2010年中考数学第一轮复习专题训练四一次方程和方程组

合集下载

中考数学一轮复习课件_一次方程和方程组PPT38页

中考数学一轮复习课件_一次方程和方程组PPT38页

33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
中考数学一轮复习课件_一 次方程和方程组
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

中考数学方程与不等式(组)复习专题训练精选试题及答案

中考数学方程与不等式(组)复习专题训练精选试题及答案

一次方程及方程组专题训练一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。

2、已知 2x -y =1,用含 x 的代数式表示 y =____。

3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。

4、方程 2x +y =5 的所有正整数解为______。

5、若x =1y =2是方程 3ax -2y =2 的解,则 a =____。

6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。

7、试写出一个解为 x =-18、方程组 x +y =32x -3y =-4的解是______。

9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。

10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。

11长为 12cm ,那么小矩形的周长为____cm 。

12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。

二、选择题:(每题 4 分,共 24 分)1、下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、用“加减法”将方程组2x -3y =92x +4y =-1中的 x 消去后得到的方程是( )A 、y =8B 、7y =10C 、-7y =8D 、-7y =104、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )A 、280 元B 、300 元C 、320 元D 、200 元5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )A 、一种B 、两种C 、三种D 、四种 6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为()A、x+y=2400x-90%+y (1-20%)=2400B、x+y=2400(1-90%) x+(1+20%) y=2400C、x+y=2400(1+90%) x+(1+20%) y=2400D、x+y=240090%x+(1+20%) y=2400三、解下列方程(组):(每题 6 分,共 36 分)1、12x-1=13(x-2) 2、x-30.2-x+40.1=5 3、72[53(65x-3)-1]=10x 4、3x+y=25x-y=65、x-3y=52x+5y=-126、x+23+y-12=3x+23+1-y2=1四、解答题:(每题 8 分,共 32 分)1、当 x 为何值时,代数式x+12的值比5-x3的值大 1。

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)

