合情推理与演绎推理实务知识
6、5第五节 合情推理与演绎推理
![6、5第五节 合情推理与演绎推理](https://img.taocdn.com/s3/m/15f87d54312b3169a451a43f.png)
理的错误是( ..
A.大前提错导致结论错
)
B.小前提错导致结论错
C.推理形式错导致结论错 D.大前提和小前提错都导致结论错 解析:y=ax是增函数这个大前提是错误的,从而导致结 论错. 答案:A
【易错警示】 类比时类比不当而致误
【典例】 (2013 年青岛模拟)在平面上,设 ha,hb,hc 是三角形 ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为 Pa Pb Pc Pa,Pb,Pc,我们可以得到结论:h + h + h =1.把它类比到空间,写出
对于等比数列,通过类比,有等比数列{bn}的前 n 项积为
Tn,则 T4=a1a2a3a4,T8=a1a2„a8,T12=a1a2„a12,T16=a1a2„a16,所 T8 T12 T16 T8 T12 T16 以T =a5a6a7a8,T =a9a10a11·12,T =a13a14a15a16,所以 T4,T , a 4 8 12 4 T8,T12 T8 T12 T16 的公比为 q16,因此 T4,T , T ,T 成等比数列.
2.(2013年长春模拟)类比“两角和不差的正弦公式”的 形式,对亍给定的两个函数:S(x)=a x -a-x ,C(x)=a x +a-x,其中a>0,且a≠1,下面正确的运算公式是( ) ①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)- C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)= S(x)C(y)-C(x)S(y). A.①② C.①④ B.③④ D.②③
【答案】 Pa Pb Pc Pd ha + hb + hc + hd =1
【防范指南】 类比推理是一种由此及彼的合情推理, 一般的解答思路是进行对应的类比,类比推理得到的结 论不一定正确,故这类题目在得到类比的结论后,还要 用类比方法对类比结论的正确性作出证明.
合情推理与演绎推理
![合情推理与演绎推理](https://img.taocdn.com/s3/m/73221a4f591b6bd97f192279168884868662b85e.png)
程中,合情推 理具有猜测和 发现结论,探 索和提供思路 的作用.合情
也具有这些特征的推理称为类比推理(简称类 推理的结论可
比).简言之,类比推理是由特殊 到 特殊 的推理. 类比推理的基本模式:A:具有属性 a,b,c,d;
B:具有属性 a′,b′,c′; 结论:B 具有属性 d′.
能为真,也可 能为假,结论 的正确性有待 于进一步的证 明.
思维启迪
解析
探究提高
(1)分别求 f(2)+f12,f(3)+f13, f(4)+f14的值;
所求函数值的和应该具有规律 性,经观察可发现 f(x)+f1x=1.
(2)归纳猜想一般性结论,并给出
证明;
(3)求值:
f(1)+f(2)+f(3)+…+f(2 011)+
f12+f13+…+f2
1 011.
1 011.
思维启迪
解析
探究提高
本题实质是根据前几项,归纳 猜想一般规律,归纳推理是由 部分到整体、由特殊到一般的 推理,由归纳推理所得的结论 不一定正确,通常归纳的个体 数目越多,越具有代表性,那 么推广的一般性命题也会越 可靠,它是一种发现一般性规 律的重要方法.
题型分类·深度剖析
变式训练 1 已知经过计算和验证有下列正确的不等式: 3+ 17 <2 10, 7.5+ 12.5<2 10, 8+ 2+ 12- 2<2 10,根据以 上不等式的规律,请写出一个对正实数 m,n 都成立的条件不等 式___若___m_>_0_,__n_>_0_,__则__当___m_+__n_=__2_0__时__,_有 ____m_+____n_<_2__1_0______.
