(数学建模教材)6第六章排队论

合集下载

数学建模排队论

数学建模排队论

排队论课件
15
讨论系统处于平衡状态下的性质:
记 pn (t ) 为时刻t时系统处于状态n概率,即系统的瞬时分布 根据前面的约定,我们将主要分析系统的平衡分布,即当系统到 达统计平衡时时所处状态 n 概率,记为
pn , 又记:
N 系统处于平衡状态时队长,其均值为L,称为平均队长
N q 系统处于平衡状态时排队长,其均值为
P
n 0

n
1
有:
1 Cn P0 1 n1
于是:
P0
1 1 Cn
n 0
排队论课件
20
六、M/M/S等待制排队模型
1、单服务台模型 ①队长的分布
M / M /1/
记 pn PN n(n 1,2,) 为系统到达平衡状态后队长 N的概率分布, 注意到 n , n 0,1,2,,
排队论课件
L W
Lq Wq
25
2、多服务台模型
M /M /s/
记 pn PN n(n 1,2,) 为系统到达平衡状态后队长 N的概率分布, 注意到对个数s个服务台系统,有:
n n s
记 s s s
并设 s 1, 则:
n 1,2, s ns

M/D/1


D/M/1


M/E k/1

排队论课件Biblioteka 29结束语
排队论是专门研究带有随机因素,产生 拥挤现象的优化理论。也称为随机服务 系统。 排队论应用十分广泛。
排队论课件
30
n , n 0,1,2,,

n Cn n! s s!