2024年中考数学一轮复习考点精讲专题训练—一次方程(组)→➊考点精析←一、方程和方程的解的概念1.等式的性质(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.2.方程:含有未知数的等式叫做方程.3.方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.二、一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.一元一次方程0(0)ax b a +=≠的求解步骤变形名称具体做法去分母在方程两边都乘以各分母的最小公倍数去括号先去小括号,再去中括号,最后去大括号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边合并同类项把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a ,得到方程的解为bx a=-注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.三、二元一次方程(组)及解的概念1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.解二元一次方程组的基本思想解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.5.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.四、一次方程(组)的应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.→➋真题精讲←考向一一元一次方程的定义只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是0ax b +=(,a b 是常数且0a ≠).1.(2019·内蒙古呼和浩特·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.2x =2x =-21120m mx m x +﹣(﹣)﹣=211m ∴﹣=1m =0m =20x ﹣=20x --=2x =2x =-12112022x --=考向二解一元一次方程解一元一次方程的主要步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1.2.(2020·浙江杭州·中考真题)以下是圆圆解方程1323+--x x =1的解答过程.解:去分母,得3(x +1)﹣2(x ﹣3)=1.去括号,得3x +1﹣2x +3=1.移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.3.(2020·湖北恩施·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是().A .1-B .1C .0D .22211☆=+-=+x x x 21x =☆11x +=0x =4.(2020·广西玉林·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于()A .499B .500C .501D .1002考向三新定义、阅读理解、规律问题5.(2020·西藏中考真题)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于()A .18B .19C .20D .21⋯n6(1)165n n -+=-n1061=⨯+7161=⨯+13261=⨯+19361=⨯+⋯n6(1)165n n -+=-65103n -=18n =nnA6.(2018·湖南常德·中考真题)阅读理解:a ,b ,c ,d 是实数,我们把符号a b cd称为22⨯阶行列式,并且规定:a b a d b c cd=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:x y D x DD y D ⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是()A .21732D ==--B .14x D =-C .27y D =D .方程组的解为23x y =⎧⎨=-⎩2132-11122-21312147x DD-=-217y D D =-7.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.13-2*a4*(3)-2*4*(3)a =-2*(2)2m n m n=+-()22222162a a a *=+-=-()()()243422342*-=+-⨯-=2*4*(3)a =-16242a -=13a =-13-考向四一元一次方程的应用列方程解实际应用题的一般步骤:(1)审:审清题意,分清题中的已知量、未知量;(2)设:恰当设出关键未知数;(3)列:找出适当等量关系,列方程;(4)解:解方程;(5)验:检验所解值是否正确或是否符合实际意义;(6)答:规范作答,注意单位名称.8.(2023·浙江温州·统考中考真题)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g .设蛋白质、脂肪的含量分别为()g x ,()g y ,可列出方程为()A .5302x y +=B .5302x y +=C .3302x y +=D .3302x y +=【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x ,则: 1.530x x y ++=,即5302x y +=,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.9.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm 的导线,将其全部截成10cm 和20cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有()A .5种B .6种C .7种D .8种【答案】C【分析】设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意,得出152xy -=,进而根据,x y 为正整数,即可求解.【详解】解:设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意得,1020150x y +=,即152xy -=,∵,x y 为正整数,∴1,3,5,7,9,11,13x =则7,6,5,4,3,2,1y =,故有7种方案,故选:C.【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.10.(2019·贵州黔东南·中考真题)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.考向五二元一次方程(组)的定义(1)二元一次方程应满足:①含有2个未知数;②含有未知数的项的次数都是1;③是整式方程.(2)由两个二元一次方程组成的方程组叫二元一次方程组.11.(2020.湖北省中考模拟)下列方程中,是二元一次方程组的是A.4237x yx y+=⎧⎨+=⎩B.23225412a bx c-=⎧⎨-=⎩C.245xx y⎧=⎨+=⎩D.75x yxy+=⎧⎨=⎩4237x yx y+=⎧⎨+=⎩23225412a bx c-=⎧⎨-=⎩245xx y⎧=⎨+=⎩2x275x yx y+=⎧⎨-=⎩xy12.(2020·浙江绍兴·中考真题)若关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,则多项式A可以是_____(写出一个即可).11xy=⎧⎨=⎩11xy=⎧⎨=⎩2x yA+=⎧⎨=⎩11xy=⎧⎨=⎩考向六解二元一次方程组二元一次方程组的两种解法:①加减消元法;②代入消元法.13.(广西桂林·中考真题)若|321|0x y--=,则x,y的值为()A.14xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.11xy=⎧⎨=⎩32120x y x y--++-=321020x yx y--⎧⎨+-⎩==32=1=2xyxy-⎧⎨+⎩①②11xy=⎧⎨=⎩14.(2019·四川内江·中考真题)若,,x y z为实数,且2421x y zx y z+-=⎧⎨-+=⎩,则代数式2223x yz-+的最大值是_____.2223x y z-+()()241212x yzxy z⎧+-=⎪⎨-+=⎪⎩1y z=+1y z=+2x z=-()()()222222223231101526x y z z z z z z z-+=--++=--+=-++5z=-2223x y z-+15.(2023·江苏连云港·统考中考真题)解方程组3827x yx y+=⎧⎨-=⎩【答案】31xy=⎧⎨=-⎩【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨-=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =-.∴原方程组的解为3,1.x y =⎧⎨=-⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.16.(2023·湖南常德·统考中考真题)解方程组:213423x y x y -=⎧⎨+=⎩①②【答案】52x y =⎧⎨=⎩【分析】方程组利用加减消元法求解即可.【详解】解:将①2⨯得:242x y -=③+②③得:5x =将5x =代入①得:2y =所以52x y =⎧⎨=⎩是原方程组的解.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.17.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是()A .1B .2C .4D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n ÷变形,即可解答.法二:321x y m x y n +=-⎧⎨-=⎩①②中①-②得到()221m n x y -=++,再根据1x y +=求出23m n -=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=-⎧⎨-=⎩①②,+①②得421x m n =+-,解得214m n x +-=,将214m n x +-=代入②,解得2314m n y --=,1x y =+ ,21231144m n m n +---∴+=,得到23m n -=,2234222228m n m n m n -∴÷=÷===,法二:321x y m x y n +=-⎧⎨-=⎩①②①-②得:2221x y m n +=--,即:()221m n x y -=++,∵1x y +=,∴22113m n -=⨯+=,2234222228m n m n m n -∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.18.(2020·黑龙江穆棱·朝鲜族学校中考真题)若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为()A .3B .3,-3CD21a b =⎧⎨=⎩21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩3522+=⎧⎨-=⎩x y x y 75x =75x =45y =7415223555+=+⨯==x y 319.(山东滨州·中考真题)若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b+--⎧⎨++-=⎩的解是_______.3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩12a b a b +=⎧⎨-=⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩3526x my x ny -=⎧⎨+=⎩()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩42546a b a +=⎧⎨=⎩3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3526x my x ny -=⎧⎨+=⎩12x y =⎧⎨=⎩3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩12a b a b +=⎧⎨-=⎩12a b a b +=⎧⎨-=⎩3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3212ab⎧=⎪⎪⎨⎪=-⎪⎩考向七二元一次方程组的应用由实际问题抽象出二元一次方程组的主要步骤:①弄清题意;②找准题中的两个等量关系;③设出合适的未知数;④根据找到的等量关系列出两个方程并联立成二元一次方程组.20.(2023·湖南·统考中考真题)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x 只鸡,y 只兔.依题意,可列方程组为()A .35,4294x y x y +=⎧⎨+=⎩B .94,4235x y x y +=⎧⎨+=⎩C .35,2494x y x y +=⎧⎨+=⎩D .94,2435x y x y +=⎧⎨+=⎩【答案】C【分析】根据等量关系“鸡的只数+兔的只数35=”和“2⨯鸡的只数4+⨯兔的只数94=”即可列出方程组.【详解】解:设有x 只鸡,y 只兔,由题意可得:352494x y x y +=⎧⎨+=⎩,故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.21.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有()A .5种B .6种C .7种D .8种【答案】B【分析】设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,根据采购三种图书需500元列出方程,再依据x 的数量分两种情况讨论求解即可.【详解】解:设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,其中56,0,0,x y z ≤≤>>且,,x y z 均为整数,根据题意得,302520500x y z ++=,整理得,654100x y z ++=,①当5x =时,6554100y z ⨯++=,∴704,5zy -=∵0,0,y z >>且,y z 均为整数,∴当70410z -=时,2y =,∴15z =;当70430z -=时,6y =,∴10z =;当70450z -=时,10y =,∴5z =;②当6x =时,6654100y z ⨯++=,∴644,5zy -=∵0,0,y z >>且,y z 均为整数,∴当64420z -=时,4y =,∴11z =;当64440z -=时,8y =,∴6z =;当64460z -=时,12y =,∴1z =;综上,此次共有6种采购方案,故选:B .【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.22.(2023·湖南张家界·统考中考真题)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x人,原计划租用45座客车y辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆依题意得4515 60(3)y xy x+=⎧⎨-=⎩解得:60013xy=⎧⎨=⎩,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,142002800⨯=,103003000⨯=,∵28003000<∴租14辆45座客车较合算.【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键.23.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售A B、两种品牌的盐皮蛋,若购买9箱A种盐皮蛋和6箱B种盐皮蛋共需390元;若购买5箱A种盐皮蛋和8箱B 种盐皮蛋共需310元.(1)A 种盐皮蛋、B 种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A B 、两种盐皮蛋共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m -箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,答:A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元.(2)解:设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m -箱,购买A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,()()305230m m m m ⎧--≥⎪∴⎨≤-⎪⎩,解得35202m ≤≤,又m 为正整数,m ∴所有可能的取值为18,19,20,①当18m =,3012m -=时,购买总费用为30182012780⨯+⨯=(元),②当19m =,3011m -=时,购买总费用为30192011790⨯+⨯=(元),③当20m =,3010m -=时,购买总费用为30202010800⨯+⨯=(元),所以购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.。

