碟管式反渗透DTRO+蒸发结晶工艺处理高盐废水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在我国社会经济发展和城市化进程中,水资源紧缺正在逐渐成为制约我国可持续发展战略的主要因素之一。近年来,随着我国工业规模的不断增大,工业用水量激增。同时,产生废水量也迅速增大,给当前的工业水处理与回收利用技术带来了巨大的挑战。工业废水如直接排放,将对周围土壤、水体环境产生严重的污染。废水经处理合格达标后,如不回收利用,则造成水资源浪费,加剧水资源短缺。山东省环境保护厅、山东省质量技术监督局,关于批准发布《等4项标准增加全盐量指标限值修改单》的通知明确指出排放要求:(一)2014年5月1日起,全盐量指标限值执行3000mg/L 的要求。(二)2016年1月1日起,全盐量指标限值执行1600mg/L的要求;以中水或循环水为主要水源的企业,全盐量指标限值放宽到2000mg/L。对于高盐废水,由于缺乏技术、经济上的可行性与可靠性,大多数采取稀释外排方法。这种方法不但不能真正减少污染物的排放总量,而且造成了淡水的浪费,特别是含盐废水的排放,势必造成淡水水资源矿化和土壤碱化。与国外高盐废水“零排放”或“趋零排放”的脱盐技术水平相比,我国有较大差距。因此,如何开发经济有效的高盐废水脱盐处理工艺技术,促进高盐废水的资源化利用,也是解决水资源循环利用的瓶颈问题。1 化工生产中高盐废水的来源通常,对于废水生化处理而言,高盐废水是指含有机物和至少总溶解固体(TDS)的质量分数大于3.5%的废水。因为在这类废水中,除了含有有机污染物,还含有大量可溶性的无机盐,如Cl−、Na+、SO42−、Ca2+ 等。所以,这类废水一般是生化处理的极限。据报道,在国外已有采用特殊驯养的耐盐嗜盐菌处理含盐15%的含酚废水;在国内,也有关于采用嗜盐菌可以处理含盐5%废水的报道。这类废水除了海水淡化产生外,其他主要来源于以下领域①化工生产,化学反应不完全或化学反应副产物,尤其染料、农药等化工产品生产过程中产生的大量高COD、高盐有毒废水;②废水处理,在废水处理过程中,水处理剂及酸、碱的加入带来的矿化,以及大部分“淡”水回收而产生的浓缩液,都会增加可溶性盐类的浓度,形成所谓的难于生化处理的“高盐度废水”。可见,这类含盐废水已经较普通废水对环境有更大的污染性。自20世纪90 年代以来,随着我国纺织工业的迅猛发展,印染行业规模迅速扩大,染料的生产与使用量越来越大。由此,产生大量的高COD、高色度、高毒性、高盐度、低B/C 的染料废水。据统计,2009 年印染行业所产生的染料废水总量已达24.3亿吨,占纺织工业废水总排放量的80%以上。该种染料废水具有的“四高一低”的特点,并且与使用染料的种类有关。与此同时,在染料生产中,排放废水中盐类的富集主要是由生产工艺和工艺助剂的添加造成的。比如,在江苏某染料厂综合废水中,仅氯盐质量分数就高达60g/L。可见,如何高效处理高盐度、高污染度的印染废水,实现氯盐从达标水的分离,满足淡水资源的循环利用要求,已成为印染废水处理的难题。在化工生产中,农药生产过程也会产生大量的高盐废水。据统计,全国农药生产厂已达1600 家左右,农药年产量达47.6万吨。其中,有机磷农药的生产占农药工业的50%以上。该种农药废水的特点是:有机物浓度高、污染成分复杂、毒性大、难降解、水质不稳定等。比如,在除草剂草甘膦的生产过程中,浓缩母液过程会产生浓度很高的磷酸盐和氯化钠废水,其COD为50000mg/L左右,盐类的含量可达150g/L。