题型二
类比推理
合情推理与演绎推理
![合情推理与演绎推理](https://img.taocdn.com/s3/m/309f2dacd1f34693daef3e72.png)
合情推理与演绎推理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。
其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);③检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。
高中数学选修2-2-合情推理与演绎推理
![高中数学选修2-2-合情推理与演绎推理](https://img.taocdn.com/s3/m/4874904202d8ce2f0066f5335a8102d277a2616f.png)
合情推理与演绎推理知识集结知识元合情推理知识讲解1.合情推理的含义与作用【知识点的认识】1.定义:(1)推理:根据一个或几个已知的判断来确定一个新的判断的思维过程就叫做推理.(2)合情推理:前提为真时结论可能为真的推理叫做合情推理.2.合情推理包括:(1)归纳推理(2)类比推理.3.合情推理和演绎推理的区别:推理推理形式推理结论合情推理归纳推理部分→整体,个别→一般结论不一定正确,有待进一步证明类比推理特殊→特殊演绎推理一般→特殊在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.【命题方向】一般以选择题、填空题的形式出现,主要考查基础概念问题,注意与演绎推理的区分,以及掌握归纳和类比推理的特点及运用.例1:下列说法中正确的是()A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理过程D.类比推理是从特殊到特殊的推理过程分析:合情推理的结论不一定正确可判定选项A,合情推理包含归纳推理与类比推理可判定选项B,归纳推理是从特殊到一般的推理过程可判定选项C,类比推理是从特殊到特殊的推理过程可判定选项D.解答:合情推理的结论不一定正确,有待证明,而演绎推理的结论是一定正确的,故选项A不正确;合情推理包含归纳推理与类比推理,故选项B不正确;所谓归纳推理,就是从个别性知识推出一般性结论的推理,是从特殊到一般的推理过程,故选项C不正确;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,是从特殊到特殊的推理过程.故选项D正确.故选D.点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.例2:下面几种推理是合情推理的是()(1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;(3)某次考试张军成绩是100分,由此推出全班同学成绩都是100分;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n﹣2)•180°.A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)(4)分析:本题考查的是合情推理、演绎推理的定义,判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程,类比推理的是看是否符合类比推理的定义.解答:(1)为类比推理,在推理过程由圆的性质类比出球的有关性质.(2)为归纳推理,关键是看他直角三角形、等腰三角形、等边三角形内角和是180°推出所有三角形的内角和都是180°,符合归纳推理的定义,即是由特殊到一般的推理过程.(3)不是合情推理,是由个别到全体的推理过程.(4)为归纳推理故选C.点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.例题精讲合情推理例1.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是___。
合情推理与演绎推理
![合情推理与演绎推理](https://img.taocdn.com/s3/m/e24278736f1aff00bed51efd.png)
合情推理与演绎推理一、 知识讲解推理:由一个或几个事实(或假设)得出一个判断的思维方式前提为真,结论可能为真的推理称为合情推理.⎧⎧⎪⎨⎨⎩⎪⎩归纳推理合情推理推理类比推理演绎推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全 部对象都具有这些特征,或者由个别事实概括出一般性的结论,这样的推理 称为归纳推理(简称归纳).特征:从特殊现象到一般现象归纳推理的一般步骤:已知条件 观察归纳 大胆猜想 检验猜想(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已 知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 归纳推理和类比推理的过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 提出猜想 检验猜想(3)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论, 这种推理称为演绎推理.说明:1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论可表示为:大前提:M 是P小前提:S 是M结 论:S 是P二、典型例题例 根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图形中 有 个点.例 根据给出的数塔猜测123456×9+7等于1×9+2=1112×9+3=111123×9+4=11111234×9+5=11111……例 证明函数f (x )=-x 2+2x 在(-∞,1]上是增函数.三:小结思考 设(),(),22x x x xa a a a f x g x --+-== 其中 0,1a a >≠且 (1)5=2+3,请你推测(5)f 能否用(2),2(3),(3)f g f g (),来表示 ;(2)如果(1)中获得一个结论,请你推测能否将其推广.。
高中数学知识点精讲精析 合情推理与演绎推理
![高中数学知识点精讲精析 合情推理与演绎推理](https://img.taocdn.com/s3/m/364b51cef8c75fbfc77db272.png)
2.1 合情推理与演绎推理1、合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
它具有猜测和发现结论、探索和提供思路的作用。
归纳推理是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理。
2、演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程。
它是一般到特殊的推理。
3、三段论:①大前提:已知的一般原理(M 是P);②小前提:所研究的特殊情况(S 是M);③结论:根据一般原理,对特殊情况作出判断(S 是P)。
只要前提与推理形式正确,结论必定正确。
1.迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。
小王 发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数。
小王欣喜万分,但小王按得出的通项公式,再往后写几个数发现它们不是质数。
他写出不是质数的一个数是 ( )A .1643B .1679C .1681D .1697答案:C 。
解析:观察可知:),1(2,,6,4,21342312-=-=-=-=--n a a a a a a a a n n累加可得: 2)1(2)222)(1()1(2421n n n n n a a n -=-+-=-+++=- , ∴,41222+-=n n a n 验证可知1681符合此式,且41×41=1681。
2.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z |2=z 2;③方程),,(02R c b a c bx ax ∈=++有两个不同实数根的条件是042>-ac b 可以类比得到:方程),,(02C c b a c bz az ∈=++有两个不同复数根的条件是042>-ac b ; ④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比错误的是 ( )A.①③B. ②④C. ①④D. ②③答案:D 。
(完整版)(整理)合情推理和演绎推理》.