2010中考数学专题复习——一次方程(组)

2010中考数学专题复习——一次方程(组)

中考数学专题复习——一次方程(组)一、选择题1.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( )A. 10x+20=100B.10x-20=100C. 20-10x=100D.20x+10=100答案:A2.(08浙江温州)方程413x -=的解是( )BA .1x =-B .1x =C .2x =-D .2x =3、(2008浙江义乌)已知A ∠、B ∠互余,A ∠比B ∠大30.设A ∠、B ∠的度数分别为x 、y ,下列方程组中符合题意的是( )CA .180,30x y x y +=⎧⎨=-⎩B . 180,30x y x y +=⎧⎨=+⎩C .90,30x y x y +=⎧⎨=+⎩D .90,30x y x y +=⎧⎨=-⎩ 4.(2008 湖北 荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y),则下列关系式中不正确的是( ) D(A) x+y=12 . (B) x -y=2.(C) xy=35. (D) x 2+y 2=144.5.(2008 湖北 十堰)把方程2133123+-=-+x x x 去分母正确的是( ) AA .)1(318)12(218+-=-+x x xB .)1(3)12(3+-=-+x x xC .)1(18)12(18+-=-+x x xD .)1(33)12(23+-=-+x x x6.(2008湖南郴州)方程2x+1=0的解是( )BA . 12B . 12- C . 2D .-27.(2008山东济南).如果31xa +2y3与-3x3y2b -1是同类项,那么a 、b 的值分别是( )AA.⎩⎨⎧==21b aB.⎩⎨⎧==20b aC.⎩⎨⎧==12b aD.⎩⎨⎧==11b a 8.(2008浙江温州)方程413x -=的解是( )BA .1x =-B .1x =C .2x =-D .2x =9.(08厦门市)已知方程||x 2=,那么方程的解是( )A .2x =B .2x =-C .1222x x ==-,D .4x =10.(2008山东东营)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 ( )CA .26元B .27元C .28元D .29元11.(2008年杭州市)已知11x y =⎧⎨=-⎩是方程23x ay -=的一个解,那么a 的值是( A ) A.1 B.3 C.-3D.-112.(2008佳木斯市)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有(A )A .8种B .9种C .16种D .17种13. (2008湖南株洲)5.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是CA .362100x y x y +=⎧⎨+=⎩ B .3642100x y x y +=⎧⎨+=⎩ C .3624100x y x y +=⎧⎨+=⎩ D .3622100x y x y +=⎧⎨+=⎩ 14.(2008年上海市)如果2x =是方程112x a +=-的根,那么a 的值是( )CA .0B .2C .2-D .6-二、填空题1.(2008年四川省宜宾市)若方程组⎩⎨⎧=-=+.,2a by x b y x 的解是⎩⎨⎧==.0,1y x ,那么=-b a 2.(08浙江温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了 本.3.(08山东省日照市)书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 .4.(2008年山东省临沂市)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x-y 的值为________.5.(2008年浙江省绍兴市)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需 元.6.(2008福建省泉州市).方程组 31x y x y +=⎧⎨-=⎩的解为________________.7.(2008年江苏省南通市)苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元.8.(2008 湖南 怀化)方程组⎩⎨⎧=-=+3,5y x y x 的解是___.9.(2008 重庆)方程062=-x 的解为 .10.(2008 湖北 恩施)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元.11.(2008 河北)图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .12.(2008 河南)某商店一套夏装的进价为220元,按标价的80% 销售可获利72元,则该服装的标价为 元.13.(2008黑龙江黑河)如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.14.(2008年云南省双柏县)下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .15.(08乌兰察布市)对于X Y ,定义一种新运算“*”:*X Y aX bY =+,其中a b ,为常数,等式右边是通常的加法和乘法的运算.已知:3*5154*728==,,那么2*3= .16.(2008佳木斯市)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .17.(2008湖南株洲)利民商店中有3种糖果,单价及重量如下表:品 种水果糖 花生糖 软糖一共花了输入x (2)⨯- 4+ 输若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克_________元.三、简答题1.(2008年四川省宜宾市)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小时清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票的各有多少张吗?请写出演算过程.2.(08山东省日照市)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?3、(2008淅江金华)九(3)班学生参加学校组织的"绿色奥运"知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图. (1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整; (3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.4、(2008山东烟台)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg的衣服放入最大容量为15kg的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02kg,假设洗衣机以最大容量洗涤)5.(2008山东威海)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?6.(2008湖南益阳)5·12汶川大地震引起山体滑坡堵塞河谷后,形成了许多堰塞湖. 据中央电视台报道:唐家山堰塞湖危险性最大. 为了尽快排除险情,决定在堵塞体表面开挖一条泄流槽, 经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?7. (2008年山东省滨州市)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒;生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?8.2008年天津市)解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩, 9(08乌兰察布市)在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,下面是购买门票时,小明与他爸爸的对话(如图所示).