑思维能力和空间想象能力。
但是,对于点和圆的位置关系的理解还需要通过具体的实例和操作来进一步引导和培养。
三. 教学目标1.让学生理解点和圆的位置关系,并能运用所学知识解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.培养学生合作学习的意识和能力。
四. 教学重难点1.重点:点和圆的位置关系的理解和运用。
2.难点:对于点在圆内、点在圆上和点在圆外三种情况的深入理解和区分。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题和解决问题的方式引导学生思考和学习。
2.利用多媒体辅助教学,通过动画和图形展示点与圆的位置关系,增强学生的空间想象能力。
3.采用小组合作学习的方式,让学生在讨论和交流中深入理解和掌握知识。
六. 教学准备1.多媒体教学设备。
2.点和圆的位置关系的教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出点和圆的位置关系,例如:“在平面上有三个点,其中一个点在圆内,另外两个点在圆外,请问这三个点的位置关系有什么特点?”2.呈现(15分钟)利用多媒体展示点和圆的位置关系,包括点在圆内、点在圆上和点在圆外三种情况。
通过动画和图形的展示,让学生直观地感受和理解点与圆的位置关系。
3.操练(10分钟)让学生通过实际操作来进一步理解和掌握点和圆的位置关系。
可以让学生在纸上画出不同位置的点,并标明它们与圆的位置关系。
4.巩固(10分钟)通过一些练习题来巩固学生对点和圆的位置关系的理解和掌握。
《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?
《点和圆的位置关系》教案设计:如何轻松掌握判断两圆位置关系方法?一、教学目标:1. 让学生理解点和圆的位置关系的概念,掌握点和圆的位置关系的判断方法。
2. 培养学生的观察能力、操作能力和解决问题的能力。
3. 激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容:1. 点和圆的位置关系的概念。
2. 判断两圆位置关系的方法。
三、教学重点与难点:重点:点和圆的位置关系的概念,判断两圆位置关系的方法。
难点:理解和运用判断两圆位置关系的方法。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究问题和解决问题。
2. 利用直观教具和多媒体辅助教学,帮助学生形象地理解和掌握知识和技能。
3. 采用小组合作学习的方式,培养学生的合作意识和团队精神。
五、教学过程:1. 导入新课:通过一个生活中的实例,引发学生对点和圆位置关系的思考,激发学生的学习兴趣。
2. 自主学习:学生通过阅读教材,了解点和圆的位置关系的概念,并尝试判断两圆位置关系的方法。
3. 合作探究:学生分组讨论,交流判断两圆位置关系的方法,分享学习心得。
4. 课堂讲解:教师针对学生的讨论结果,进行讲解和总结,明确判断两圆位置关系的方法。
5. 巩固练习:学生进行课堂练习,运用所学的知识和方法判断两圆位置关系。
6. 课堂小结:教师引导学生总结本节课的学习内容,巩固知识和技能。
7. 课后作业:学生完成课后作业,进一步巩固所学知识和技能。
8. 课后反思:教师对课堂教学进行反思,为下一步的教学提供改进方向。
六、教学评价:1. 学生对点和圆位置关系概念的理解程度。
2. 学生判断两圆位置关系的操作能力。
3. 学生在小组合作学习中的表现。
4. 学生对数学学习的兴趣和积极性。
六、教学策略:1. 利用数学软件或实物教具,展示点和圆的位置关系,增强学生的直观感受。
2. 通过设计不同难度的练习题,让学生在实践中掌握判断两圆位置关系的方法。
3. 创设生活情境,让学生体验数学在实际生活中的应用价值。
24.2.1点和圆的位置关系(教案)
24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。
高中数学圆与点位置教案
高中数学圆与点位置教案
教学目标:
1. 了解圆的基本概念和性质;
2. 掌握圆上点的位置关系;
3. 能够运用所学知识解决相关问题。
教学重点:
1. 圆的定义和性质;
2. 圆上点的位置关系。
教学难点:
1. 圆与点的具体位置关系;
2. 解决实际问题。
教具准备:
1. 黑板、彩色粉笔;
2. 教材课本;
3. 尺规、圆规、直尺。
教学过程:
一、导入(5分钟)
引入圆的定义和性质,引导学生思考圆的特点及其在几何学中的应用。
二、讲解(15分钟)
1. 讲解圆的定义和性质,包括圆心、半径、直径等;
2. 讲解圆内外的点与圆的位置关系,例如圆心、直径上的点等;
3. 通过图例展示圆与点的各种位置关系。
三、练习(20分钟)
1. 让学生独立完成练习册中有关圆与点位置的练习;
