管理运筹学 第2章 线性规划的图解法

合集下载

管理运筹学第二章 线性规划的图解法

管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)

-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0

管理运筹学作业 韩伯棠第3版高等教育出版社课后答案

管理运筹学作业 韩伯棠第3版高等教育出版社课后答案

课程:管理运筹学管理运筹学作业第二章线性规划的图解法P23:Q2:(1)-(6);Q3:(2)Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。

(1)Min f=6X1+4X2约束条件:2X1+X2>=1,3X1+4X2>=3X1, X2>=0解题如下:如图1Min f=3.6X1=0.2, X2=0.6本题具有唯一最优解。

图1(2)Max z=4X1+8X2约束条件:2X1+2X2<=10-X1+X2>=8X1,X2>=0解题如下:如图2:Max Z 无可行解。

图2(3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。

图3(4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。

图4(5)Max Z=3X1+9X2 约束条件:X1+3X2<=22-X1+X2<=4X2<=62X1-5X2<=0X1,X2>=0解题如下:如图5:Max Z =66;X1=4 X2=6本题有唯一最优解。

图5(6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8X1+2X2<=122X1+X2<=162X1-5X2<=0X1,X2>=0解题如下:如图6Max Z =30.669X1=6.667 X2=2.667本题有唯一最优解。

图6Q3:将线性规划问题转化为标准形式(2)min f=4X1+6X2约束条件:3X1-2X2>=6X1+2X2>=107X1-6X2=4X1,X2>=0解题如下:1)目标函数求最小值化为求最大值:目标函数等式左边min改为max,等式右边各项均改变正负号。

运筹学线性规划图解法

运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

A
1×250=250千克.
原料B 0 1 250千克
约束条件中没使用的资源或能力称之为松弛量。
用Si表示松弛量,对最优解 x1=50,x2=250来说:
约束条件
松弛变量的值
设备台时数
s1=0
原料A
s2=50
原料B
s3=0
8
线性规划标准型
加了松弛变量后例1的数学模型可写成:
目标函数:max z=50x1+100x2+0s1+0s2+0s3,
约束条件: x1+x2+s1=300,
2x1+x2+s2=400,
x2+s3=250, x1,x2,s1,s2,s3≥0
如何把模型化为 标准型?
三个特征:
一、约束条件为等式;
二、约束条件右端常数项非负;
三、所有变量非负。
称为线性规划的标准形式。
9
线性规划问题解的情况:
1.若有最优解,一定能在可行域的顶点取得。
a21x1+a22x2+…+a2nxn=b2, ………………………… am1x1+am2x2+…+am nxn=bm. x1, x2,…,xn≥0.
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
C 100
1设备台时获利500/10=50
元。 x1
O 100 D300 X1+X2=300
X1+X2=310
你知道对偶价格吗?
21
对偶价格的概念

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

管理运筹学 第三版 (韩伯棠) 高等教育出版社 课后参考答案

管理运筹学 第三版 (韩伯棠) 高等教育出版社 课后参考答案

表 4-1 各种下料方式
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 640 mm
21110000000000
1 770 mm
01003221110000
1 650 mm
00100102103210
1 440 mm
00010010120123
min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4≥80
max z = 10x1 + 5x2 + 0s1 + 0s2 3x1 + 4x2 + s1 = 9 5x1 + 2x2 + s2 = 8 x1, x2, s1, s2 ≥ 0 松弛变量(0,0)
最优解为 x1 =1,x2=3/2。
5.解:
678
标准形式
min f = 11x1 + 8x2 + 0s1 + 0s2 + 0s3
1.解: (1) x1 = 150 , x2 = 70 ;目标函数最优值 103 000。 (2)1、3 车间的加工工时数已使用完;2、4 车间的加工工时数没用完;没用完的加工工时 数为 2 车间 330 小时,4 车间 15 小时。 (3)50,0,200,0。 含义:1 车间每增加 1 工时,总利润增加 50 元;3 车间每增加 1 工时,总利润增加 200 元; 2 车间与 4 车间每增加一个工时,总利润不增加。 (4)3 车间,因为增加的利润最大。 (5)在 400 到正无穷的范围内变化,最优产品的组合不变。
(2)这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班次。