(1)小明他们一共去了几个成人?几个学生?(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.10.两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”与甲1.队共同作业,此时甲队已完成了工程量的243倍(1)若滑坡受损公路长1 km,甲队行进的速度是乙队的2多5 km,求甲、乙两队赶路的速度;(2)假设下午4点时两队就完成公路疏通任务,胜利会师.那么若只由乙工程队疏通这段公路时,需要多少时间能完成任务?1108山东省日照市)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?12.08年江苏省连云港市)“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A B,两地,由于两市通住A B,两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.13.(08 湖南益阳)5·12汶川大地震引起山体滑坡堵塞河谷后,形成了许多堰塞湖. 据中央电视台报道:唐家山堰塞湖危险性最大. 为了尽快排除险情,决定在堵塞体表面开挖一条泄流槽, 经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?14.(08湖南长沙) “5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?15.( 08湖北恩施)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?16.08 四川泸州)某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售获加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成你认为哪种方案获利最多,为什么?17 .(008湖南郴州)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?18.(2008山东济南)教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.19.(2008年浙江省嘉兴市)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A (元)和“辅助员工个人奖金”B(元)两种标准发放,其中,都是100的整数倍.800A B≥≥,并且A B注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.20.(2008安徽)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.21.(2008年杭州市)(本小题满分6分课本中介绍了我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头(只)?22.(2008佛山) 解方程组:⎩⎨⎧=+=+.173,7y x y x23. (2008浙江温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了 本.724.(2008江苏淮安)某民营企业为支援四川地震灾区,特生产A 、B 两种型号的帐篷.若A 型帐篷每顶需篷布60平方米,钢管48米;B 型帐篷每顶需篷布125平方米,钢管80米.该企业在生产这批帐篷时恰好(不计损耗)用了篷布9900平方米,钢管6720米.问:该企业生产了A 、B 两种型号的帐篷各多少顶?25. (2008黑龙江黑河)武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间.(2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(2008河谷后,湖危险性最大. 条泄流槽, 经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?27.(2008湖北宜昌市)用煤燃烧发电时,所说的标准煤是指含热量为7000大卡/千克的煤.生产实际中,一般根据含热量相等,把所需标准煤的用煤量按比例折合成含相同热量的实际用煤量来计算.(“大卡/千克”为一种热值单位)光明电厂生产中每发一度电需用标准煤0.36千克,现有煤矸石和大同煤两种可选为生产实际用煤,这两种煤的基本情况见下表:x (分)(1)求生产中用大同煤每发一度电的用煤量(即表中m 的值);(2)根据环保要求,光明电厂在大同煤中掺混煤矸石形成含热量为5000大卡/千克的混合煤来燃烧发电,若使用这种混合煤比全部使用大同煤每发1000度电的生产成本增加了5.04元,求表中a 的值.(生产成本=购煤费用+其他费用)28.(2008年山东省威海市)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A ,B 两种帐篷共600顶.已知A 种帐篷每顶1700元,B 种帐篷每顶1300元,问A ,B 两种帐篷各多少顶?一次方程(组)答案一.选择题1.A2.B3.C4.D5.A6.B7.A8.B9.C 10.C 11.A 12.A 13.C 14.C二.填空题1. 1;2.7;3. 28元;4. 1;5.12;6. 21x y =⎧⎨=⎩;7.4;8. ⎩⎨⎧==14y x ;9. 3x =;10. 12511. .20;12. 340; 13. 145; 14. 0;15. 2; 16.12; 17.13三.解答题1. 解:设面值为2元的有x 张,设面值为2元的有y 张,依题意得2520012071058207x y x y +=-⨯-⨯⎧⎨+=--⎩解得1615x y =⎧⎨=⎩经检验,符合题意 2.解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x …………………………………………2分 ①×2-②得:5x=10000.∴x=2000. (6)分把x=2000代入①得:5y=12000.∴ y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.……8分 3. 解:(1)a=2,b=0.125(2)图略(3)设一等奖x 人,二等奖y 人,依题意得291510335x y x y +=⎧⎨+=⎩解得920x y =⎧⎨=⎩所以他们共获奖金=50×9+30×20=1050元 4.5.解:设A 种帐篷x 顶,B 种帐篷y 顶,根据题意,列方程组⎩⎨⎧=+=+②94000013001700①600 .y x ,y x ……………………………………………4分解,得=400,=200.x y ⎧⎨⎩ ………………………………………………6分∴ A 种帐篷400顶,B 种帐篷200顶. ………………………………………7分6. .解:设原计划每天挖土石方x 万立方米,增调人员和设备后每天挖y 万立方米 ··················· 1分可列出方程组:⎩⎨⎧=-++=4.13)25(212y x x y ········ 5分解之得:⎩⎨⎧==6.33.1y x 答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米 ················ 8分7. 解:设生产奥运会标志x 套,生产奥运会吉祥物y 套,得452000*********x y x +=⎧⎨+=⎩解得20002400x y =⎧⎨=⎩,答略. 8. 解 ∵3582 1.x y x y +=⎧⎨-=⎩,①② 由②得12-=x y ,③ ··············· 2分 将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .∴原方程组的解为11.x y =⎧⎨=⎩, 6分9. 解:(1)设小明他们一共了x 个成人,y 个学生,11140403602x y x y +=⎧⎪∴⎨+=⎪⎩, ················· 4分74x y =⎧∴⎨=⎩, ····················· 6分 答:小明他们一共去了7个成人,4个学生. ····· 7分(2)若按14人购买团体票,则共需144060%336⨯⨯=(元)36033624-=(元).