2. 带领学生讨论解答过程,引导学生学会分析问题、解题思路。
四、拓展(10分钟)
1. 提出一些拓展问题,激发学生的思维能力;
2. 结合实际生活中的例子,引导学生应用所学知识解决问题。
五、总结(5分钟)
总结本节课的学习内容,强调圆与点的位置关系对于几何学的重要性。
六、作业布置(5分钟)
布置作业,包括整理本节课的学习内容和完成书上相关习题。
教学反思:
通过本节课教学,学生能够掌握圆与点的位置关系,提高对圆的理解和应用能力。
在未来教学中,可以引导学生多进行实际练习和应用,加深对几何学的理解和认识。
《点和圆的位置关系》教案设计
《点和圆的位置关系》教案设计第一章:引言1.1 课程背景本节课主要让学生了解点和圆的位置关系,通过观察和操作活动,使学生感受点在圆内、圆上和圆外的不同位置特征,培养学生的空间想象能力和观察能力。
1.2 教学目标(1)知识与技能:使学生掌握点和圆的位置关系,能判断一个点在圆内、圆上还是圆外。
(2)过程与方法:通过观察、操作、交流等活动,培养学生空间想象能力和观察能力。
(3)情感态度与价值观:激发学生学习兴趣,培养学生积极思考、合作交流的良好学习习惯。
第二章:点和圆的位置关系2.1 点在圆内(1)定义:一个点在圆内,意味着这个点到圆心的距离小于圆的半径。
(2)特点:点到圆心的连线与圆相交。
2.2 点在圆上(1)定义:一个点在圆上,意味着这个点到圆心的距离等于圆的半径。
(2)特点:点到圆心的连线与圆相切。
2.3 点在圆外(1)定义:一个点在圆外,意味着这个点到圆心的距离大于圆的半径。
(2)特点:点到圆心的连线与圆相离。
第三章:实践活动3.1 观察活动(1)观察不同位置的点与圆的位置关系,总结规律。
(2)利用实物模型或画图软件,演示点和圆的位置关系。
3.2 操作活动(1)在圆内、圆上、圆外放置不同位置的点,判断其位置关系。
(2)利用圆规、直尺等工具,画出不同位置的点与圆的位置关系。
第四章:课堂小结4.1 本节课主要学习了点和圆的位置关系,包括点在圆内、圆上和圆外。
4.2 点和圆的位置关系可以通过观察、操作和画图等方式进行验证。
4.3 课后请同学们思考:点和圆的位置关系在实际生活中有哪些应用?第五章:课后作业5.1 判断题(1)一个点到圆心的距离等于圆的半径,这个点一定在圆上。
()(2)一个点到圆心的距离小于圆的半径,这个点一定在圆内。
()(3)一个点到圆心的距离大于圆的半径,这个点一定在圆外。
()5.2 应用题(1)已知一个圆的半径为5cm,求圆内、圆上和圆外的点与圆的位置关系。
(2)一个长方形内有一个圆,长方形的长为10cm,宽为6cm,求圆内、圆上和圆外的点与圆的位置关系。
点与圆的位置关系(教案)
1点与圆的位置关系第一课时【教学目标】1、知识与技能⑴结合图形,理解平面内点与圆的三种位置关系。
⑵知道确定一个圆的条件,理解不在同一直线上的三个点确定一个圆并掌握它的运用,了解三角形的外接圆和三角形外心的概念。
2、过程与方法在探索点与圆的三种位置关系时体会数学分类讨论思考问题的方法。
3、情感、态度与价值观激发学生观察、探究、发现数学问题的兴趣和欲望.【重点难点】1、重点:点和圆的位置关系的结论;不在同一直线上的三个点确定一个圆其它们的运用。
2、难点: 本课时知识点的应用【教学过程】一、复习引入1、圆的两种定义是什么?2、平面上的一个圆把平面分成几部分?在平面任意画一个点,它和圆的位置关系如何?二、探索新知由上面的画图以及所学知识,我们可知:设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,因此,我们可以得到点P 和⊙O 有三种位置关系。
说明,这个结论的出现,对于我们今后解题、判定点P 是否在圆外、圆上、圆内提供了依据。
(两个数据的比较,⊙O 的半径r ,点P 到圆心O 的距离d (线段OP 的长))设⊙O 的半径为r ,点P 到圆心O 的距离为d ,则点P 和⊙O 有三种位置关系。
1、点P 在圆外⇔d>r ⇔圆的外部可以看成到点O 的距离大于r 的点的集合2、点P 在圆上⇔d=r ⇔圆心为O ,半径为r 的圆可以看成是到点O 的距离等于r 的点的集合3、点P 在圆内⇔d<r ⇔圆的内部可以看成到点O 的距离小于r 的点的集合2 下面,我们接下去研究确定圆的条件:经过一点能作几个圆?经过两点、三点呢?请同学们按下面要求作圆。
(1)作圆,使该圆经过已知点A ,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A 、B ,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB 有什么关系?为什么?(3)作圆,使该圆经过已知点A 、B 、C 三点(其中A 、B 、C 三点不在同一直线上),你是如何作的?你能作出几个这样的圆?圆心在哪? 由上述探究我们可得出如下结论,不在同一直线上的三个点确定一个圆。