对于此类高COD、高盐农药废水,必须采取有效处理措施进行处理。否则,必将造成严重的环境污染。除此之外,在其他化工生产过程中,也会有高盐废水产生。例如,氨碱法制备纯碱生产中,蒸氨处理后系统排放废水的可溶性盐含量一般可达15%~20%,其中大部分为CaCl2、NaCl。在煤化工行业中,含盐废水经过热浓缩工艺后,外排的浓缩废水含盐量可达20%以上。对于化工过程中产生的高盐废水,由于来源于不同化工产品与生产工艺,高盐废水的性质也各异。因此,对于化工生产中直接产生的各种高盐废水,需要按照高盐废水的不同来源、性质进行分类并选择最优工艺处理。2 碟管式反渗透(DTR0)技术+蒸发结晶技术处理高盐废水实现资源回收与零排放2.1碟管式反渗透(DTR0)处理高盐水众所周知,反渗透膜技术是一种常用的脱盐技术。目前,适用于工业规模的反渗透膜,主要包括乙酸纤维素和聚酰胺膜,其盐截留率为94%~97%。废水通过物化、生物等方法使废水达到排放标准。碟管式反渗透(DTRO)技术是一种高新反渗透技术,最早始于德国,相对于卷式反渗透其耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。国内主要应用于垃圾渗滤液与海水淡化、苦咸水淡化工程。DTRO虽然水处理效果卓越,但因DTRO膜组件主要依赖进口,成本相对较高,山东烟台金正环保选用美国陶氏原材,采用德国一流加工设备实现了DTRO膜制造,明显降低该技术运营成本,使该技术得以在国内广泛推广。DTRO盐截留率为98%~99.8%。其他去除性能如表1所示。碟管式反渗透(DTRO)是一种独特的膜分离设备。碟管式膜组件采用开放式流道,DT组件两导流盘直接距离为4mm,盘片表面有一定方式排列的凸点。DTRO凸点导流盘与膜片如图1所示这种特殊的力学设计使处理液在压力作用下流经滤膜表面遇凸点碰撞时形成湍流,增加透过速率和自清洗功能,从而有效的避免了膜堵塞和浓差极化现象,成功的延长了膜片的使用寿命;清洗时也容易将膜片上的积垢洗净,保证碟管式膜组适用于处理高浑浊度和高含沙系数的废水,适应恶劣的进水条件。DTRO膜组件具有特殊的流道设计形式,采用开放式流道,料液通过增
压泵经进料口打入DTRO膜柱内,从导流盘与外壳之间的通道流到组件的另一端,在另一端法兰处,料液通过8个通道进入导流盘中被处理的液体以最短的距离快速流经过滤膜,然后180度逆转到另一膜面,再从导流盘中心的槽口流入到下一个导流盘,从而在膜表面形成由导流盘圆周到圆中心,再到圆周,再到圆中心的双”S”形路线,浓缩液最后从进料端法兰处流出。碟管式反渗透处理高盐水的具体流程如图2所示经过碟管式反渗透(DTRO)处理后的高倍浓缩浓盐水结合蒸发结晶方式,实现资源回收。DTRO膜技术优势简单预处理,占地面积小,可移动性强DTRO系统进水要求低,因此只需要简单的预处理,无需复杂的土建工程,而且DTRO系统模块单元灵活紧凑,因此占地面积小,可移动性强。避免物理堵塞现象DT组件采用开放式流道设计,料液有效流道宽,避免了物理堵塞。最低程度的结垢和污染现象采用带凸点支撑的导流盘,料液在过滤过程中形成湍流状态,最大程度上减少了膜表面结垢、污染及浓差极化现象的产生,允许SDI值高达20的高污染水源,仍无被污染的风险。膜使用寿命长DT膜组件有效减少膜的结垢,膜污染减轻,清洗周期长,同时DT的特点结构及水力学设计使膜组易于清洗,清洗后通量恢复性非常好,从而延长了膜片寿命。