∴购买团体票可省24元. ············· 3分10. (1)甲队行进了2小时,乙队行进了2.5小时.设乙队的速度为x ,则甲队为1.5x + 5.由题意得方程 2.5x +(1.5x + 5)×2 + 1 = 176.整理得 5.5x = 165, 解得 x = 30.∴ 1.5x + 5 = 1.5×30 + 5 = 50.即甲队赶路的速度为50 km ∕h ,乙队赶路的速度为30 km ∕h .(2)设若由乙队单独施工,需x 小时才能完成.则由题意有 6×(21241÷)+ 5.5×x 1= 1. 解得 x = 11.即乙队单独做,需要11小时才能完成任务.11. 解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x …………………………………………2分 ①×2-②得:5x=10000.∴x=2000. (6)分把x=2000代入①得:5y=12000.∴ y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.……8分 12. 解:(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶.由题意,得91.6 1.514x y x y +=⎧⎨+=⎩,.????分 解得54x y =⎧⎨=⎩,.所以1.68x =(千顶),1.56y =(千顶). 答:在赶制帐篷的一周内,总厂、分厂各生产帐篷??千顶、??千顶.????分( )设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B 地的帐篷为(8)m -千顶,(乙市)分厂调配到灾区A B ,两地的帐篷分别为(9)(3)m m --,千顶. 甲、乙两市所需运送帐篷的车辆总数为n 辆. ····· 8分 由题意,得47(8)3(9)5(3)(38)n m m m m m =+-+-+-≤≤.即68(38)n m m =-+≤≤. ··············· 10分 因为10-<,所以n 随m 的增大而减小.所以,当8m =时,n 有最小值60.答:从总厂运送到灾区A 地帐篷8千顶,从分厂运送到灾区A B ,两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆. 12分13. 解:设原计划每天挖土石方x 万立方米,增调人员和设备后每天挖y 万立方米可列出方程组:⎩⎨⎧=-++=4.13)25(212y x x y 解之得:⎩⎨⎧==6.33.1y x 答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米14. 解:(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x 、y 顶,则⎩⎨⎧=+=+178321052y x y x , 解得x=41,y=32.答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,还不能如期完成任务.可以从加班生产、改进技术等方面进一步挖掘生产潜力,或者动员其它厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.15. 解:设老师捐款x 元,学生捐款y 元.则有⎩⎨⎧=+-=4500090002y x x y 解得⎩⎨⎧==2700018000y x 答:该校老师捐款18000元,学生捐款27000元.16.解:方案一获利:4×2000+6×500=11000(元)方案二:设制奶粉x 天,则1×x +(4-x )×3=10,得x=1(天)故1×1×2000+3×3×1200=12800(元)选方案二.17. 解(1)设2007职业中专的在校生为x 万 人 根据题意得:1500×1.2x -1500x =600 ··· 3分解得:2x = ·5分 所以.()2 1.2 2.4⨯=万人()2.415003600⨯=万元 ················7分 答:略.8分 2.(2008山东济南)解方程:2(x -1)+1=0.解:2x -2+1=0……1分2x=1……1分 X=21……3分18.19. (1)设该农机服务队有技术员工x 人、辅助员工y 人,则152x y x y +=⎧⎨=⎩,解得105xy =⎧⎨=⎩.∴该农机服务队有技术员工10人、辅助员工5人.(2)由10520000A B +=,得24000A B +=.800A B ≥≥,1800133316003B A ∴≤≤≤≤,并且A B ,都是100的整数倍,1600800A B =⎧∴⎨=⎩,15001000A B =⎧⎨=⎩,14001200A B =⎧⎨=⎩.∴本次奖金发放的具体方案有3种:方案一:技术员工每人1600元、辅助员工每人800元; 方案二:技术员工每人1500元、辅助员工每人1000元; 方案三:技术员工每人1400元、辅助员工每人1200元.20. [解] 设这个月的石油价格相对上个月的增长率为x .根据题意,得(1)(15)114x +-=+%%.解得:1205x ==%. 答:这个月的石油价格相对上个月的增长率为20%.21. 如果假设鸡有x 只,兔有y 只,请你列出关于x , y 的二元一次方程组;并写出你求解这个方程组的方法.我所用的方法是加减消元法,过程如下:(2)-(1)×2 得:2y=24 解得 y=12将 y=12代入(1)得: x=23所以 2312x y =⎧⎨=⎩答:鸡有23只,兔有12只.22. 解:⎩⎨⎧=+=+)2(.173)1(,7y x y x(2)-(1),得102=x ,即5=x . …………………………………………………………………………3分把5=x 代入(1),得2=y . ………………………………………………………………………………5分∴ 原方程组的解为:⎩⎨⎧==.2,5y x …………………………………………………………………………6分(用代入消元法,同理给分)23. 解:设该企业生产了A 型号的帐篷x 顶, B 型号的帐篷y 顶,由题意得:⎩⎨⎧=+=+67208048990012560y x y x 解得:⎩⎨⎧==6040y x 答:该企业生产了A 型号的帐篷40顶, B 型号的帐篷60顶. 24.25. 解:(1)24分钟(2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩ 答:水流速度是112千米/分. (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ 把(440),∴线段a 所在直线的函数解析式为63y x =- x (分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. 26. 解:设原计划每天挖土石方x 万立方米,增调人员和设备后每天挖y 万立方米 ················· 1分可列出方程组:⎩⎨⎧=-++=4.13)25(212y x x y ········ 5分解之得:⎩⎨⎧==6.33.1y x 答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米 ················ 8分27. 解:(1)由题意得,0.36×7000=6000m ,所以m=0.42.(2)若每发1000度电需用混合煤n 千克,则0.36×7000×1000=5000n ,n=504.设混合煤中含煤矸石x 千克,大同煤y 千克,则⎩⎨⎧⨯=+=+504500060001000540y x y x ,解得⎩⎨⎧==2.4038.100y x 根据题意有100.8÷1000×(150+a )+403.2÷1000×(600+a2)-0.42×1000÷1000×(600+a2)=5.04解得a1=0(不合题意,舍去),a2=6.所以,表中a 的值为6.28. 解:设A 种帐篷x 顶,B 种帐篷y 顶,根据题意,列方程组⎩⎨⎧=+=+②94000013001700①600 .y x ,y x ……………………………………………4分解,得=400,=200.x y ⎧⎨⎩ ………………………………………………6分∴ A 种帐篷400顶,B 种帐篷200顶. … 29.。

