解直角三角形的应用——坡度问题.2_解直角三角形(坡度问题).pdf
解直角三角形的应坡比与坡度2

解:过C作CFAD于F
6 E
4
i 1: 3
AB CD, BC // AD, i 1 : 3, A CF BE 6, EF BC 4, AE FD 3CF 6 3. AD AE EF FD 4 12 3. CF 1 tg , FD 3 30 .
A
D
D
B
(图1)
C B
(图2)
C
A
C (图3)
E
例二:
已知: △ABC中,∠A=105°,∠C=45°,BC=8, 求AC和AB的形、等 腰三角形、梯形等一些图 形的问题时,可以适当地 添加辅助线构造直角三角形,然后利用解直角三角形,使 问题得以解决。设未知数得到相关的方程,是解本题的一 个关键步骤,应用了方程的思想,将几何图形的计算转化 为解代数方程。
例3:在山脚C处测得山顶A的仰角为45°。问题如
下: 1.沿着水平地面向前300米到达D点,在D点测得山 顶A的仰角为60 °,求山高AB。 2.沿着坡角为30 °的斜坡前进300米到达D点,在D 点测得山顶A的仰角为60 ° ,求山高AB。 A
D 30° C
x E x
F B
解直角三角形的应用仰角和俯角
3 10 3、坡比为 i=1∶3 ,坡角α的余弦值为 10
用数学去解释生活
如图,正切也经常用来描述山坡的坡度.例 如,有一山坡在水平方向上每前进100m就升 高60m,那么山坡的坡度i(即tanα)就是: 老师提示: 坡面与水平面的夹角(α)称为 坡角,坡面的铅直高度与水平宽 度的比称为坡度i(或坡比),即 坡度等于坡角的正切.
α
D
答:坡角为30 ,坝底宽AD为4 12 3米.
24.4.4 解直角三角形的应用—坡度与坡角(课件)九年级数学上册(华东师大版)

第24章 解直角三角形
与地面的倾斜角分别是 45°和 30°,求路基下底的宽 (精确到 0.1, 2 1.414
3 1.732 解:作DE⊥AB,CF⊥AB,
垂足分别为E、F. 由题意可知 DE=CF=4 (米),
12 米
D
C
4米
45°
30°
A
E
F
B
CD=EF=12 (米).
在 Rt△ADE 中,
第24章 解直角三角形
=
9.28
(m),DF
=
2.5×5.A8
=
14.5
E (m).
β i2 = 1 : 2.5 5.8
F
D
∴AD = AE + EF + DF = 9.28 + 9.8 + 14.5 ≈ 33.6 (m).
∵ tan
=
i1
1 ,tan 1.6
=
i2=
1, 2.5
∴ 32°, 21° .
答:铁路路基下底宽为 33.6 m,斜坡的坡角分别为 32° 和 21°.
坡面
i= h : l
h
α
l 水平面
第24章 解直角三角形
典例讲解
例1 水库大坝的横断面是梯形,坝顶宽 6 m,坝高 23 m,斜坡 AB 的坡度 i = 1 : 3 ,斜坡 CD 的坡度 i = 1 : 2.5 , 求(1)求坝底宽 AD 和斜坡 AB 的长 (精确到0.1m ); (2)斜坡 CD 的坡面角 α(精确到 1°)
第24章 解直角三角形
课堂练习
1. 斜坡的坡度是 1: 3 ,则坡角 α =_3_0_度. 2. 斜坡的坡角是 45° ,则坡比是 1__:_1__. 3. 斜坡长是 12 米,坡高 6 米,则坡比是_1__: __3__.
解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
24.4.3坡度与解直角三角形的应用课件