![(完整版)(整理)合情推理和演绎推理》.](https://img.taocdn.com/s3/m/3e4369c06037ee06eff9aef8941ea76e58fa4a03.png)
第十七章推理与证明★知识网络★概括合情推理推类比理演绎推理推理数学概括法与证明直接证明综合法证明分析法间接证明反证法第 1 讲合情推理和演绎推理★知识梳理★1.推理依据一个或几个事实( 或假设 ) 得出一个判断, 这类思想方式叫推理.从构造上说 , 推理一般由两部分构成 , 一部分是已知的事实 ( 或假设 ) 叫做前提 , 一部分是由已知推出的判断 , 叫结论 .2、合情推理 :依据已有的事实 , 经过观察、分析、比较、联想,再进行概括、类比,而后提出的推理叫合情推理。
合情推理可分为概括推理和类比推理两类:(1)概括推理:由某类事物的部分对象拥有某些特色,推出该类事物的所有对象拥有这些特色的推理,也许由个别事实概括出一般结论的推理。
简言之,概括推理是由部分到整体、由个别到一般的推理(2)类比推理:由两类对象拥有某些近似特色和此中一类对象拥有的某些已知特色,推出另一类对象也拥有这些特色的推理,简言之,类比推理是由特别到特别的推理。
3.演绎推理 :从一般性的原理出发,推出某个特别状况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特别的推理。
三段论是演绎推理的一般模式,它包含:( 1)大前提 --- 已知的一般原理;( 2)小前提 --- 所研究的特别状况;( 3)结论——依据一般原理,对特别状况作出的判断。
★重难点打破★要点 :会用合情推理提出猜想 ,会用演绎推理进行推理论证 ,明确合情推理与演绎推理的差别与联系难点 :发现两类对象的近似特色、在部分对象中找寻共同特色或规律重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 1、概括推理要点是要在部分对象中找寻共同特色或某种规律性问题 1:观察: 7 15 2 11; 16.5 2 11; 3 3 19 3 2 11; .关于任意正实数 a,b ,试写出使a b 2 11 成立的一个条件可以是____.点拨:前方所列式子的共同特色特色是被开方数之和为 22,故 ab 222、类比推理要点是要找寻两类对象的近似特色问题 2:已知抛物线有性质:过抛物线的焦点作向来线与抛物线交于 A 、 B 两点, 则当 AB 与抛物线的对称轴垂直时, AB 的长度最短; 试将上述命题类比到其余曲线,写出相应的一个真命题为.点拨:圆锥曲线有很多近似性质, “通径”最短是此中之一,答案可以填:过椭圆的焦点作一2 直线与椭圆交于A 、B 两点, 则当 AB 与椭圆的长轴垂直时, AB 的长度最短 ( | AB |2b)a 23、运用演绎推理的推理形式(三段论 )进行推理问题 3:定义 [x] 为不超出 x 的最大整数,则 [-2.1]=点拨:“大前提”是在 (, x] 找最大整数,因此 [-2.1]=-3★热门考点题型探析★考点 1 合情推理题型 1用概括推剪发现规律[例 1 ] 经过观察以下等式,猜想出一个一般性的结论,并证明结论的真假。
合情推理与演绎推理
![合情推理与演绎推理](https://img.taocdn.com/s3/m/1ed4c8940408763231126edb6f1aff00bed570ec.png)
10. (2010·衡水模拟)设函数f(x)= ,利用课本中推导等差数列前n项和公式的方法,求f(-5)+…+f(0)+…+f(5)+f(6)的值.