中考数学一轮复习《一次方程组 及其应用》知识梳理及典型例题讲解课件

中考数学一轮复习《一次方程组 及其应用》知识梳理及典型例题讲解课件
第二章 方程(组)与不等式(组)
第一节 一次方程(组)及其应用
一 次 方 程 (组)
等 式 的
如如果果aa==bb,,那那么么aa±c=c=②①___b__c_b__±_,_c_ac_=③___bc_____(c≠0)
性 如果a=b,那么b=a
Байду номын сангаас
及 质 如果a=b,b=c,那么a=④__c__
其 应
马,则可列方程为 A.150(12+x)=240x
B.240(12+x)=150x
(A )
C.150(x-12)=240x
D.240(x-12)=150x
2.已知xy==31, 是方程 ax+y=2 的解,则 a 的值为__-__1__.
3x-y=-4, 3.解方程组:x-2y=-3.
解:
3x-y=-4…①, x-2y=-3…②.
5.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消 毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53 元.
(1)这两种消毒液的单价分别是多少元?
(2)学校准备购进这两种消毒液共 90 瓶,且 B 型消毒液的数量不少 于 A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.
等式两边都除以x-m,得x+m=m.④ 等式两边都减m,得x=0.⑤ 所以任意一个实数都等于0. 以上推理过程中,开始出现错误的那一步对应的序号是___④__.
2.方程3x=2x+7的解是 A.x=4 C.x=7
( C) B.x=-4 D.x=-7
3.对于二元一次方程组
y=x-1…①, x+2y=7…②,
由①式,得 y=3x+4,代入②式,得 x
-2(3x+4)=-5x-8=-3,解得 x=-1.将 x=-1 代入②式,得-1-

中考数学一轮复习方程与一次方程组及解法试题

中考数学一轮复习方程与一次方程组及解法试题

中考一轮复习之方程与一次方程〔组〕及解法知识考点:理解等式和方程、一元一次方程〔组〕的概念,掌握等式的根本性质,能正确纯熟地解一元一次方程,会对方程的解进展检验。

明确解方程组的根本思想是化归思想,并能用加减消元法和代入消元法解一次方程组。

精典例题:【例1】解方程:12733)1(2-=-++xx x 分析:根据方程的同解原理,突出根本步骤,去分母时防止漏乘,注意移项时要改变符号。

答案:712=x 【例2】假设关于x 的方程:4)2(35)3(10--=+-x k x x k 与方程321)1(25xx -=+-的解一样,求k 的值。

分析:由“解一样〞的定义,将方程321)1(25xx -=+-的解代入第一个方程,建立一个关于k 的方程,解之即可。

答案:k =4【例3】在代数式m by ax ++中,当x =2,y =3,m =4时,它的值是零;当x =-3,y =-6,m =4时,它的值是4;求a 、b 的值。

分析:由代数式值的定义得关于a 、b 的二元一次方程组,侧重分析如何选择使用加减法或者代入法消元。

答案:⎪⎩⎪⎨⎧=-=3107b a探究与创新:【问题一】要把面值为10元的人民币换成2元或者1元的零钱,现有足够的面值为2元、1元的人民币,那么一共有换法〔 〕A 、5种B 、6种C 、8种D 、10种 略解:首先把实际问题转化成数学问题,设需2元、1元的人民币各为x 、y 张〔x 、y 为非负数〕,那么有:x y y x 210102-=⇒=+,0≤x ≤5且x 为整数⇒x =0、1、2、3、4、5。

答案:B【问题二】如图是某风景区的旅游道路示意图,其中B 、C 、D 为风景点,E 为两条路的穿插点,图中数据为相应两点的路程〔单位:千米〕。

一学生从A 处出发以2千米/小时的速度步行游览,每个景点的逗留时间是均为0.5小时。

〔1〕当他沿着道路A →D →C →E →A 游览回到A 处时,一共用了3小时,求CE 的长; 〔2〕假设此学生打算从A 处出发后,步行速度与在景点的逗留时间是保持不变,且在最短时间是内看完三个景点返回到A 处,请你为他设计一条步行道路,并说明这样设计的理由〔不考虑其它因素〕。

最新中考数学总复习:一次方程及方程组--知识讲解(含答案解析)

最新中考数学总复习:一次方程及方程组--知识讲解(含答案解析)

中考总复习:一次方程及方程组--知识讲解责编:常春芳【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般..步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号(右边)4 合并同类项分别将未知项的系数相加、常数项相加 1、整式的加减; 2、有理数的加法法则 单独的一个未知数的系数为“±1”5系数化为“1” 在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数——分母)*6检根 x=a 方法:把x=a 分别代入原方程的两边,分别计算出结果.① 若 左边=右边,则x=a 是方程的解; ② 若 左边≠右边,则x=a 不是方程的解.注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【高清课程名称:一次方程及方程组 高清ID 号:404191 关联的位置名称(播放点名称):例4】【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.(2015•顺德区校级三模)一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.(2015春•宁波期中)解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【高清课程名称:一次方程及方程组 高清ID 号: 404191 关联的位置名称(播放点名称):例3 】 【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

