1.1 热力学概论(1)状态与状态函数
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:又称容量性质,热力学 性质与物质的量成正比, 具有加和性。例:V,m, S,U,H,G,A
2. 强 度 性 质 (Intensive properties) : 其 数 值 取 决 于体系自身的特性,与体 系的数量无关,不具有加 和性。
例:T,p,ρ,η。
6
1.1.3 状态与状态函数 状态(state) :体系热力学性质的综合表现。 状态函数:体系各种热力学性质的函数称状态函数。
史无关. (2) 状态函数的集合(和、差、积、商)也是状态函. (3)状态函数变化量只与始末态有关,与体系由始态到末态
的变化途径无关。即,具有数学上的全微分性质.
X末 dX X始
X末
X始
X
dX X末 X始 0
状态函数法
如:△T = T2 – T1
9
1-1.3 状态与状态函数
途径:始态 - - - - - 终态 系统所经历过程的总和。
始态A
途径I C
B 途径II
终态Y
X末 dX X始
X末
X始
X
H(I)=H(II)=HY-HA
这套利用状态函数的特性来研究热力学问题的方法是热力 学中的重要研究方法,通常称为状态函数法。
10
例: P n源自文库T
V
若n,V不变,
体系所有热力学性质不随时间改变时 称体系处于热力学平衡状态(又称定态)。
7
1.1.3 状态与状态函数
平衡态必须满足条件:以强度性质度量
• 热平衡(thermal equilibrium) :
各处温度相等,dT = 0 (以温度度量)
• 力平衡(mechanical equilibrium) :
各处压强相等,dp = 0 (以压强度量)
• 相平衡(phase equilibrium) :
各处组成数量不变,无净物质转移dm = 0
(以化学势度量)
• 化学平衡(chemical equilibrium ) :
各处组成不变;dc = 0 (以化学势度量)
8
1.1.3 状态与状态函数
状态函数的特点: (1)状态函数是状态的单值函数;状态函数与体系形成的历
101325Pa,0℃冰
1-1.3 状态与状态函数
状态函数法
盖斯定律
求化学反应等压(等容)热效应
C(石墨) + O2(g) === CO2(g) △rHm(1) 可测 -) CO (g) + 0.5O2(g) === CO2(g) △rHm(2) 可测
C(石墨) + 0.5O2(g) === CO(g) △rHm = △rHm(1) - △rHm(2)
第一章 热力学第一定律
rotate
vibrate
translate
Concerned with the study of transformation of energy: Heat work
1
1.1 化学热力学概论(1)状态与状态函数
化学热力学的任务: 通过研究化学反应及相关过程的能量传递和转换的普遍 关系, 对化学反应的方向和进行的程度作出预测和判断。
12
体系状态变化 过程与过程函数
13
2
实践经验总结
热力学第一定律 热力学第二定律 热力学第三定律
化学热力学 内容构架特点
普适性规律和概念:
重要原始定义
(如:内能U)
重要衍生定义
(如:焓H)
基本定 律
(如:热力学第一定律)
从
简
单
到
复
杂
一定条件下:
基本原理和定理
(如:盖斯定理;基希霍夫定理)
特定研究对象
应用:
(含理论研究方法和实验研究方法)
(1)物理变化 (2)可逆与不可逆相变 (3)化学反应
3
1.1.1 体系与环境
用观察、实验等方法进行科学研究时,必须先确 定所要研究的对象,把要研究的那部分物质与其余 的分开(分隔面可以是实际的,也可以是想象的), 这种被划定的对象就称为体系(system),而体系以 外,与体系密切相关,影响所及的部分则称为环境 (surrounding)。
dP nR dT V
对于循环过程,状态函数变量为零。
dV 0, dP 0, dT 0
状态函数法:利用状态函数的特性来研究热力学问题。
例:
H
101325Pa,15℃水
101325Pa,15℃冰
H 1
H 3
101325Pa,0℃水
H 2
H H1 H2 H3
4
1.1.1 体系与环境
(图片来自网站)
5
1.1.2 热力学性质(对体系的描述)
热力学性质:体系宏观可测性质,如:体积,压力, 温度,粘度,表面张力,组成,能量,密度,焓, 熵,内能,Gibbs自由能,Helmholtze自由能。
(与热、功、能有关的体系性质)
1. 广 度 性 质 (Extensive Properties)
2. 强 度 性 质 (Intensive properties) : 其 数 值 取 决 于体系自身的特性,与体 系的数量无关,不具有加 和性。
例:T,p,ρ,η。
6
1.1.3 状态与状态函数 状态(state) :体系热力学性质的综合表现。 状态函数:体系各种热力学性质的函数称状态函数。
史无关. (2) 状态函数的集合(和、差、积、商)也是状态函. (3)状态函数变化量只与始末态有关,与体系由始态到末态
的变化途径无关。即,具有数学上的全微分性质.