解析: 由题意知: f(x)+f(1-x)= ∴f(-5)+…+f(0)+…+f(6)=[f(-5)+f(6)]+[f(-4)+f(5)]+[f(-3)+f(4)]+[f(-2)+f(3)]+[f(-1)+f(2)]+[f(0)+f(1)]= .
举一反三
解析: ,…,猜想: .
题型二 类比推理 【例2】类比实数的加法和向量的加法,列出它们相似的运算性质. 分析 实数的加法所具有的性质,如结合律、交换律等,都可以和向量加以比较.
从运算律的角度考虑,它们都满足交换律和结合律,
解析:(1)在空间中与定点距离等于定长的点的集合是球; (2)空间中不共面的4个点确定一个球; (3)球的表面积与体积可求; (4)在空间直角坐标系中,以点(x0,y0,z0)为球心,r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2=r2.
(1)平面内与定点距离等于定长的点的集合是圆; (2)平面内不共线的3个点确定一个圆; (3)圆的周长和面积可求; (4)在平面直角坐标系中,以点(x0,y0)为圆心,r为半径的圆的方程为(x-x0)2+(y-y0)2=r2.
解析: (1)f(5)=1+3+5+7+9+7+5+3+1=41, f(6)=1+3+5+7+9+11+9+7+5+3+1=61. (2)因为f(2)-f(1)=3+1=4,f(3)-f(2)=5+3=8, f(4)-f(3)=7+5=12,…,归纳得f(n)-f(n-1)=4(n-1),则f(n+1)-f(n)=4n. f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1) =4[(n-1)+(n-2)+…+2+1]+1 =
第45讲 合情推理与演绎推理
![第45讲 合情推理与演绎推理](https://img.taocdn.com/s3/m/33e98e09bc64783e0912a21614791711cc79793a.png)
第45讲合情推理与演绎推理第45讲合情推理与演绎推理1.了解合情推理的含义,能进行简单的归纳推理与类比推理.2.介绍演绎推理的重要性,掌控演绎推理的“三段论”,能够运用“三段论”展开直观的演绎推理.3.了解合情推理与演绎推理之间的联系与差异.科学知识剖析1.合情推理小说(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事物概括出一般结论的推理.归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具备某些相似特征和其中一类对象的某些未知特征,面世另一类对象也具备这些特征的推理小说.类比推理就是由特定至特定的推理小说.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察,分析,比较,联想,再进行归纳,类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,演绎推理是由一般到特殊的推理.(2)三段论就是演绎推理的通常模式,包含:①大前提――未知的通常原理;②小前提――所研究的特定情况;③结论――根据一般原理,对特殊情况做出的判断.热身练习1.(2021陕西卷)观测以下等式:111-=,22111111-+-=+,23434111111111-+-+-=++,23456456……11111111据此规律,第n个等式为1-+-+…+-=++…+.2342n2n-12nn+1n+2等式左边是一个和式,先观察其通项:11-,2n-12n11111前n项和为1-+-+…+-;2342n-12n1右边的每个式子的第一项为,n+1111共有n项,故为++…+.n+1n+2n+n11111111所以第n个等式为1-+-+…+-=++…+.2342n2n-12nn+1n+2等式的左边的通项为2.用投影的方法核对下表中的空白:等差数列{an}中a3=a2+da3+a4=a2+a5a1+a2+a3+a4+a5=5a3类比得:b1b2b3b4b5=b53.s△pa′b′pa′pb′vp-a′b′c′=,则由图(2)有体积关系:=papbs△pabvp-abc等比数列{bn}中b3=b2qb3b4=b2b5b1b2b3b4b5=b533.如图(1)有面积关系:pa′pb′pc′.papbpc平面上的面积可以投影至空间上的体积.1s△pa′b′h′vp-a′b′c′3pa′pb′pc′==.1papbpcvp-abcsh3△pab4.(2021襄城区校级模拟)“所有9的倍数都是3的倍数,5不是9的倍数,故5不是3的倍数.”上述推理是(b)a.不是三段论推理小说,且结论不恰当b.不是三段论推理小说,但结论恰当c.就是三段论推理小说,但小前提错误d.就是三段论推理小说,但大前提错误5.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(c)a.采用了归纳推理b.采用了类比推理c.使用了“三段论”,但推理形式错误d.使用了“三段论”,但小前提错误由条件言采用了三段论,但推理小说形式就是错误的.归纳推理(2021陕西咸阳演示)观测以下等式:1×2<2,91×2+2×321×2+2×3+3×4<8,251×2+2×3+3×4+4×52……根据以上规律,第n(n∈n*)个不等式是.观测不等式,可以得:422?1+1?1×2<2===,222932?2+1?1×2+2×32221642?3+1?1×2+2×3+3×4<8===,22222552?4+1?1×2+2×3+3×4+4×5 222222由此可得第n个不等式是: n+1?2。
高中数学合情推理与演绎推理
![高中数学合情推理与演绎推理](https://img.taocdn.com/s3/m/6612bca409a1284ac850ad02de80d4d8d05a0179.png)
合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.