中考数学复习《一次方程与方程组》练习题含答案

中考数学复习《一次方程与方程组》练习题含答案

中考数学复习 一次方程与方程组一、选择题1.如果a +3=0,那么a 的值是( B ) A .3 B .-3 C.13 D .-13【解析】等式运算的基本性质.2.方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是( D )A.⎩⎪⎨⎪⎧x =2,y =3B.⎩⎪⎨⎪⎧x =4,y =3 C.⎩⎪⎨⎪⎧x =4,y =8 D.⎩⎪⎨⎪⎧x =3,y =6 3.若2(a +3)的值与4互为相反数,则a 的值为( C ) A .-1 B .-72 C .-5 D.12【解析】根据相反数的意义列出方程2(a +3)+4=0,∴a =-5,故选C.4.已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧-3x +y =2,4x +y =5的解,则a +2b 的值为( D ) A .4 B .5 C .6 D .75.若方程6x +3a =22与方程5(x +1)=4x +7的解互为倒数,则a 的值是( A ) A.193 B .-6 C.103 D .5 6.若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n 的值是( D )A .2B .0C .-1D .1 【解析】-2a m b 4与5a n +2b 2m +n能合并成一项,则⎩⎪⎨⎪⎧4=2m +n ,m =n +2,解方程组得:m =2,n=0∴m n =20=1.二、填空题7.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y -12=12y +■,小明知道此方程的解是y =-53,那么这个常数是__-3__.8.若关于x 的方程2x +3=x 3-a 的解是x =-2,则代数式a -1a 2的值是__-263__.【解析】将x =-2代入方程:2×(-2)+3=-23-a 得a =13,则a -1a 2=13-1(13)2=13-9=-263.9.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是__k >2__. 【解析】方程kx -1=2x 的解为正实数,即x =1k -2>0.即k -2>0,k >2.10.若方程组⎩⎪⎨⎪⎧y =a -2x ,2ay +bx =5的解是⎩⎪⎨⎪⎧x =3,y =-2.则a +b =__11__.【解析】将x =3,y =-2代入方程组得⎩⎪⎨⎪⎧-2=a -6,-4a +3b =5,解得⎩⎪⎨⎪⎧a =4,b =7.∴a +b =4+7=11.11.若a ,b ,c ,d 均为有理数,现规定一种新的运算:⎪⎪⎪⎪⎪⎪ab c d )=ad -bc ,例:⎪⎪⎪⎪⎪⎪234 5)=2×5-3×4,已知⎪⎪⎪⎪⎪⎪⎪⎪x +122x -31)=2,则⎪⎪⎪⎪⎪⎪2x 1-x 3 -2)的值为__-6__.12.已知关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1.给出下列结论:①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解;②当a =-2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解;④若x ≤1,则1≤y ≤4.其中正确的是__②③④__.(填序号)【解析】解方程组得x =1+2a ,而-3≤a ≤1,x =5时,a =2,不在a ≤1的条件下,①错误;当a =-2时,x =-3,y =3,②正确;当a =1时,x +y =4-a 恰好成立,③正确;若x ≤1,则x =1+2a ≤1,即a ≤0,∴y =1-a ≥1,而y =1-a ,-3≤a ≤1,∴y ≤1-(-3)=4,即1≤y ≤4,④正确.三、解答题 13.解下列方程: (1)4-3(x -3)=x +10; 解:x =34(2)3-x 4+2x -56=1.解:x =1314.解方程组:⎩⎪⎨⎪⎧2x =3-y ,3x +2y =2.解:⎩⎪⎨⎪⎧2x =3-y …①,3x +2y =2…②.由①得:2x +y =3③, ③×2-②得:x =4, 把x =4代入③得:y =-5,故原方程组的解为⎩⎪⎨⎪⎧x =4,y =-515.数学迷小虎在解方程2x -13=x +a3-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x =-2,请你帮小虎同学求出a 的值,并且正确求出原方程的解.解:按小虎解法得x =a ,所以a =-2;把a =-2代入原方程2x -13=x +a3-1,解得x=-416.一般情况下a 2+b 3=a +b2+3不成立,但有些数可以使得它成立,例如:a =b =0.我们称使得a 2+b 3=a +b 2+3成立的一对数a ,b 为“相伴数对”,记为(a ,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a ,b),其中a ≠0,且a ≠1;(3)若(m ,n)是“相伴数对”,求代数式m -223n -[4m -2(3n -1)]的值.解:(1)因为(1,b )是“相伴数对”, 所以12+b 3=1+b 2+3.解得:b =-94(2)(2,-92) (答案不唯一)(3)由(m ,n )是“相伴数对”可得:m 2+n 3=m +n 2+3,3m +2n 6=m +n5,即9m +4n =0,所以m -223n -[4m -2(3n -1)]=m -223n -(4m -6n +2)=m -223n -4m +6n -2=-43n -3m -2=-4n +9m3-2=-217.已知方程组⎩⎪⎨⎪⎧2x -3y =3,ax +by =-1与⎩⎪⎨⎪⎧3x +2y =11,2ax +3by =3的解相同,求a ,b 的值. 解:依题意得⎩⎨⎧2x -3y =3,3x +2y =11,解得⎩⎨⎧x =3,y =1,代入⎩⎨⎧ax +by =-1,2ax +3by =3,得⎩⎨⎧3a +b =-1,2a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =518.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.3 4 x -2 y a 2y -xcb3 4 -2解:(1)由题意,得⎩⎨⎧3+4+x =x +y +2y -x ,3-2+2y -x =3+4+x ,解得⎩⎪⎨⎪⎧x =-1,y =2(2)如图34-1。

中考总复习一次方程及方程组--巩固练习

中考总复习一次方程及方程组--巩固练习

中考总复习一次方程及方程组--巩固练习一次方程及方程组是中学数学中的重要内容,也是中考考查的重点之一、巩固练习是学好这一部分知识的关键。

下面给出一些中考总复习一次方程及方程组的巩固练习题,供同学们参考。

一、选择题1.以下哪个是方程y=3x-2的解?A.(1,1)B.(2,4)C.(-1,2)D.(-2,8)2.若一次函数y=3x+1,求使y>0的x的取值范围。

A.x>-1/3B.x<-1/3C.x>1/3D.x<1/33.解一元一次方程2x-5=3(x-1),得到x=?A.-1B.2C.4D.54.解一元一次方程3(2x-5)+4=8x-3(2x+1),得到x=?A.2B.3C.4D.55.解一元一次方程9-(5-3x)=3(2+x)-2,得到x=?A.-2/7B.-3/5C.-7/2D.-5/3二、填空题1.解一元一次方程3x-2=4x-1,得到x=____。