数学建模排队论

数学建模排队论

数学建模排队论
排队论是一种数学理论,它研究的是人们排队等待服务或交通等系统的行为模式。

在排队论中,数学建模被广泛应用于分析和优化这些系统的性能和效率。

排队系统的基本构成包括到达过程、服务过程和队列规则。

到达过程指的是顾客或流量进入系统的过程,它可以用概率分布来描述。

服务过程指的是系统为每个顾客提供服务的时间,同样也可以用概率分布来描述。

队列规则则规定了顾客在等待队列中的顺序以及他们被服务的顺序。

在排队系统中,我们通常关注两个主要的性能指标:平均等待时间和平均队列长度。

平均等待时间指的是顾客在进入系统后需要等待多长时间才能接受服务的时间平均值,而平均队列长度则指的是在某个时间点等待服务的顾客数量的平均值。

为了分析和优化排队系统的性能,我们可以使用数学模型进行建模。

其中最常用的模型包括M/M/1模型、M/M/c模型、M/G/1模型等。

这些模型分别描述了不同的到达过程、服务过程和队列规则,并且可以计算出各种性能指标。

例如,M/M/1模型表示到达过程和服务过程都是泊松分布,并且只有一个服务窗口。

在这种情况下,我们可以使用该模型计算出平均等待时间和平均队列长度,并比较不同服务率下的性能指标。

M/M/c模型则表示到达过程和服务过程都是泊松分布,但是有c个服
务窗口。

在这种情况下,我们可以研究如何合理分配服务窗口的数量以优化系统的性能。

数学建模排队论是一种非常有用的工具,它可以用来分析和优化人们排队等待服务或交通等系统的行为模式。

通过建立数学模型,我们可以更好地理解这些系统的性能和效率,从而为实际应用提供指导。

第六章排队论-PPT精选

第六章排队论-PPT精选
(1)损失制。这是指如果顾客到达排队系
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
②排队等待的顾客数(排队长)的期望值Lq; ③顾客在系统中全部时间(逗留时间)的期望值W;
④顾客排队等待时间的期望值Wq。
第二节 M/N/1模型
模型的条件是: 1、输入过程――顾客源是无限的,顾客到
达完全是随机的,单个到来,到达过程 服从普阿松分布,且是平稳的; 2、排队规则――单队,且队长没有限制, 先到先服务; 3、服务机构――单服务台,服务时间的长 短是随机的,服从相同的指数分布 。
第六章 排 队 论
随机服务系统理论
第六章 排 队 论
排队系统描述 基本概念 M / M / 1 模型 M / M / S 模型
第一节 排队系统描述
顾客---要求服务的对象统称为“顾 客”
服务台---把提供服务的人或机构称 为“服务台”或“服务员”
各种形式的排队系统
各种形式的排队系统
(2)其他常用数量指标
Pn PNn:稳态系统任一 为n时 的刻 概状
特别n= 当0时(系统中0顾 )客 ,数为 P0即稳态系统所 全有 部服 空务 闲台 的概
(2)其他常用数量指标
ρ ——服务强度,即每个服务台单位时间内的平 均服务时间,—般有ρ =λ /(sμ ),这是衡量 排队系统繁忙程度的重要尺度,当ρ 趋近于0时, 表明对期望服务的数量来说,服务能力相对地 说是很大的。这时,等待时间一定很短,服务 台有大量的空闲时间;如服务强度ρ 趋近于1, 那么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。

-数学建模排队论模型[精编文档]

-数学建模排队论模型[精编文档]
机器发生故障需要维修
顾客
工人 病人 敌机 机器
服务台
公共汽车 医生 高炮 修理工
排队系统队列除了有形的还有无形的。
在上述顾客-服务台组成的排队系统中,顾客到来 的时刻与服务台进行服务的时间一般来说是随不同 的时机与条件而变化的,往往预先无法确定。因此, 系统的状态是随机的,故而排队论也称随机服务系 统。
最简单流应 x(t) :t 具 0有以下特征称
(1)流具有平衡性
对任何 a 和0 0 t1 t,2 tn x(a ti ) x(a)
的分布只取决于 t1,t2,而,t与n 无关a。
(2)流具有无后效性
(1 i n)
对互不交接的时间区间序列 ai ,bi (1 i, n)
x(bi ) 是x(a一i ) 组相互独立的随机变量。
N
pn
, 1
n0
1
p0
N 1
(1
)
1 N1
1 1
N
n p0 1
n0
1
pn
N 1
(1
)
n
1 N1
1 1
系统的各项指标
N
L
N
npn
n0
2
(N 1) N1
1
1 N1
1 1
Lq
N
(n
n0
1) pn
N 2
N N 1
N N1
1 1 N1
1 1
N 1
排队论模型
排队论模型
一、排队论的基本概念 二、单通道等待制排队问题
(M/M/1排队系统) 三、多通道等待制排队问题
(M/M/c排队系统)
一、排队论的基本概念
(一)排队过程 1.排队系统

【数学建模】排队论讲义

【数学建模】排队论讲义

设 T X1 X 2 ,则TX的k 密度函数为
bk (t)
k (kt)k 1
(k 1)!
e k t
,
t 0
1
1
E(T ) ,
D(T ) k 2
如k个服务台串联(k个服务阶段), 一个顾客接受k个服务共需的服务时间T, T 爱尔朗分布。
‹# ›
1.2 随机过程的有关概念
随机过程(Random process)的定义
1.2 随机过程的有关概念
随机过程的基本类型
二阶矩过本程节内容结束
平稳过程 平稳独立增量过程 常见随机过程 马尔可夫过程? Poisson过程? 生灭过程?
马尔可夫过程 离散
马尔可夫链
• 定义对:任意{非X负(整n数),若n 满足0,如1,下2,性...质,}:只要
就有
t1 t2
{X“(n将)} 来”的情况与“过去”无关,
只是通过“现在”与“过去”发生联系,若 “现在”已知,“将来”与“过去”无关。
‹# ›
时齐的马氏链:马氏链{X (n),n 0,1,2,...}
若满足P:{X nm j X n i} Pij (m)
则称{X (n),n 0,1,2,...}
为时齐马尔
排队论
一.概率论及随机过程回顾 二.排队论的基本知识 三.单服务台负指数分布排队系统分析 四.多服务台负指数分布排队系统分析 五.一般服务时间M/G/1模型分析 六.经济分析___排队系统的最优化
一、概率论及随机过程回顾
1.1、随机变量与概率分布
• 随机变量 • 离散型随机变量 • 概率分布和概率分布图 • 数学期望和方差 • 常见离散型随机变量的概率分布 • 二点分布? • 二项式分布? • Poisson分布?