实践工程表明,即使在渗液原液的直接处理中,DT膜片寿命可长达3年以上,这对一般的膜处理系统是无法达到的。组件易于维护DT膜组件采用标准化设计,组件易于拆卸维护,打开DT组件可以轻松检查维护任何一片过滤膜片及其它部件,维修简单,当零部件数量不够时,组件允许少装一些膜片及导流盘而不影响DT膜组件的使用,所有这些维护工作均在现场即可完成。回收率高,能耗低DTRO系统对于高盐及复杂的垃圾渗滤液处理,能产生高达85%的回收率,同时装机功率低,运行能耗低。过滤膜片更换费用低DT组件内部任何单个部件均允许单独更换。过滤部分由多个过滤膜片及导流盘装配而成,当过滤膜片需更换时可进行单个更换,对于过滤性能好的膜片仍可继续使用,这最大程序减少了换膜成本。浓缩倍数高DT组件操作压力具有75bar,150bar,200bar三个等级可选,是目前工业化应用压力等级最高的膜组件,在一些浓缩倍数高的应用中,其含固量可以达到25%以上,浓缩倍数高。2.2蒸发浓缩-结晶工艺技术2.2.1 蒸发浓缩-冷却结晶工艺技术蒸发浓缩-冷却结晶工艺技术是通过蒸发,将反渗透处理的浓盐废水进行再浓缩,最后对浓缩液进行冷却,从而使高盐废水中可溶性盐类物质结晶分离出来的工艺技术。该工艺能使部分盐类物质分离出来,得到结晶盐类化合物,而结晶母液则需要返回至前面蒸发工段进行再循环蒸发浓缩处理,其工艺流程如图3 该工艺技术适用于高盐废水中COD相对较低、所含盐类的溶解度相对温度变化敏感的高盐废水,通过控制结晶温度,可能得到比较纯净的结晶盐。其缺点也是显而易见的,当废水中盐类相对的温度变化不敏感时,例如,废水中所含主要盐类为氯化物时,采用冷却结晶方式进行盐的分离,效率很低。此外,在冷却结晶工艺中,会有大量冷却母液需要返回到前段工艺流程再次加热蒸发、浓缩处理。这样,会导致整个工艺流程长、能耗高,处理效率较低。所以,迫切需要开发一种能高效分离高盐废水中盐类物质的工艺方法。2.2.1 蒸发浓缩-热结晶工艺技术蒸发-热结晶工艺流程如图4。在蒸发-热结晶工艺流程中,首先将高盐废水进行蒸发、浓缩,随后利用旋转薄膜蒸发器,对高盐废水浓缩液进行继续加热,使其进一步蒸发、浓缩,形成过饱和盐液。最后,通过冷却,使过饱和盐液温度降低至40 ℃以下,得到盐泥,从而实现高盐废水中可溶性盐类物质的彻底分离。其中,关键设备是旋转薄膜蒸发器,其结构原理示意图如图5所示。由图5 可见,在旋转薄膜蒸发器的内部,装有一个带旋转轴的受液盘和刮板,高温的高盐浓缩液由进料口进入受液盘后,随着旋转抛散至蒸发器四壁并受热蒸发,形成盐泥。其中,蒸汽由蒸发器上端的蒸汽出口排出。在此进程中,旋转轴上的刮板将盐泥刮下来,从蒸发器下端出口排出。为确保旋转薄膜蒸发器的防腐性能,可选用316L 不锈钢、石墨或钛合金等优良防腐、耐温、传热性能好的材料进行加工。蒸发-热结晶工艺技术的创新在于:采用薄膜蒸发方式,处理含盐的黏稠浓缩液,其蒸发效率高,容易使含盐浓缩液达到过饱和,有利于盐类物质持续不断地从黏稠液中分离出来,从而实现了盐类物质分离的连续化,并且无母液返回再次循环加热,能耗较低。由此,该工艺技术对高盐废水中所含盐类物质无特殊要求,能实现对所有高黏度、高盐度废水的高效、连续处理,并能够实现盐类物质的100%分离。目前,该工艺技术已成功用于酸性高盐废水的回收处理。3结语为充分回收、循环利用水资源,减少各种高盐废水对水资源的“盐化”污染和对土壤造成的盐碱化危害,利用高新碟管式反渗透技术+蒸发结晶工艺进行高盐废水的有效处置,实现盐与水的高效分离达到资源回收与零排放目标,具有十分重要的意义。