X末 dX X始
X末
X始
X
dX X末 X始 0
状态函数法
如:△T = T2 – T1
9
1-1.3 状态与状态函数
途径:始态 - - - - - 终态 系统所经历过程的总和。
始态A
途径I C
B 途径II
终态Y
X末 dX X始
X末
X始
X
H(I)=H(II)=HY-HA
这套利用状态函数的特性来研究热力学问题的方法是热力 学中的重要研究方法,通常称为状态函数法。
10
例: P n源自文库T
V
若n,V不变,
体系所有热力学性质不随时间改变时 称体系处于热力学平衡状态(又称定态)。
7
1.1.3 状态与状态函数
平衡态必须满足条件:以强度性质度量
• 热平衡(thermal equilibrium) :
各处温度相等,dT = 0 (以温度度量)
• 力平衡(mechanical equilibrium) :
各处压强相等,dp = 0 (以压强度量)
• 相平衡(phase equilibrium) :
各处组成数量不变,无净物质转移dm = 0
(以化学势度量)
• 化学平衡(chemical equilibrium ) :
各处组成不变;dc = 0 (以化学势度量)
8
1.1.3 状态与状态函数
状态函数的特点: (1)状态函数是状态的单值函数;状态函数与体系形成的历
101325Pa,0℃冰
1-1.3 状态与状态函数
状态函数法
盖斯定律
求化学反应等压(等容)热效应
C(石墨) + O2(g) === CO2(g) △rHm(1) 可测 -) CO (g) + 0.5O2(g) === CO2(g) △rHm(2) 可测
C(石墨) + 0.5O2(g) === CO(g) △rHm = △rHm(1) - △rHm(2)
第一章 热力学第一定律
rotate
vibrate
translate
Concerned with the study of transformation of energy: Heat work
1
1.1 化学热力学概论(1)状态与状态函数
化学热力学的任务: 通过研究化学反应及相关过程的能量传递和转换的普遍 关系, 对化学反应的方向和进行的程度作出预测和判断。
12
体系状态变化 过程与过程函数
13
2
实践经验总结
热力学第一定律 热力学第二定律 热力学第三定律
化学热力学 内容构架特点
普适性规律和概念:
重要原始定义
(如:内能U)
重要衍生定义
(如:焓H)
基本定 律
(如:热力学第一定律)
从
简
单
到
复
杂
一定条件下:
基本原理和定理
(如:盖斯定理;基希霍夫定理)
特定研究对象
应用:
(含理论研究方法和实验研究方法)
(1)物理变化 (2)可逆与不可逆相变 (3)化学反应
3
1.1.1 体系与环境
用观察、实验等方法进行科学研究时,必须先确 定所要研究的对象,把要研究的那部分物质与其余 的分开(分隔面可以是实际的,也可以是想象的), 这种被划定的对象就称为体系(system),而体系以 外,与体系密切相关,影响所及的部分则称为环境 (surrounding)。
dP nR dT V
对于循环过程,状态函数变量为零。
dV 0, dP 0, dT 0
状态函数法:利用状态函数的特性来研究热力学问题。
例:
H
101325Pa,15℃水
101325Pa,15℃冰
H 1
H 3
101325Pa,0℃水
H 2
H H1 H2 H3
4
1.1.1 体系与环境
(图片来自网站)
5
1.1.2 热力学性质(对体系的描述)
热力学性质:体系宏观可测性质,如:体积,压力, 温度,粘度,表面张力,组成,能量,密度,焓, 熵,内能,Gibbs自由能,Helmholtze自由能。
(与热、功、能有关的体系性质)
1. 广 度 性 质 (Extensive Properties)