数学建模.排队论讲解

数学建模.排队论讲解

P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2



由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e

1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型

数学建模之排队论模型

数学建模之排队论模型
第五讲 排队论模型
【修理工录用问题】工厂平均每天有一台机器发生故障而需要修理,机器的故障数 服从泊松分布。 修理一台机器平均花费 20 元。 现有技术水平不同的修理工人 A 和 B, A 种修理工平均每天能修理 1.2 台机器, 每天工资 3 元; B 种修理工平均每天能修理 1.5 台机器,每天工资 5 元,两种修理工修理机器的时间为负指数分布。问工厂录用 哪种工人较合算?
Ls = ∑ np n = ∑ n(1 − ρ )ρ n = ρ /(1 − ρ ) = λ /( µ Nhomakorabea− λ ).
n =0 n =1


(2) 排队长: (等待的平均顾客数)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Lq = ∑ (n − 1) p n = ∑ (n − 1) ρ n (1 − ρ )
本讲主要内容
1. 2. 3. 4. 5. 排队论的基本概念 单服务台的排队模型 多服务台的排队模型 排队系统的最优化问题 数学建模实例:校园网的设计和调节收费问题
5.1 排队论的基本概念
5.1.1 什么是排队系统
排队论也称随机服务系统理论,它是 20 世纪初由丹麦数学家 Erlang 应用数学方法在研 究电话话务理论过程中而发展起来的一门学科, 在实际中有广泛的应用。 它涉及的是建立一 些数学模型, 藉以对随机发生的需求提供服务的系统预测其行为。 现实世界中排队的现象比 比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同, 但有如下共同特征: (1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为 “顾客” 。 (2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员” 。由顾 客和服务员就组成服务系统。 (3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间 不一定是确定的, 服务过程的这种随机性造成某个阶段顾客排长队, 而某些时候服务员又空 闲无事。 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 1.输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到 达的规律、 作出经验分布, 然后按照统计学的方法 (如卡方检验法) 确定服从哪种理论分布, 并估计它的参数值。 我们主要讨论顾客来到服务台的概率分布服从泊松分布, 且顾客的达到 是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的 影响。 2.排队规则 即顾客排队和等待的规则。排队规则一般有即时制和等待制两种。所谓即 时制就是服务台被占用时顾客便随即离去; 等待制就是服务台被占用时, 顾客便排队等候服 务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论 先到先服务的系统。 3.服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单

排队论(讲义)ppt课件

排队论(讲义)ppt课件

概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性 的数量分配。概率有很多不同的定义,常用的有三种:
(1)古个典数定。义:P(A)=NA/N 其中N是可能结果的总个数,NA是事件A在其中发生的结果的
例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
排队论 Queueing Theory
主讲:周在莹
;.
1
CONTENUNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
;.
PREPARATION 概率论和随机过程
Part 1.概率论基础
1。 概率的定义
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件 独立性的概念可以推广到三个或多个事件。
;.
3 全概率公式和贝叶斯定理 全概率公式:给定一组互斥事件E1,E2,,…,En,这些事件的并集包括所有可能的
结果,同时给任一个任意事件A,那么全概率公式可以表示为: n
P(A)=∑P(A|Ei)P(Ei) i=1
在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描 绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
;.
6 k-爱尔朗分布 概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
;.
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0