运筹学线性规划问题与图解法

运筹学线性规划问题与图解法



线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 … … … am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
简写式
Max(min)z c j x j
j 1 n
aij x j (, )bi , i=1, 2,..., m st. j 1 x 0, j 1, 2,..., n j
n
向量式 Max(min)z CX
Pj x j (, )b st . j 1 x 0
min z C T X
线性规划的标准型
下列情况具体处理 若要求目标函数求最大化 若约束方程为不等式:非负松弛变量,非负 剩余变量 若变量不是非负:非正,自由变量, 右边为非正 任何形式的线性规划模型都可以化为标准型。

Ai

配料问题:每单位原料i含vitamin如下:
原料
1
A
4
B
1

0
每单位成本
2
2
3
6
1
1
7
2
1
5
6
4
每单位添 加剂中维生 素最低含量
2
5
3
8
12
14
8
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12

第二章 线性规划的图解法(简)

第二章  线性规划的图解法(简)

第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第2章 线性规划

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第2章 线性规划

第二章线性规划教学目的:了解线性规划的基本概念,理解线性规划最优化原理、单纯形法原理,掌握单纯形法及其矩阵描述、人工变量法、,能够对简单的问题建模。

教学重点:线性规划的含义、性质;线性规划问题的求解方法——图解法、单纯形法。

线性规划模型的建立非标准型线性规划问题转化为标准线性规划问题;线性规划问题的图解法;解的存在情况判断;大M法;两阶段法;单纯形法的矩阵表示;教学难点:单纯形法的求解思想、矩阵表示、对偶理论、对偶单纯形法以及灵敏度分析。

学时: 8学时2.1 线性规划(Linear Programming,LP)问题及其数学模型(1学时)我们应用数学规划模型求解实际问题中,将实际问题抽象成数学模型,然后再对其求解。

2.1.1线性规划问题提出我们用一个简单例子来说明如何建立数学规划问题的数学模型。

例2.1 某家具厂生产桌子和椅子两种家具,有关资料见表2-1。

解:用数学语言来描述生产计划安排问题,这个过程称为建立其数学模型,简称建模。

设:①桌子、椅子生产的数量分别为x1,x2,称为决策变量。

因为产量一般是一个非负数,所以有x1,x2≥0,称非负约束。

②限制条件为木工和油漆工的加工时间约束了产品的生产量x1,x2。

约束如下:4x1+3x2≤1202x1+x2≤50③生产桌子、椅子x 1,x 2所得总收入为Z ,显然Z =50x 1+30x 2。

我们希望总收入值能达到最大,这个关系用公式表达为max Z =50x 1+30x 2 把上述所有数学公式归纳如下12121212max .0z 50x 30x 4x 3x 120s t 2x x 50x x =++≤⎧⎪+≤⎨⎪≥⎩,这就是一个最大化的线性规划模型。

例 2.2(运输工具的配载问题)有一辆运输卡车,载重2.5t ,容积183m ,用来装载如下的两种货物:箱装件125kg/个、0.43m /个;包装件20kg/个、1.53m /个。

问:如何装配,卡车所装物件个数最多?解 根据题意,设箱装件1x 个,包装件2x 个,那么需要满足条件:体积约束 120.4 1.518x x +≤重量约束 12125202500x x +≤非负约束12,0x x ≥目标要求 max z=12x x +我们对上面的式子稍作整理,便得到下面的形式:max z=12x x +1212120.4 1.518125202500,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩ 上述两例中所提出的问题,最终都归结为在变量满足线性约束条件的前提下,求使线性目标函数最大或最小的问题,这种问题称为线性规划问题。

管理运筹学 线性规划的图解法课件

管理运筹学  线性规划的图解法课件

线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。

《管理运筹学》第二版习题答案(韩伯棠教授)1

《管理运筹学》第二版习题答案(韩伯棠教授)1

3第 2 章 线性规划的图解法1、解:x 26A B1O 01C6x 1a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O0.1 0.6x 1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