解:过点 E 作 EF⊥BC 的延长线于点 F,EH⊥AB 于点 H,在 Rt△
CEF
中,∵i=ECFF=
1 =tan∠ECF,∴∠ECF=30°,∴EF=CE 3
=10 米,CF=10 3米,∴BH=EF=10 米,HE=BF=BC+CF=(25
+10 3)米,在 Rt△AHE 中,∵∠HAE=45°,∴AH=HE=(25+
减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,
地质人员勘测,当坡角不超过 45°时,可确保山体不滑坡.
(1)求改造前坡顶到地面的距离 BE 的长;
(2)如果改造时保持坡脚 A 不动,
坡顶 B 沿 BC 削进到 F 处,问 BF 至少是多少
米 解:?(1)∵i=BAEE=95,设 BE=9k,AE=5k(k 为正数),则在 Rt△
(DE+AF)DN
(2)∵S = 梯 形 ADEF
2
= 50 3 - 30 , ∴ (50 3 -
30)×600≈(30000 3-18000)立方米.答:完成这项工程需要
土石约(30000 3-18000)立方米
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
知识点 1:坡度和坡角 1.(2014·怀化)如图,小明爬一土坡,他从 A 处爬到 B 处所走的 直线距离 AB=4 米,此时,他离地面高度为 h=2 米,则这个土坡 的坡角∠A=__3_0_°.
解直角三角形的应用3-坡度课件

02
坡度在生活中的应用
道路修建中的坡度
道路的坡度决定了车辆行驶的 稳定性和安全性。
适当的坡度可以减少车辆的摩 擦阻力,提高道路的通行效率。
在山区或丘陵地带,道路修建 需要合理规划坡度,以确保车 辆能够安全、顺畅地行驶。
桥梁设计中的坡度
桥梁的坡度设计关乎到桥面排水和行车安全。
在河流、峡谷等跨越障碍物的地方,桥梁的坡度设计需要充分考虑地形、水文等因 素。
应用
通过测量斜边和其中一条直角 边的长度,利用三角比计算锐 角的度数,进而求得坡度。
04
坡度计算的实例分析
实例一:道路修建中的坡度计算
确定道路起点和终点的坐标
根据道路规划图,确定道路起点的坐 标(x1, y1)和终点的坐标(x2, y2)。
计算斜边长度
利用勾股定理计算斜边长度c。
计算坡度
根据斜边长度和垂直距离h,利用坡 度公式计算坡度i。
坡度i。
根据计算得到的坡度i,结合屋 面材料和设计规范,确定屋面
的坡度和排水方式。
05
总结与展望
解直角三角形在坡度计算中的应用总结
坡度概念
坡度是描述斜坡倾斜度的一种方式,通常用角度或比例来 表示。在解直角三角形中,坡度可以通过对边和邻边的比 值计算得出。
实际应用
解直角三角形在坡度计算中有广泛的应用,例如在道路建 设、水利工程、土地测量等领域中,需要利用解直角三角 形的方法来计算斜坡的角度和倾斜度。
在几何学中,斜率是直线或曲 线的倾斜度的量度,通常用比 值或比例来表示。
对于直线,斜率等于直线上任 意两点的纵坐标之差与横坐标 之差的比值,即 $text{斜率} = frac{Delta y}{Delta x}$。
解直角三角形的应用——坡度、坡角

3.坡度与坡角的关系:
i=h:l=tanα
坡度越大,坡角就越 大 ,坡面 就越陡
自学检测:
知识点一 坡度与坡角
1.以下对坡度的描述正确的是( B )
A.坡度是指斜坡与水平线夹角的度数
B.斜坡是指斜坡的铅垂高度与水平宽度的比
C.斜坡式指斜坡的水平宽度与铅垂高度的比
D.坡度是指倾斜角度的度数
2、若斜坡的坡角为 5 6 ∘ 1 9 、,坡度i=3:2,则( C )
x- 2
AF =
=
°=
ta n ∠ D A F
ta n 3 0
3 (x - 2 )
AF=BE=BC+CE
即 3 (x - 2) = 2 3 &6.
DE=6米
物体通过的路程为 3 5 .
再试牛刀:
知识点二 坡度、坡角及实际问题
1. 如图,河堤横切面迎水坡AB的坡比是1:
,堤
3
高BC=10m,则坡面AB的长度是( C )
A.15m
B. m 2 0 3
C.20m
D. 1 0 3 m
2、如图是拦水坝的横切面,斜坡AB的水平宽度为
12m,斜面坡度为1:2,则斜坡AB的长为( B )
拓展提升:
如图,某校综合实践活动小组的同学欲测量公园内 一颗树DE的高度,他们在这棵树正前方一座楼亭前 的台阶上A点处测得树顶端D的仰角为30度,朝着这 棵树的方向走到台阶下的点C处,测得树顶端D的仰 角为60,已知A点的高度AB为2米,台阶AC的坡度为 1: 3 ,且B、C、E三点在同一条直线上,请根据以上 条件求出树DE的高度(测角器的高度忽略不计)
A. 4 3 m
B.6 5 m
C. 1 2 5 m
解直角三角形的应用-坡度坡角问题.