固
基
证明如下:
础
sin2α+cos2(30°-α)-sin αcos(30°-α)
高
α考 体 验
· 明 考 情
=
1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
归纳与技巧:合情推理与演绎推理(含解析)
![归纳与技巧:合情推理与演绎推理(含解析)](https://img.taocdn.com/s3/m/ac8eb3e1fab069dc502201fe.png)
归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。
第四节 合情推理与演绎推理
![第四节 合情推理与演绎推理](https://img.taocdn.com/s3/m/0ab16f97f18583d048645909.png)
[一“点”就过] 归纳推理问题的常见类型及解题策略
常见类型
解题策略
与数字有关的等 观察数字特点,找出等式左右两侧的规
式的推理
律及符号可解
与式子有关的推 观察每个式子的特点,找到规律后可解
理
与图形变化有关 合理利用特殊图形归纳推理得出结论,
的推理
并用赋值检验法验证其真伪性
考点二 类比推理(基础之翼练牢固)
二、“基本技能”运用好 1.通过对合情推理与演绎推理的理解的复习,提高学生的抽
象概括能力. 2.通过合情推理与演绎推理的应用的复习,提高学生推理论
证能力、应用意识及创新意识.
1.已知13+23=622,13+23+33=1222,13+23+33+43=
2202,…,若13+23+33+43+…+n3=3 025,则n=(
2.(2020·长郡中学月考)《聊斋志异》中有这样一首诗:“挑水 砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟
起终不悟.”在这里,我们称形如以下形式的等式具有
“穿墙术”:2
2 3
=
223 ,3
3 8
=
338 ,4
4 15
=
4 415
,5
5 24
=
5 524
,…,则按照以上规律,若9
9 n
= 9n9具有“穿墙术”,则n=
具有这些特征的推理
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论, 我们把这种推理称为演绎推理.简言之,演绎推理是由一般到
特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况做出的判断.
合情推理与演绎推理
![合情推理与演绎推理](https://img.taocdn.com/s3/m/bd1b1427bcd126fff7050b9c.png)
1.类比推理是由特殊到特殊的推理,其一般步骤为: 类比推理是由特殊到特殊的推理,其一般步骤为: 类比推理是由特殊到特殊的推理 (1)找出两类事物之间的相似性或一致性; 找出两类事物之间的相似性或一致性; 找出两类事物之间的相似性或一致性 (2)用一类事物的性质去推测另一类事物的性质,得出 用一类事物的性质去推测另一类事物的性质, 用一类事物的性质去推测另一类事物的性质 一个明确的命题(猜想 一个明确的命题 猜想). 猜想
2.归纳推理的一般步骤 归纳推理的一般步骤 (1)通过观察个别情况发现某些相同本质 通过观察个别情况发现某些相同本质. 通过观察个别情况发现某些相同本质 (2)从已知的相同性质中推出一个明确表述的一般性命题 从已知的相同性质中推出一个明确表述的一般性命题. 从已知的相同性质中推出一个明确表述的一般性命题
2.类比推理的关键是找到合适的类比对象 平面几何中的 类比推理的关键是找到合适的类比对象.平面几何中的 类比推理的关键是找到合适的类比对象 一些定理、公式、结论等,可以类比到立体几何中, 一些定理、公式、结论等,可以类比到立体几何中, 得到类似的结论.一般平面中的一些元素与空间中的一 得到类似的结论 一般平面中的一些元素与空间中的一 些元素的类比列表如下: 些元素的类比列表如下:
解析:设前 个圆中共有● 解析:设前2 009个圆中共有●的个数为 ,经观察可得如 个圆中共有 的个数为n, 下关系 ≤2 009, , 经检验n= 经检验 =61. 答案: 答案:61