数学建模-排队论

数学建模-排队论

①模型特点
顾客总体为m个,每个顾客到达并经过服 务台后,任然回到原来总体,所以任然可 以到来。
②系统的稳态概率 Pn ;
1
P0 m m! ( )i
i0 (m i)!
Pn
m! (m n)!
(
)n
P0
,1
n
m
③系统运行指标 a、 系统中平均顾客数(队长期望值)
Ls m (1 P0)
排队论
(Queueing Theory)
生活中处处可见的排队现象
商店、超市等收款处排队付款 车站、民航、港口等售票处依次购买车船票 各种生产系统、存储系统、运输系统等一系
列现象 大型网游登陆前的排队等等
基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理 论,是研究由顾客、服务机构及其排队 现象所构成的一种排队系统理论。
PnP10
P1 0 Pn1 (
) Pn
0
n 1
(3)
这是关于 Pn 的差分方程,表明了各状态间的转移 关系,可以用下图表示:
0
1
n-1
n
n+1
由上式可得 Pn ( / )n P0 令 / 1(否则队列将
排至无限远),由概率性质知
Pn 1
n0

Pn
的关系带入,
P0
n
n0
1
P0 1
求 limPn(t) Pn,此时系统的状态概率分布不再随时间变化 n
(4)利用 Pn 求系统运行指标
①队长:系统中的顾客数,期望记为 Ls ②排队长:系统中排队等待覅物的顾客数,期望记为 Lq ③逗留时间:一个顾客在系统中的停留时间,期望记为 Ws ④等待时间:一个顾客在系统中排队等待的时间,期望记

数模排队理论

数模排队理论

损失制排队模型算法
第42页,共42页。
损失制排队模型算法
• 单通道损失系统
– 单通道损失系统是多通道损失系统的一种特殊情况, 即当n=1时,系统即为单通道损失制系统(M/M/1/0)
– 效率指标为:
• 损失概率
P损 1
• 系统的相对通过能力Q=1/(1+ ρ). • 系统的绝对通过能力A=λQ
练习
• 某电话总机有3条中继线,每小时平均60次 呼唤,平均通话时间为2分钟,求系统运行 效率指标。
• 电话总机有1条中继线,每分钟平均2次呼唤, 平均通话时间为4min,求系统运行效率指 标。
第42页,共42页。
等待制排队模型算法
• 多通道等待制系统
– 模型:顾客到达流为泊松流,其强度为λ。系统内有n个服 务员,服务员具有相同服务时间,该服务时间服从指数分 布,其强度为μ。当顾客到达时,如果服务员忙着,顾客排 队的等待服务,一直等到有服务员为他服务为止。
– 损失概率P损,其中ρ=λ/μ, λ为单位时间来的顾客数即顾 客流强度,μ为单位时间内一个服务台服务的顾客数即 服务台能力.
n
P损
n!
n
m
m 0 m !
第42页,共42页。
损失制排队模型算法
– 系统的相对通过能力Q=1- P损
– 系统的绝对通过能力A=λQ – 占用服务员的平均数K=ρQ – 通道的占用率η=k/n
第42页,共42页。
损失制排队模型算法
• 实例:某电话总机有1条中继线,平均每分 钟有0.8次呼唤。如果每次通话时间平均为 1.5分钟,试求:中继线的相对通过能力, 绝对通过能力和损失概率。
• 解:n=1, λ=0.8, μ=1/1.5=0.667