点与圆的位置关系教案
点与圆的位置关系教案教案标题:点与圆的位置关系教学目标:1. 理解点与圆的位置关系,包括点在圆内、点在圆上和点在圆外三种情况。
2. 能够根据给定的点和圆,判断点与圆的位置关系。
3. 能够运用点与圆的位置关系解决相关问题。
教学重点:1. 点在圆内、点在圆上和点在圆外的定义和判断方法。
2. 运用点与圆的位置关系解决问题的能力。
教学难点:1. 运用点与圆的位置关系解决复杂问题的能力。
教学准备:1. 教师准备:投影仪、幻灯片或黑板、彩色笔等。
2. 学生准备:教材、笔记本、铅笔和直尺。
教学过程:一、导入(5分钟)1. 引入问题:请同学们思考一下,当一个点与一个圆相遇时,我们可以得到哪些信息?2. 学生回答并教师引导:可以得到点与圆的位置关系。
二、概念讲解(10分钟)1. 通过投影仪或黑板,展示点、圆的图形,讲解点在圆内、点在圆上和点在圆外的定义。
2. 引导学生观察图形,讨论如何判断一个点与一个圆的位置关系。
三、例题演练(15分钟)1. 出示一个点和一个圆的图形,让学生判断点与圆的位置关系,并解释判断的依据。
2. 学生在笔记本上完成若干类似的例题,加深对点与圆的位置关系的理解。
四、拓展应用(15分钟)1. 出示一些与点与圆的位置关系相关的问题,让学生运用所学知识解决问题。
2. 学生分组进行讨论和解答,教师指导并给予必要的提示。
五、归纳总结(5分钟)1. 教师引导学生总结点与圆的位置关系的判断方法和解题思路。
2. 教师提供彩色笔,学生在笔记本上归纳总结,重点标注关键内容。
六、课堂练习(10分钟)1. 学生在笔记本上完成教师布置的课堂练习题。
2. 教师巡回检查学生的答题情况,并及时给予指导和纠正。
七、作业布置(5分钟)1. 布置课后作业:完成教材上的相关练习题。
2. 强调作业的重要性,并提醒学生按时完成并及时向教师请教问题。
教学反思:通过本节课的教学,学生能够理解点与圆的位置关系,并能够运用所学知识解决相关问题。
点和圆的位置关系教案
点和圆的位置关系教案一、教学目标1.了解点和圆的基本概念;2.掌握点和圆的位置关系;3.能够解决与点和圆的位置关系相关的问题。
二、教学内容1. 点和圆的基本概念点是几何图形中最基本的元素,是没有大小和形状的,只有位置的概念。
圆是由平面上所有到圆心距离相等的点组成的图形,其中圆心是圆的中心点,半径是圆心到圆上任意一点的距离。
2. 点和圆的位置关系在平面直角坐标系中,点的坐标可以表示为 (x, y),圆的坐标可以表示为 (a,b),半径为 r。
点和圆的位置关系有以下几种情况:2.1 点在圆内当点到圆心的距离小于半径时,点在圆内。
2.2 点在圆上当点到圆心的距离等于半径时,点在圆上。
2.3 点在圆外当点到圆心的距离大于半径时,点在圆外。
3. 解决与点和圆的位置关系相关的问题3.1 求点到圆心的距离点到圆心的距离可以用勾股定理求解,即:d = √((x-a)² + (y-b)²)其中,(x, y) 是点的坐标,(a, b) 是圆心的坐标。
3.2 判断点和圆的位置关系根据点到圆心的距离和半径的关系,可以判断点和圆的位置关系。
具体方法如下:•当 d < r 时,点在圆内;•当 d = r 时,点在圆上;•当 d > r 时,点在圆外。
3.3 求圆和圆的位置关系两个圆的位置关系有以下几种情况:•内含关系:一个圆完全在另一个圆内部;•外离关系:两个圆没有交点;•相切关系:两个圆有且仅有一个交点;•相交关系:两个圆有两个交点。
三、教学方法本课程采用讲解、演示和练习相结合的教学方法。
首先通过讲解和演示,让学生了解点和圆的基本概念和位置关系,然后通过练习,让学生掌握如何解决与点和圆的位置关系相关的问题。
四、教学步骤1. 引入通过引入一些实际问题,如求一个圆内的面积或判断一个点是否在一个圆内,引起学生对点和圆的位置关系的兴趣。
2. 讲解和演示讲解点和圆的基本概念和位置关系,并通过演示一些实例,让学生更好地理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图
1 A D C B A D C B A D C B 24.2.1点与圆的位置关系
学习目标:1、理解点与圆的位置关系由点到圆心的距离决定;
2、理解不在同一条直线上的三个点确定一个圆;
3、会画三角形的外接圆,熟识相关概念
学习重点:点与圆的位置关系
学习难点:过三点的圆。
学具准备:圆规,直尺
一、问题情境
爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙
上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A 、B 、C 三点分别是他们三人某
一轮掷镖的落点,你认为这一轮中谁的成绩好?