4.一切奇数都不能被 整除,2100+1是奇数,所以2100+1不 一切奇数都不能被2整除, 是奇数,所以 不 一切奇数都不能被 整除 是奇数 能被2整除,其演绎 三段论 的形式为: 三段论”的形式为 能被 整除,其演绎“三段论 的形式为: 整除 大前提:一切奇数都不能被 整除 大前提:一切奇数都不能被2整除 小前 提: , 解析: 三段论”的形式可知 是奇数为小前提, 解析:由“三段论 的形式可知:2100+1是奇数为小前提, 三段论 的形式可知: 是奇数为小前提 结论: 不能被2整除是结论 结论: 不能被 整除是结论. 2100+1不能被 整除是结论 . 答案: 答案:2100+1是奇数 是奇数 2100+1不能被 整除 不能被2整除 不能被
《合情推理与演绎推理》推理与证明知识回顾
![《合情推理与演绎推理》推理与证明知识回顾](https://img.taocdn.com/s3/m/38aa21afc67da26925c52cc58bd63186bceb922f.png)
《合情推理与演绎推理》推理与证明知识回顾对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力.通过本章的复习,培养推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一、推理部分1.知识结构框图:2.合情推理:____与____统称为合情推理.①归纳推理:______________.②类比推理:______________.定义特点:归纳推理是由特殊到一般、由具体到抽象的推理;而类比推理是由特殊到特殊的推理;两者都能由已知推测、猜想未知,从而推出结论.但是结论的可靠性有待证明.③推理过程:从具体问题出发→______→归纳类比→______.3.演绎推理:_______________.①定义特点:演绎推理是由一般到特殊的推理;②学习要点:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:_______________;ⅱ小前提:_______________;ⅲ结论:_______________.集合简述:ⅰ大前提:x M∈且x具有性质P;ⅱ小前提:且S M⊆;ⅲ结论:y也具有性质P;4.合情推理与演绎推理的关系:①合情推理中的归纳推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;二、证明部分1.知识结构框图2.综合法与分析法①综合法:_______________.②分析法:_______________.学习要点:在解决问题时,经常把综合法与分析法合起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.③反证法:_______________.学习要点:反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与______,______或______等矛盾.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)_______________;(2)(归纳递推)_______________.其证明的方法叫做数学归纳法.学习要点:理解第一步是推理的基础,第二步是推理的依据,两者缺一不可.特别地,在证明第二步1=+时命题成立,一定要用上归纳假设时命题成立;另外n k在证明第二步时首先要有明确的目标式,即确定证题方向;数学归纳法常和合情推理综合应用,特别常以归纳推理为前提.三、考查要求“合情推理”是一种重要的归纳、猜想的推理,它是发现问题和继续推理的基础.逻辑思维能力主要体现为对演绎推理的考查.试卷中考查演绎推理的试题的比例比较大,命题时既考虑使用选择题、填空题的形式进行考查,又考虑如何使用解答题(以证明题的形式)突出进行考查,立体几何是考查演绎推理的最好素材.数学归纳法很少单独考查,由于数列是和自然数有关的,因此,经常和数列一起考查,常与归纳猜想相结合进行综合考查.。
7.3 合情推理与演绎推理
![7.3 合情推理与演绎推理](https://img.taocdn.com/s3/m/e73c820124c52cc58bd63186bceb19e8b8f6ecf8.png)
023=21+22,a2 022=20+22,a2 021=19+22,a2 020=18+22,a2 019=17+22,可
得a2 024+…+a2 019=249,故S2 018=0-249=-249.
个数的表达式:
1
1
三角形数:N(n,3)=2n2+2n,
正方形数:N(n,4)=n2,
3 2 1
五边形数:N(n,5)=2n -2n,
六边形数:N(n,6)=2n2-n,
……
可以推测 N(10,24)=
.