第二章 线性规划的图解法

第二章  线性规划的图解法

例2.某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,已知生产单位产品所需的设备台 时及A、B两种原材料的消耗、资源的限制, 如下表:
设备 原料 A 原料 B 单位产品获利 Ⅰ 1 2 0 50 元 Ⅱ 1 1 1 100 元 资源限制 300 台时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ 产品才能使工厂获利最多?
第二章 线性规划的图解法
问题1具体数据如表所示:
资源 单耗 资源 煤(t) 电(kw.h) 油(t) 单位产品价格 9 4 3 7 4 5 10 12 360 200 300 产品 甲 乙 资源限量
提出和形成问题
建立模型
求解
结果的分析和应用
第二章 线性规划的图解法
在本例中
决策变量: 甲、乙产品的计划产量,记为x1 ,x2; 目标函数: 总收入记为f,则 f=7x1 +12x2 ,为体现对其求极大化, 在f 的前面冠以极大号Max,
第二章 线性规划的图解法 例2:.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同, 各自所需的加工时间也是不同的,加工每吨A原料需 要2个小时,加工每吨B原料需要1小时,而公司总共 有600个加工小时。又知道每吨A原料的价格为2万元, 每吨B原料的价格为3万元,试问在满足生产需要的 前提下,在公司加工能力的范围内,如何购买A,B 两种原料,使得购进成本最低?
第二章 线性规划的图解法
★线性规划模型的三个基本要素:
(也是所有规划问题的三个基本要素):
(1)决策变量:甲、乙产品的产量x1 ,x2 决策变量:需要决策的量,即等待求解的未知数。 (2)目标函数:总收入最大,Max f = 7 x 1 +12 x 2 目标函数:想要达到的目标,用决策 变量的表达式表示。 (3)约束条件: 约束条件:由于资源有限,为了实现 目标有哪些资源限制,用决策变量的 等式或不等式表示。

1.2 线性规划的图解法

1.2  线性规划的图解法
4x1 16 (0, 4) 4 x2 12 x1 + 2 x 2 8 (8, 0)
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x1
图解法例2
9— 8— 7— 6— 5— 4— 3— 2— 1— 0
8
MaxZ
2 x1 3 x 2
x2
16 4 x1 4 x 2 12 s .t . x1 2 x 2 8 x1 , x 2 0


A)可行解区无界时一定没有最优解 B)可行解区有界时不一定有最优解 C)如果在两个点上达到最优解,则一定有无穷多个最优 解 D)最优解只能在可行解区的顶点上达到
C
31
一、选择题(续)
9、关于线性规划模型的可行解区,下面( 述正确。

)的叙
A)可行解区内必有无穷多个点 B)可行解区必有界 C)可行解区必须包括原点 D)可行解区必是凸的
管理运筹学--管理科学方法
李军
桂林电子科技大学商学院
第二节 线性规划的图解法
图解法
学习要点
1
2
3
4
5
6
图解法 定义
2
图解步 骤
解的有 关概念
解的可 能结果
图解几 何意义
解与可 行域
一、图解法的定义
图解法

就是用几何作图求LP的最优解的方法。
前提条件

变量个数不能超过两个。
图解法的 目的
①利用它来说明LP问题求解的可能结局。 ② 在LP问题最优解存在时,求出最优解。 ③为寻求LP问题的一般算法提供依据。
4x1 16 4 x2 16 x1 + 2x2 8 1、可行域:满 足所有约束条件的 解的集合,即所有 约束条件共同围城 的区域 (或称可行 解集),记做R 。

管理运筹学第2章 线性规划的图解法

管理运筹学第2章 线性规划的图解法

i
i
MinZ e1i e2i
i
i
s.t.eβ10i-,eβ21i无 符yi 号 β限0 制β1xi
e1i , e2i 0,i 1,2,, n
还可以加上一些特定的需求.例如,要求必须过某 一点.
16
线性规划问题的应用举例(回归分析)
新标准:最小化最大绝对误差.
–整数规划问题
• 考虑短期排班的问题
–对午休换班进行建模
• 考虑每个工人
–允许工人有不同的偏好
29
套裁下料问题
例某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢
各一根。已知原料每根长7.4 m,问:应如何下料,可使所
用原料最省?
方案 1 方案 2 方案 3 方案 4 方案 5 方案 6 方案 7 方案 8
产品名称
规格要求
单价(元/kg)
甲 原材料 1 不少于 50%,原材料 2 不超过 25%
50
乙 原材料 1 不少于 25%,原材料 2 不超过 50%
35

不限
25
原材料名称
1 2 3
每天最多供应量
100 100 60
单价(元/kg) 65 25 35
9
线性规划应用举例
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。 这样我们建立数学模型时,要考虑:
x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1,x2,x3,x4,x5,x6 ≥ 0
20
关于决策变量的选择的启示