:
二、典型题型
二、典型题型
平面:的
tan53°≈,
、某地的一座人行天桥如图所示,天桥高为
:.
1+)米,小军和小明同时分别从
小军的行走速度为米
4、
5、
6、同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽12m,坝高23m,斜坡AB的坡度i=3
1:,斜坡CD的坡度i=1∶3,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m参考数据:3≈1.732)
7、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截
ABCD)
)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,面为梯形ABCD
i=1:
:2.
并使上底加宽2米,加固后,背水坡EF的坡比i=1
的长;
(1)求加固后坝底增加的宽度AF的长;
)求完成这项工程需要土石多少立方米?
(2)求完成这项工程需要土石多少立方米?。
解直角三角形及其应用:坡度_图文

a2+b2=c2(勾股定理) ∠A+∠B=90º
边角之间关系 (以锐角A为例)
sin
A
=
A的对边= 斜边
a c
tan
A
=
A的对边 A的邻边
=
a b
cos A = A的邻边 = b 斜边 c
观察 图(1)和(2)中,哪个山坡比较陡?
A
k
B
B
8k
C
C
A
如图,一铁路路基的横断面为等腰梯形,路基的顶宽(即
等腰梯形的上底长)为10m,路基的坡度i=1:1,等腰梯形
例题1
的高为6m.求路基的底宽和坡角.
D
10m
C
解 在等腰梯形ABCD中,过点D、C分别 i=1:1
6m
作DE⊥AB,CF ⊥ AB,垂足分别为
E, F
A
E
依题意,有:DC=10m,DE=6m,
(1)
(2)
(2)中的山坡比较陡.
坡度是指斜坡上一点的铅垂高度
与水平宽度的比值。 i=h:l
坡角是斜坡与水平线的夹角
A
h
B lC
A
i= h:l =tan a
B
C
显然,坡角越大,坡度越大, 山坡越陡 。
⑴、坡度通常写成1: m 的形式。如图一个斜坡
坡度为1 :1,则这个坡角为 450。
⑵、一斜坡的坡角为30度,则它的坡度 为 1: ;
FB
AE = DE = 6 ∴BF=6 ∴AB=AE+EF+FB=22
答:路基的底宽为22米,坡角为45°.
练习.如图,一段河坝的断面为梯形ABCD,坝高10
1.解直角三角形在坡角(坡度)及其他方面的应用课件

BE BE 24 4 2
≈0.308 4,∴∠ABC≈17°8′23″.
新课讲授
解:(2)
S四边形ABCD=
1 2
(AD+BC)×DF
1
= 2 ×(6+30)× 4 2
E 2m C
D 40° 5m B
新课讲授
大坝问题
如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长 CD=8m,坡底BC=30m,∠ADC=135°. (1)求坡角∠ABC的大小; (2)如果坝长100m,那么修建这个大坝共需多少土石料?
(结果精确到0.01m3 )
AD
B
C
新课讲授
(1)解:如图,过点D作DE⊥BC于点E, 过点A作AF⊥BC于点F.
则EC DE DC sin 45 4 2,
AF DE 4 2, BF 30 6 4 2 24 4 2.
tan ABC AF 4 2 , BF 24 4 2
∴∠ABC≈17°8′21″. 答:坡角∠ABC约为17°8′21″.
A 6m D
┌ 135°┐ 8m
B
F 30mE C
分析:将分散的条件集中到△ ABP 中求解 .
解:(1) 30 ( 2)由题意,得∠ PBH=60°,∠ APB=60°-15°=45° .
∵∠ ABC=30°,
∴∠ ABP=90°,∴∠ BAP=45°,∴ PB=AB.
在 Rt △ PHB 中,
PB PH 30 = 30 =20 3 m .
sin PBH sin 60 3
新课讲授
26.4 解直角三角形的应用 - 第2课时坡度、坡角问题课件(共17张PPT)