这一现象体现了平面内... 与 的位置关系. 二、探究活动: (一)、点与圆的三种位置关系 如图1所示,设⊙O 的半径为r ,点到圆心的距离为d,
A 点在圆内,则d r ,
B 点在圆上,则d r ,
C 点在圆外,则d r 反之,在同一平面上.....,已知圆的半径为r ,则: 若d >r ,则A 点在圆 ;若d <r ,则B 点在圆 ; 若d =r ,则C 点在圆 。
结论:设⊙O 的半径为r ,点P 到圆的距离为d ,
则有:点P 在圆外_____d>r ; 点P 在圆上_____d=r ;点P 在圆内_____d<r 。
例:如图已知矩形ABCD 的边AB=3厘米,AD=4厘米
(1)以点A 为圆心,3厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?
(2)以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何
(3)以点A 为圆心,5厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系如何?
(二)、不在同一条直线上的三个点确定一个圆 1、问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢?
试一试:画图准备: ⑴、圆的 确定圆的大小,圆的 确定圆的位置; 也就是说,若如果圆的 和 确定了,那么,这个圆就确定了。
(2)、如图2,点O 是线段AB 的垂直平分线上的任意一点, 图2
则有OA OB
2、画图:①、画过一个点的圆。
右图,已知一个点A ,画过A 点的圆.
小结:经过一定点的圆可以画 个。
o B A A
C B ②、画过两个点的圆。
右图,已知两个点A 、B ,画过同时经过A 、B 两点的圆.
提示:画这个圆的关键是找到圆心,画出来的圆要同时经过A 、B 两点,
那么圆心到这两点距离 ,可见,圆心在线段AB 的 上。
小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上。
③、画过三个点(不在同一直线)的圆。
提示:如果A 、B 、C 三点不在一条直线上,那么经过A 、B 两点
所画的圆的圆心在线段AB 的垂直平分线上,而经过B 、C 两点所
画的圆的圆心在线段BC 的垂直平分线上,此时,这两条垂直平分
线一定相交,设交点为O ,则OA =OB =OC ,于是以O 为圆心,
OA 为半径画圆,便可画出经过A 、B 、C 三点的圆.
小结:不在同一条直线.....上的三个点确定 个圆. ④有关概念: 叫做三角形的外接圆。
叫做这个三角形的外心。
叫做这个圆的内接三角形。
三角形的外心就是
三角形三条边的 的交点,它到三角形三个顶点的距离 。
⑤你能过锐角三角形、直角三角形、钝角三角形的三个顶点作圆吗?
它们的圆心分别在哪里?
三、课堂小结
1、设⊙O 的半径为r ,点P 到圆的距离为d ,
则有:点P 在圆外_____d>r ; 点P 在圆上_____d=r ;点P 在圆内_____d<r 。
2、经过三角形三个顶点可以画 个圆,并且只能画 个.经过
三角形三个顶点的圆叫做 ,三角形外接圆的圆心叫做
这个三角形的 ,这个三角形叫做这个圆的 .三角形的外心
就是三角形三条边的 的交点.
如图:如果⊙O 经过△ABC 的三个顶点,则⊙O 叫做△ABC 的 ,
圆心O 叫做△ABC 的 ,反过来,△ABC 叫做⊙O 的 。
△ABC 的外心就是AC 、BC 、AB 边的 交点。
A B
四、课堂训练:
(A组)
1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C 与⊙O的位置关系是:点A在;点B在;点C在。
2、⊙O的半径6cm,当OP=6时,点A在;当OP 时点P在圆内;当OP 时,点P不在圆外。
3、正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。
4、已知AB为⊙O的直径,P为⊙O 上任意一点,则点P关于AB的对称点P′与⊙O的位置为( )
(A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不确定
(B组)
5、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()
A.在圆上B.在圆外C.在圆内D.不确定
6、判断题:
①三角形的外心到三边的距离相等………………()
②三角形的外心到三个顶点的距离相等。
…………()
7、三角形的外心在这个三角形的()
A.内部B.外部C.在其中一边上D.以上三种都可能
8、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为
9、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()
A.2.5cm或6.5cm B.2.5cm C.6.5cm D.5cm或13cm。