-18考点1
考点2
考点3
(2)如图所示,一系列正方形将点阵分割,从内向外扩展,其模式如
下:
4=22
B.dn= 1 2
A.dn=
C.dn=
cn1 +cn2 +…+cnn
n
D.dn= 1 ·2 ·…·
)
-26考点1
考点2
考点3
(2)在平面几何中,“若△ABC的三边长分别为a,b,c,内切圆半径为r,
1
则三角形的面积为S△ABC= 2 (a+b+c)r”,拓展到空间,类比上述结
论,“若四面体A-BCD的四个面的面积分别为S1,S2,S3,S4,内切球的半
优秀一名良好,所以甲、丁的成绩也是一名优秀一名良好.又因为丁知道
甲的成绩,所以丁也知道自己的成绩,故选D.
D
关闭
解析
答案
10-
知识梳理
双基自测
第五节 合情推理与演绎推理
![第五节 合情推理与演绎推理](https://img.taocdn.com/s3/m/fcf385ccbb4cf7ec4afed0cd.png)
6 解析: 如图设正四面体的棱长为 1, 则易知其高 AM= , 3 此时易知点 O 即为正四面体内切球的球心, 设其半径为 r, 1 3 1 3 6 6 利用等积法有 4× × r= × × ⇒r= , 3 4 3 4 3 12 6 6 6 故 AO=AM-MO= - = , 3 12 4 6 6 故 AO∶OM= ∶ =3. 4 12
解析:∵0=20-1,1=21-1,3=22-1, 7=23-1,15=24-1,31=25-1, ∴猜想an=2n-1-1. 答案:C
2.在数列{an}中,a1=1,an+1= 数列的通项公式.
2an ,n∈N+,猜想这个 2+an
2a1 2 解:在{an}中,a1=1,a2= = , 2+a1 3 2a2 1 2 2a3 2 a3= = = ,a4= = ,„, 2 4 2+a2 2+a3 5 2 所以猜想{an}的通项公式 an= . n+1
答案:C
[归纳领悟]
1.类比推理是由特殊到特殊的推理,其命题有其特点和
求解规律,可以从以下几个方面考虑类比:类比定义、 类比性质、类比方法、类比结构. 2.类比推理的一般步骤: (1)找出两类事物之间的相似性或一致性.
(2)用一类事物的性质去推测另一类事物的性质,得出一
个明确的命题(猜想).
[题组自测] 1.有一段演绎推理是这样的:“若直线平行于平面,则 该直线平行于平面内所有直线;已知直线b∥平面α,
答案:13+23+33+43+53=(1+2+3+4+5)2(或152)
点 击 此 图 片 进 入“课 时 限 时 检 测”
[题组自测]
1.给出下列三个类比结论.
①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn; ②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合情推理与演绎推理实务
知识
The latest revision on November 22, 2020
【经典资料,WORD文档,可编辑修改】
【经典考试资料,答案附后,看后必过,WORD文档,可修改】
13.1合情推理与演绎推理
考情分析
1.从近年来的新课标高考来看,高考对本部分的考查多以选择或填空题的形式出现,主要考查利用归纳推理、类比推理去寻求更为一般的、新的结论,试题的难度以低、中档题为主.
2.演绎推理主要与立体几何、解析几何、函数与导数等知识结合在一起命制综合题.
基础知识
1、归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理。
归纳推理的步骤:(1)通过观察特例发现某些相似性(2)把这种相似性推广为一个明确表达的一般性命题(3)对所得出的一般性命题进行检验,在数学上,检验的标准是能否完成严格的证明:
2、 演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理
称为演绎推理。
演绎推理又称逻辑推理,它是必真推理,是从一般到特殊的推理,只要前提条件正确,推理过程准确无误,结论必然真实,数学中的证明主要是通过演绎推理来进行的。
3、三段论推理:在推理中:若b c ⇒,而a b ⇒,则a c ⇒这种推理规则叫三段论推
理,它包括“ (1) 大前提已知的一般原理(2)小前提
所研究的特殊情况
(3) 结论
根据一般原理,对特殊情况做出判断。