26.4 解直角三角形的应用
第2课时 坡度、坡角问题
学习目标
学习重难点
重点
难点
1..加强对坡度、坡角、坡面概念的理解和认识,了解坡度与坡面陡峭程度间的关系.2.能把一些较复杂的图形转化为解直角三角形的问题.3.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.
第3题图
第4题图
B
A
5.水库拦水坝的横断面是四边形ABCD,AD∥BC,背水坡CD的坡比i=1∶1,已知背水坡的坡长CD=24 m,则背水坡的坡角α为____,拦水坝的高度为_______ m.6.如图,在坡比为i=1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是______米.
创设情境
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
新知引入
如图,在筑坝、开渠、挖河和修路时,设计图纸上都要注明斜坡的倾斜程度.我们通常把坡面的垂直高度h和水平宽度l的比叫做坡面的坡度(或坡比),坡面与水平面的夹角α叫做坡角.显然,tanα=.
知识点 坡度、坡角
例题示范
第1题图
第2题图
B
C
3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A. 米 B. 米 C.5sinα 米 D. 米4.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. 米 B.12米 C. 米 D.10米
坡度、坡角、坡面的概念,了解坡度与坡面陡峭程度间的关系.
2833解直角三角形应用举例(坡度坡角)PPT课件

2、解直角三角形的问题往往与其他知识联系, 因此,我们要善于要把解直角三角形作为一种 工具,能在解决各种数学问题时合理运用。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
AB的坡度i=1∶3,斜坡CD
的 坡度i=1∶2.5,
则斜坡CD的 坡面角α, A 坝底宽AD和斜坡AB
6
i1:3B
C
i=1:2.5
23
D
的长应设计为多少?
A
解:(1)分别过点B、C作BE⊥AD,CF⊥AD,
6i1:3BC来自i=1:2.5α
23
EF D
垂足分别为点E、 F,由题意可知
在Rt△ABE中,由勾股定理可得
A
E
F
B
练习2:修建一条铁路要经过一座高山,
需在山腰B处开凿一条隧道BC。经测量,
西山坡的坡度i=5:3,由山顶A观测到点
C的俯角为60°,AC的长为60m,如图所
示,试求隧道BC的长.
A
i = 5:3
B
C
练习5:在山脚C处测得山顶A的仰角为45°.
问题如下:(1)沿着水平地面向前300m到
达D点,在D点测得山顶A的仰角为60 °,
求山高AB.(2)沿着坡角为30 °的斜坡前
进300m到达D点,在D点测得山顶A的仰角
为60 ° ,求山高AB.
A
A
3x
45° 60°
C
DxB
C
300m
D B
• 练习4.(2008 山东 聊城)如图,在平地上种 植树时,要求株距(相邻两树间的水平距 离)为4m.如果在坡度为0.5的山坡上种 植树,也要求株距为4m,那么相邻两树间 的坡面距离约为( )
23.2解直角三角形的应用(坡度)QQQ

如图,在Rt△ABC中:∠C=90° (1)∠A=30°,AB=4,解这个直角三角形;
2 (2)tanA= , 求∠A的大小。 2
B
A
C
回顾 坡度的定义:
坡面的垂直高度h与水平宽度l之比 叫做坡度(或叫做坡比),记作i
B
h i l
h
A
α l
E
注意:坡度(Slope)是地表单元陡缓的程度, 坡度是一个比值,它并不是表示一个度数。
A D
B
60°
(第4题)
A
(第3题)
C
D
当堂练习
5、如图,拦水坝的横断面为梯形ABCD,坡面AB 的坡度i=1︰1.5,坡面CD的坡度i=1︰3,试根据图 中数据求: (1)坡角α和β; (2)斜坡AB的长(精确B
α
6m
F
E
i=1︰3 β
C
当堂练习
6、如图是一座人行天桥的示意图,天桥的高是 10m,坡角是45°。为了方便行人,决定降低坡 度,使新的坡角为30°。若新坡脚需留3m的人 行道,问离原坡底A处11m的建筑物是否要拆除?
h
图(2)
范例
例题:如图,在山坡上种树,要求株距(相邻 两树之间的水平距离)是5.5m,测得斜坡的倾 斜角度是24°,求斜坡上相邻两树的坡面距 离(精确到0.1m)。
cos24 0.9135
B
24°
C
5.5m
A
当堂练习
1、一段坡面的坡角为60°,则坡度 i= 。 2、小明沿着坡度i = 的山坡向上 走了50m,这时他离地面25m。
探究
如图是某一大坝的横断面: (2)坡度i与坡角α之间有什么 关系?
B
α
解直角三角形应用举例3(坡度)