运筹学课件1-2-1线性规划图解法

运筹学课件1-2-1线性规划图解法

x2
4x1 ≤ 16 C D
| 1 | 2 | 3 | 4
4 x2 ≤ 16
最优解 (4, 2)
x1 + 2x2 ≤ 8
| 6 | 7 | 8 | 9
A
0
E
| 5
x1 下页 返回
上页
图解法求解步骤
• 由全部约束条件作图求出可行域; 由全部约束条件作图求出可行域; 可行域 • 作目标函数等值线,确定使目标函数最 作目标函数等值线, 等值线
E (8,0)
| 6
| 8
| | 10 12
| | | 14 16 18
x1 下页 返回
上页
练习) 图解法 —(练习)
18 — 16 — 14 — 12 — 10 — B 8—
x2
2x1 + x2 ≤ 16 2x1 + 2x2 ≤ 18 C 4x1 + 6x2 ≤ 48 D
| 2 | 4 | 6 | 8 | | 10 12 | | | 14 16 18
上页 下页 返回
x2
6 ① ③ 4

2
(4,2)
Zmax ②
0
2 Z=0
4 Z=6
6
8
x1
返回
上页
下页
练习: 练习:
用图解法求解LP问题
Max Z = 34 x1 + 40 x2
4 x1 + 6 x2 ≤ 48 2 x1 + 2 x2 ≤ 18 2 x1 + x2 ≤ 16 x1、 x2 ≥ 0
A
x1 下页 返回
上页
练习) 图解法 —(练习)
18 — 16 — 14 — 12 — 10 — B 8—
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理运筹学
4
§2 图 解 法
对于只有两个决 策变量的线性规划问 题,可以在平面直角
例1.目标函数: max z = 50 x1 + 100 x2
约束条件:
坐标系上作图表示线 性规划问题的有关概 念,并求解。
下面通过例1详细 讲解其方法:
s.t.
x1 + 2 x1 +
x2 ≤ 300 (A) x2 ≤ 400 (B) x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E)
x1
管理运筹学
7
§2 图 解 法
(3)把五个图合并成一个图,取各约束条件的公共部分,如 图2-1所示。
x2
300
x2=250
200
100
x2≤250
100 200 300 x1
x2=0
x2 2x1+x2=400
x2=250
x1+x2=300
x1=0
x1
图2-1
管理运筹学
8
§2 图 解 法
(4)目标函数z=50x1+100x2,当z取某一固定值时得到一条直 线,直线上的每一点都具有相同的目标函数值,称之为“等 值线”。平行移动等值线,当移动到B点时,z在可行域内实 现了最大化。A,B,C,D,E是可行域的顶点,对有限个 约束条件则其可行域的顶点也是有限的。
划的一个或多个参数(系数)ci , aij , bj 变化时,对最优解产
生的影响。
3.1 目标函数中的系数 ci 的灵敏度分析 考虑例1的情况,ci 的变化只影响目标函数等值线的斜率,
目标函数 z = 50 x1 + 100 x2 在 z = x2 (x2 = z 斜率为0 ) 到 z = x1 + x2 (x2 = -x1 + z 斜
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?
线性规划模型:
目标函数:max 约束条件:s.t.
z = 50 x1 + 100 x2 x1 + x2 ≤ 300
2 x1 + x2 ≤ 400 x2 ≤ 250
x1 , x2 ≥ 0
管理运筹学
3
§1 问题的提出
• 建模过程
1.理解要解决的问题,明确在什么条件下,要追求什么目标;
得到最优解:
x1 = 50, x2 = 250 最优目标值 z = 27500
管理运筹学
5
§2 图 解 法
(1)分别取决策变量X1, X2 为坐标向量建立直角坐标系。在 直角坐标系里,图上任意一点的坐标代表了决策变量的一 组值,例1的每个约束条件都代表一个半平面。
x2
X2≥0
x2
X1≥0
X2=0
X1=0
min f = c1x1 + c2x2 + … + cnxn (可以)令 z = -f ,
则该极小化问题与下面的极大化问题有相同的最优解,
即 max z = - c1x1 - c2x2 - … - cnxn
但必须注意,尽管以上两个问题的最优解相同,但它们 最优解的目标函数值却相差一个符号,即
min f = - max z
第二章 线性规划的图解法
• §1 问题的提出 • §2 图解法 • §3 图解法的灵敏度分析
管理运筹学
1
第二章 线性规划的图解法
在管理中一些典型的线性规划应用 • 合理利用线材问题:如何在保证生产的条件下,下料最少 • 配料问题:在原料供应量的限制下如何获取最大利润 • 投资问题:从投资项目中选取方案,使投资回报最大 • 产品生产计划:合理利用人力、物力、财力等,使获利最