数学建模中的排队论问题

数学建模中的排队论问题

数学建模中的排队论问题数学建模是运用数学方法来解决实际问题的一种学科,而排队论则是数学建模中的一个重要问题。

排队论是研究人们在排队等待时所产生的等待时间、服务时间、队列长度等问题的数学理论。

在各个领域中,排队论都有广泛的应用,例如交通运输、生产调度、服务管理等。

排队论的基本概念包括顾客、服务台、队列、到达率、服务率等。

顾客是指等待服务的个体,可以是人、机器或其他物体。

服务台是为顾客提供服务的地方,可以是柜台、服务窗口或机器设备。

队列是顾客排队等待的区域。

到达率是指单位时间内到达队列的顾客数量。

服务率则是指单位时间内服务台完成服务的顾客数量。

排队论的目标是通过数学模型来分析和优化排队系统,以提高效率和服务质量。

常用的排队论模型有M/M/1, M/M/c, M/M/∞等,其中M表示到达率和服务率满足泊松分布,1表示一个服务台,c表示多个服务台,∞表示无穷多个服务台。

在现实生活中,排队论的应用非常广泛。

以交通运输为例,交通流量大的道路上常常出现拥堵现象。

排队论可以用来研究交通信号灯的时序控制,从而减少交通阻塞和等待时间。

排队论还可以应用于生产调度问题,如工厂的生产线、餐馆的点餐队列等,通过优化排队系统可以提高生产效率和顾客满意度。

除了基本的排队论模型,还有许多扩展模型用于解决更复杂的实际问题。

例如,考虑到顾客的不满意程度,可以引入优先级排队模型。

考虑到服务台设备可能发生故障,可以引入可靠性排队模型。

排队论也可以与优化算法相结合,寻找最佳的服务策略和资源配置。

在数学建模中,解决排队论问题通常需要进行数学推导、建立数学模型、进行仿真实验以及进行实际数据的拟合和验证。

通过数学建模的方法,可以对排队系统的性能进行全面评估,从而提出改进方案和决策策略。

综上所述,数学建模中的排队论问题在实际应用中具有重要的意义。

通过研究排队论,可以优化排队系统,提高效率和服务质量。

随着科技的进步和数据的丰富,排队论的研究将在各个领域中得到更广泛的应用和发展。

数学建模排队论

数学建模排队论

数学建模排队论
排队论是数学中的一个分支,主要研究排队系统的性质与特征。

排队系统是指存在一个或多个顾客到达某个服务设施,并等待服务的过程。

排队论的目标是通过数学方法研究这些系统的行为和性能,并提供优化方案。

排队论的主要研究内容包括:排队模型的建立、排队系统的性能度量、排队系统的稳定性与稳定条件、排队系统的解析解和数值解等。

排队模型通常包括顾客到达过程、服务设施的服务过程和排队规则等要素,用以描述各种不同类型的排队系统。

排队论的应用广泛,包括但不限于以下领域:
1. 交通流量分析:排队论可用于研究交通流量的稳定性和优化信号控制。

2. 队列管理:排队论可以应用于零售业、餐馆等地方的队列管理,用以提高服务效率和顾客满意度。

3. 通信网络:排队论可以用于分析数据包的排队和延迟问题,优化网络资源利用率。

4. 生产与制造:排队论可以用于分析生产线上的工人排队和设备故障等因素,优化生产效率。

5. 医疗系统:排队论可以应用于研究医院门诊和急诊的排队问题,优化资源分配和患者等待时间。

总之,排队论是一门重要的数学理论,通过研究排队系统的性能与优化方法,可以提高各种系统的效率和质量,对于实际问题的解决有着重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章排队论模型排队论起源于1909 年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。

1917 年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。

排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。

排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。

此时要求服务的数量超过服务机构(服务台、服务员等)的容量。

也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。

这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。

由于顾客到达和服务时间的随机性。

可以说排队现象几乎是不可避免的。

排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。

它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。

(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。

后者指现有排队系统的最优运营。

(iii)排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行分析研究。

这里将介绍排队论的一些基本知识,分析几个常见的排队模型。

§1基本概念1.1 排队过程的一般表示下图是排队论的一般模型。

图1 排队模型图中虚线所包含的部分为排队系统。

各个顾客从顾客源出发,随机地来到服务机构,按一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。

凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。

对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。

因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。

1.2 排队系统的组成和特征一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下:1.2.1 输入过程输入过程是指顾客到来时间的规律性,可能有下列不同情况:(i)顾客的组成可能是有限的,也可能是无限的。