2:在山脚C处测得山顶A的仰角为45°.问题如下: 沿着坡角为30 °的斜坡前进300m到达D点,在 D点测得山顶A的仰角为60 ° ,求山高AB.
A
60°
30°
C
EB
2.如图已知堤坝的横断面为梯形,AD坡面的水平宽度为
3√3米,DC=4米,∠B=600,求
(1)斜坡AD 的铅直高度是 (2)斜坡AD 的长是
(3)坡角A的度数是
(4)堤坝底AB的长是
(5)斜坡BC的长是
D
C
A
B
3. 如图,水库大坝的截面是梯
形ABCD,坝顶AD=6m,坡长CD=8m.
坡底BC=30m,∠ADC=1350.
呈等腰梯形状.已知燕尾槽的外口宽
AD是60mm,里口宽CB是140mm,深度
是40mm,求燕尾角∠C的度数.
A
D
B
C
A
D
B
E
F
C
例2.如图,铁路的路基横断面是等腰梯形,斜坡
AB的坡度为
坡面AB的水平宽度
基面AD宽2m,
求路基高AE、坡角B和基底BC的宽.
巩固练习一
• 1.如图,一座堤坝的横截面是梯形,根据图中 给出的数据,求坝高和坝底宽(精确到0.1米).
坡度、坡角的概念
h
h a
i= =tan h
a li = h l
a 为坡角 ( a 为坡角
= tan a
)
课前练习
1. 某人沿着坡角为45 °的斜坡走 了310 2 m, 则此人的垂直高度增 加了______m .
2. 沿斜坡AB向上前进18米,高 度升高9米,,ABCD
(1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这
人教版九年级下册数学 28.2.2《解直角三角形应用举例》第2课时(方向角坡度问题)课件(共27张PPT)

∵在Rt△ADF中,∠DAF=30°
设DF= x , AD=2x
则根据勾股定理,得
AF AD2 DF 2 2x2 x2 3x
在Rt△ABF中,
∵
tan ABF AF BF
∴ tan 30
3x
12 x
3 3
解得x=6
∴ AF 6x 6 3 10.4
60° B
A
DF 30°
∵10.4 海里> 8海里 ∴没有触礁危险
(2)在Rt△AFB中,∠AFB=90°,AF=6 i 1:1.5 AF 1
BF 1.5 BF 1.5AF 1.5 6 9m
AB AF 2 BF 2
62 92 107 10.8m
i=1:1.5 α
B
AD 6m
FE
i=1:3 β C
tan i 1 3
33
300
i=1:3 β C
(1)求坡角α和β;
解:(1)在Rt△AFB中,∠AFB=90°
∵ tan AF i 1:1.5
BF
∴ 33.7o
在Rt△CDE中,∠CED=90°
∵
tan DE i 1: 3
CE
∴ 18.4o
i=1:1.5 Bα
AD 6m
FE
i=1:3 β C
(2)斜坡AB 的长(精确到0.1m)
归纳总结
解决坡度问题时,可适当添加辅助线,将梯形 分割为直角三角形和矩形来解决问题.
练习
2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水 平宽度CE的比),根据图中数据求:
(1)坡角a和β;
(2)斜坡AB 的长(精确到0.1m)
i=1:1.5 Bα
解直角三角形的应用——坡度问题.2_解直角三角形(坡度问题)