• 线性规划存在无界解,即无最优解的情况。 对下述线性规划问题:
• 约束条件: max z=x1+x2; x1-x2 ≤1 -3x1+2x2 ≤6 x1 ≥0, x2 ≥0
管理运筹学
12
图解法 –无界解
• 用图解法求解结果,如图所示,可以看到, 该问题可行域无界,目标函数值可以增大到 无穷大,成为无界解,即为无最优解。
管理运筹学
16
§3 图解法的灵敏度分析
可以看出,线性规划的标准形式有如下四个特 点:
–目标最大化; –约束为等式; –决策变量均非负; –右端项非负。
对于各种非标准形式的线性规划问题,我们总可 以通过以下变换,将其转化为标准形式:
管理运筹学
17
§3 图解法的灵敏度分析
1.极小化目标函数的问题: 设目标函数为
2.定义决策变量( x1 ,x2 ,… ,xn ),每一组值表示一个方 案;
3.用决策变量的线性函数形式写出目标函数,确定最大化或最 小化目标;
4.用一组决策变量的等式或不等式表示解决问题过程中必须遵 循的约束条件
• 一般形式
目标函数: 约束条件:
max (min) z = c1 x1 + c2 x2 + … + cn xn
3.右端项有负值的问题:
在标准形式中,要求右端项必须每一个分量非
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
管理运筹学
21
§3 图解法的灵敏度分析
例:将以下线性规划问题转化为标准形式
min f = 2 x1 -3x2 + 4 x3
管理运筹学
14
进一步讨论
解:目标函数: min f = 2x1 + 3 x2 约束条件:
s.t.
x1 + x2 ≥ 350
x1 ≥ 125
2 x1 + x2 ≤ 600
x1 , x2 ≥ 0
采用图解法。如下图:得Q点坐标(250,100)为最优解。
x2
x1 =125
600
500
2x1+3x2 =1200
管理运筹学
18
§3 图解法的灵敏度分析
2、约束条件不是等式的问题:
设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量s ,使它等于约束右边与左
边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,s 也具有非负约束,即s≥0,
目标函数:max z = 50 x1 + 100 x2 + 0 s1 + 0 s2 + 0 s3
约束条件:s.t.
x1 + x2 + s1 = 300
2 x1 + x2 + s2 = 400
x2 + s3 = 250
x1 , x2 , s1 , s2 , s3 ≥ 0
对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0
x2
4
3 2 1
-2
-1
x2=0 -1
1
2
x1=0
z3=3=x1+4 x2 x1
z=1=x1+x2
z=0=x1+x2 图2-1
管理运筹学
13
进一步讨论
例2 某公司由于生产需要,共需要A,B两种原料至少350 吨(A,B两种材料有一定替代性),其中A原料至少购进125 吨。但由于A,B两种原料的规格不同,各自所需的加工时间 也是不同的,加工每吨A原料需要2个小时,加工每吨B原料需 要1小时,而公司总共有600个加工小时。又知道每吨A原料的 价格为2万元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A,B两种 原料,使得购进成本最低?
s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2 ,… ,xn ≥ 0
在标准形式中,必须每一个变量均有非负约束。当某一个变量xj没 有非负约束时,可以令 xj = xj’- xj”
其中 xj’≥0,xj”≥0
取决即于用xj’两和个xj”非的负大变小量。之差来表示一个无符号限制的变量,当然xj的符号
管理运筹学
23
§3 图解法的灵敏度分析
灵敏度分析:建立数学模型和求得最优解后,研究线性规
x2
z=10000=50x1+100x2
AB C
z=0=50x1+100x2
E
z=27500=50x1+100x2
z=20000=50x1+100x2
D
x1
图2-2
管理运筹学
9
§2 图 解 法
• 线性规划的标准化内容之一:——引入松驰变量(含义是
资源的剩余量)
例1 中引入 s1, s2, s3 模型化为
s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2 ,… ,xn ≥ 0
这时新的约束条件成为
ai1 x1+ai2 x2+ … +ain xn+s = bi
管理运筹学
相关文档
最新文档