-118-(ii)顾客到达的方式可能是一个—个的,也可能是成批的。

(iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。

(iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。

1.2.2 排队规则排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和混合制三种。

(i)损失制(消失制)。

当顾客到达时,所有的服务台均被占用,顾客随即离去。

(ii)等待制。

当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接受完服务才离去。

例如出故障的机器排队等待维修就是这种情况。

(iii)混合制。

介于损失制和等待制之间的是混合制,即既有等待又有损失。

有队列长度有限和排队等待时间有限两种情况,在限度以内就排队等待,超过一定限度就离去。

排队方式还分为单列、多列和循环队列。

1.2.3 服务过程(i)服务机构。

主要有以下几种类型:单服务台;多服务台并联(每个服务台同时为不同顾客服务);多服务台串联(多服务台依次为同一顾客服务);混合型。

(ii)服务规则。

按为顾客服务的次序采用以下几种规则:①先到先服务,这是通常的情形。

②后到先服务,如情报系统中,最后到的情报信息往往最有价值,因而常被优先处理。

③随机服务,服务台从等待的顾客中随机地取其一进行服务,而不管到达的先后。

④优先服务,如医疗系统对病情严重的病人给予优先治疗。

1.3 排队模型的符号表示排队模型用六个符号表示,在符号之间用斜线隔开,即X/Y/Z/A/B/C。

第一个符号X 表示顾客到达流或顾客到达间隔时间的分布;第二个符号Y 表示服务时间的分布;第三个符号Z 表示服务台数目;第四个符号A 是系统容量限制;第五个符号B 是顾客源数目;第六个符号C是服务规则,如先到先服务FCFS,后到先服务LCFS 等。

并约定,如略去后三项,即指X/Y/Z/∞/∞/FCFS的情形。

我们只讨论先到先服务FCFS 的情形,所以略去第六项。

表示顾客到达间隔时间和服务时间的分布的约定符号为:M —指数分布(M 是 Markov 的字头,因为指数分布具有无记忆性,即 Markov 性);D —确定型(Deterministic);E—k阶爱尔朗(Erlang)分布;kG—一般(general)服务时间的分布;GI—一般相互独立(General Independent)的时间间隔的分布。

例如,M/M/1表示相继到达间隔时间为指数分布、服务时间为指数分布、单服务台、等待制系统。

D/M/c表示确定的到达时间、服务时间为指数分布、c个平行服务台(但顾客是一队)的模型。

1.4 排队系统的运行指标为了研究排队系统运行的效率,估计其服务质量,确定系统的最优参数,评价系统的结构是否合理并研究其改进的措施,必须确定用以判断系统运行优劣的基本数量指-119-标,这些数量指标通常是:(i)平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的 数学期望,记作 L s 。

(ii)平均排队长:指系统内等待服务的顾客数的数学期望,记作 L q 。

(iii)平均逗留时间:顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)的数学期望,记作W s 。

(iv )平均等待时间:指一个顾客在排队系统中排队等待时间的数学期望,记作 W q 。

(v )平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机 构再次空闲止的时间)长度的数学期望,记为 T b 。

还有由于顾客被拒绝而使企业受到损失的损失率以及以后经常遇到的服务强度等, 这些都是很重要的指标。

计算这些指标的基础是表达系统状态的概率。

所谓系统的状态即指系统中顾客数, 如果系统中有 n 个顾客就说系统的状态是 n ,它的可能值是(i )队长没有限制时, n = 0,1,2,L , (ii )队长有限制,最大数为 N 时, n = 0,1,L , N , (iii )损失制,服务台个数是 c 时, n = 0,1,L , c 。