h i tan l
的关系
h i l h 水库 α
显然,坡度越大,坡角
就越大,坡面就越陡.
l
h α
L
45 度。 1、斜坡的坡比是1:1 ,则坡角α=______
1: 3 。 2、斜坡的坡角是300 ,则坡比是 _______
1: 3 。 3、斜坡长是12米,坡高6米,则坡比是_______
C
i 1: 3
α D
A
E
F
BC EF 4, AE DF 6 3 AD AE EF DF 6 3 4 6 3 12 3 4
• (2) tan i 1 : 3
30
答:路基下底宽AD为 12 3 4 米,坡角 为 30 。
结束寄语
业精于勤而荒于嬉
B
C
(
24°
5.5 A
化整为零,积零为整,化曲为直,以直代曲的解决问题的策略 解直角三角形有广泛的应用,解决问题时,要根据实际情 况灵活运用相关知识,例如,当我们要测量如图所示大坝的 高度h时,只要测出仰角a和大坝的坡面长度l,就能算出 h=lsina,但是,当我们要测量如图所示的山高h时,问题就 不那么简单了,这是由于不能很方便地得到仰角a和山坡长 度l
中考语录
•中考是一场跳高比赛,取 胜关键在于你起跳时对大 地用力多少!
28.2解直角三角形的应用
——坡度问题
1.坡度与坡角
(1)坡面的铅直高度h 和水平宽度 l的比叫做坡度
h 坡度一般用i来表示,即 i ,一般写成 l
i=1:m,如i=1:5 (或坡比)
(2)坡面与水平面的夹角 叫坡角 2.坡度与坡角
23.2.4+坡角、坡度问题课件+2024-2025学年沪科版数学九年级上册

∵3.6>3,∴该文化墙 PM 不需要拆除.
1
2
3
4
5
6
7
8
9
10
11
3星题
提升练
11. [模型观念]数学兴趣小组的同学想要测量一楼房 AB 的高度.
如图,楼房 AB 后有一假山,假山坡脚 C 与楼房的水平距离
为15 m,其斜坡 CD 的坡度为1∶2,斜坡坡面上点 E 处有一
(2)有关部门规定,文化墙距天桥底部小于3 m时应拆除,天桥改造
后,该文化墙 PM 是否需要拆除?请说明理由.(结果精确到0.1m,
参考数据: ≈1.414, ≈1.732)
1
2
3
4
5
6
7
8
9
10
11
解:该文化墙 PM 不需要拆除.
理由:如图,过点 C 作 CD ⊥ AB 于点 D ,
则 CD =6 m.
在Rt△ AEF 中, sin
∠ AEF = ,
则 AF = AE ·sin ∠ AEF =160×
1
2
3
4
5
6
7
8
≈113.12(m).
9
10
11
在Rt△ EBG 中, sin B =
,
则 EG = BE ·sin B ≈280×0.6=168(m),
∴ FD = EG =168 m.
解:∵新坡面 AC 的坡角为α,其坡度为1∶ ,
∴tan α=
1
= ,∴α=30°.
2
282解直角三角形(坡度问题)PPT课件

h α
L
1、斜坡的坡比是1:1 ,则坡角α=______度。
2、斜坡的坡角是600 ,则坡比是 _______。
3、斜坡长是12米,坡高6米,则坡比是_______。
4、传送带和地面所成的斜坡的坡比为1:2,把物体 从地面送到离地面9米高的地方,则物体通过的路 程为 _______米。
5、斜坡的坡度是1:3,斜坡长=100 米,则斜坡高为_______米。
练习
3.如图,在山坡上种树,要求株距(相邻两树间的 水平距离)是5.5米,测得斜坡的倾斜角是24度,求 斜坡上相邻两树间的坡面距离是多少米?(精 确到0.1米)
B
24°
C
(
5.5
A
利用解直角三角形的知识解决实际问题的一般过 程是:
(1)将实际问题抽象为数学问题(画出平 面图形,转化为解直角三角形的问题);
。
3、一辆汽车沿着坡度为i =1:3的斜坡前进了100m,
则它上升的最大高度为
m。(精确到0.1m)
练习
2.我军某部在一次野外训练中,有一辆坦克准备通 过一座小山,已知山脚和山顶的水平距离为1000 米,山高为565米,如果这辆坦克能够爬300 的斜坡, 试问:它能不能通过这座小山?
A
1000米
B 565米 C
基础练习
1.如图 (1)若h=2cm,l=5cm,则i=
(2)若i=1:1.5,h=2m,则l=
2.水库的横断面是梯形ABCD,迎水坡AB的坡 度i= 1:2坝高h=20m,迎水坡的水平宽度= tanα=
BC B
h
α
C
l
AA
E
D
例1.铁路路基横断面是一个等腰梯形ABCD,若腰 的坡度是i=1: 3 ,顶宽是4m,路基高是6m,求(1)