这些状态的概率一般是随时刻 t 而变化,所以在时刻 t 、系统状态为 n 的概率用P n (t ) 表示。

稳态时系统状态为 n 的概率用 P n 表示。

§2 输入过程与服务时间的分布排队系统中的事件流包括顾客到达流和服务时间流。

由于顾客到达的间隔时间和服 务时间不可能是负值,因此,它的分布是非负随机变量的分布。

最常用的分布有泊松分 布、确定型分布,指数分布和爱尔朗分布。

2.1 泊松流与指数分布 设 N (t ) 表示在时间区间[0, t ) 内到达的顾客数( t > 0 ),令 P n (t 1 ,t 2 ) 表示在时间区 间[t 1 ,t 2 )(t 2 > t 1 ) 内有 n (≥ 0) 个顾客到达的概率,即P n (t 1 ,t 2 ) = P {N (t 2 ) - N (t 1 ) = n } (t 2 > t 1 , n ≥ 0) 当 P n (t 1 ,t 2 ) 合于下列三个条件时,我们说顾客的到达形成泊松流。

这三个条件是:1o 在不相重叠的时间区间内顾客到达数是相互独立的,我们称这性质为无后效 性。

2o 对充分小的 ⊗t ,在时间区间[t , t + ⊗t ) 内有一个顾客到达的概率与 t 无关,而 约与区间长 ⊗t 成正比,即P 1 (t ,t + ⊗t ) = λ⊗t + o (⊗t ) (1) 其中 o (⊗t ) ,当 ⊗t → 0 时,是关于 ⊗t 的高阶无穷小。

λ > 0 是常数,它表示单位时间有一个顾客到达的概率,称为概率强度。

3o 对于充分小的⊗t ,在时间区间[t , t + ⊗t ) 内有两个或两个以上顾客到达的概率 极小,以致可以忽略,即∞∑ P n(t , t + ⊗t ) = o (⊗t )n =2-120-(2)在上述条件下,我们研究顾客到达数 n 的概率分布。

由条件 2o,我们总可以取时间由 0 算起,并简记 P (0,t ) = P (t ) 。

n n 由条件 1o 和 2o,有P 0 (t + ⊗t ) = P 0 (t )P 0 (⊗t )nP n (t + ⊗t ) = ∑ P n -k (t )P k (⊗t ),n = 1,2,Lk =0由条件 2o 和 3o得P 0 (⊗t ) = 1 - λ⊗t + o (⊗t )因而有P 0 (t + ⊗t ) - P 0 (t ) = -λP (t ) + o (⊗t ) , 0 ⊗t P n (t + ⊗t ) - P n (t ) ⊗t (t ) + o (⊗t ) = -λP (t ) + λP . n-1 n ⊗t ⊗t在以上两式中,取 ⊗t 趋于零的极限,当假设所涉及的函数可导时,得到以下微分方程组:dP 0 (t )= -λP (t ) , 0dtdP n (t )= -λP n (t ) + λP n -1 (t ), n = 1,2,L . dt-λt取初值 P 0 (0) = 1 , P n (0) = 0(n = 1,2,L ) ,容易解出 P 0 (t ) = e ;再令 -λtP n (t ) = U n (t )e ,可以得到U 0 (t ) 及其它U n (t ) 所满足的微分方程组,dU n (t ) = λU (t ), n = 1,2,L , n -1 dtU 0 (t ) = 1,U n (t ) = 0 .由此容易解得(λt )n !n -λt P n (t ) = e , n = 1,2,L . 正如在概率论中所学过的,我们说随机变量{N (t ) = N (s + t ) - N (s )}服从泊松分 布。

它的数学期望和方差分别是E [N (t )] = λt ; Var[N (t )] = λt 。

当输入过程是泊松流时,那么顾客相继到达的时间间隔 T 必服从指数分布。

这是 由于P {T > t } = P {[0, t ) 内呼叫次数为零} = P (t ) = e -λt0 那么,以 F (t ) 表示 T 的分布函数,则有♣1 - e - λt , t ≥ 0P {T ≤ t } = F (t ) = ♦♥0,t < 0 而分布密度函数为f (t ) = λe - λt , t > 0 .-121-对于泊松流, λ 表示单位时间平均到达的顾客数,所以 1就表示相继顾客到达平均λ间隔时间,而这正和 ET 的意义相符。

相关文档
最新文档