2.解一元一次方程3(x-1)-2(x-3)=4-2x,得到x=____。

3.解一元一次方程5-(2x-3)=3-(4-2x),得到x=____。

4.解下列方程组,求得(x,y)的值:3x+5y=154x-3y=6三、解答题1.解方程3(2m+1)+4=5(2m-1)。

2.学校三年级共有学生x人,四年级共有学生y人,已知两个年级总共有300人,且四年级比三年级多9人。

求解这个方程组并判断它的解的情况。

x+y=300y=x+9四、综合题商场为了促销,打算对衣服进行特价处理,每件衣服减价a元。

已知原来一件衣服的价格是70元,打折后一个人花b元就可以买到一件衣服。

小明和小红两人一起买了这件衣服,小明给出了70元,小红还交了c元。

如果我们假设一共有d个人买了这件衣服,解下列方程组求a、b、c、d的值。

70-ad=b(70-ad)+c=(d-1)(b-a)这些习题涵盖了一次方程及方程组的常见题型,通过仔细分析题意、运用解方程的方法,可以解出每道题目。

【数学中考一轮复习】一次方程(组) (含答案)

【数学中考一轮复习】一次方程(组)  (含答案)

第三章 方程(组)与不等式(组)3.1 一次方程(组)考点突破考点一 一元一次方程及其解法 典例1 解方程:131223=+--x x . 思路导引方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.规律总结解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项. 跟踪训练11.一元一次方程2x +1=3的解是x =___________.2.解方程:312122-+=--x x x .3.以下是圆圆解方程13321=--+x x 的解答过程. 解:去分母,得3(x +1)-2(x-3)=1. 去括号,得3x +1-2x +3=1. 移项,合并同类项,得x =-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.考点二 一元一次方程的应用典例2为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?思路导引设甲工程队每天掘进x米,则乙工程队每天掘进x-2米.根据“甲工程队独立工作2天的工作量+甲乙合作1天的工作量=26米”列出方程,然后求工作时间.规律总结本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 跟踪训练21.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元2.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图所示,请你为广告牌填上原价.原价:___________元.3.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?考点三二元一次方程组的解法典例3 解二元一次方程组:⎩⎨⎧=+=+.93822y x y x ,思路导引方程组利用加减消元法或代入消元法求出解即可.规律总结此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 跟踪训练3解方程组⎩⎨⎧7.=y +3x ,1=y -x考点四 二元一次方程组的应用典例4 某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 思路导引设改进加工方法前用了x 天,改进加工方法后用了y 天,根据6天共加工竹笋22吨,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.规律总结本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 跟踪训练41.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳长y 尺,那么可列方程组为( )A.⎩⎨⎧-=+=15.05.4x y x yB.⎩⎨⎧-=+=125.4x y x yC.⎩⎨⎧-=-=15.05.4x y x yD.⎩⎨⎧-=-=125.4x y x y 2.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名. 3.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?中考真题1.(2020·重庆)解一元一次方程x x 311)1(21-=+时,去分母正确的是( )A.3(x +1)=1-2xB.2(x +1)=1-3xC.2(x +1)=6-3xD.3(x +1)=6-2x2.(2020·嘉兴)用加减消元法解二元一次方程组⎩⎨⎧②1=y -2x ①,4=3y +x 时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①-②×3 3.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.21x =(x-5)-5 B.21x =(x +5)+5 C.2x =(x-5)-5 D.2x =(x +5)+54.(2020·鸡西)若⎩⎨⎧1=b 2=a 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,则x +2y 的算术平方根为( )A.3B.3,-3C.3D.3,-35.(2020·齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A.3种B.4种C.5种D.6种6.(2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A. 120 km B. 140 km C. 160 km D.180 km7.(2020·株洲)关于x 的方程3x-8=x 的解为x =___________.8.(2020·北京)方程组⎩⎨⎧7=y +3x ,1=y -x 的解为___________.9.(2020·沈阳)二元一次方程组⎩⎨⎧1=y -2x 5,=y +x 的解是__________.10.(2020·南京)已知x ,y 满足方程组⎩⎨⎧,3=y +2x ,1-=3y +x 则x +y 的值为__________.11.(2020·绍兴)若关于x ,y 的二元一次方程组⎩⎨⎧0=A 2=y +x 的解为⎩⎨⎧,1=y ,1=x 则多项式A 可以是______________(写出一个即可).12.(2020·江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是____________.13.(2020·常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.14.(2020·湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.15.(2020·淄博)解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+.22128213y x y x ,16.(2020·广东)已知关于x ,y 的方程组⎩⎨⎧=+-=+431032y x y ax 与⎩⎨⎧=+=-152by x y x ,的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.17.(2020·山西)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?参考答案考点突破典例1 解:去分母得:3(x—3)—2(2x+1)=6,去括号得:3x-9-4x-2-6,移项得:-x=17,系数化为1得:x=-17.跟踪训练11.12.解:去分母,得:6-3(x-2)=6+2(2x-1),去括号,得:6x-3x+6=6+4x-2,移项,得:63.x-4x-6-6-2,合并同类项,得:-x=-2,系数化为1,得:x-2.3.解:圆圆的解答过程有错误, 正确的解答过程如下:去分母,得3(x +1)-2(x-3)=6. 去括号,得3x +3-2x +6=6. 移项,合并同类项,得x =-3.典例2 解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x-2)米, 由题意,得2x +(x +x-2)=26,解得:x-7. 所以乙工程队每天掘进5米,5726146+-=10(天), 答:甲乙两个工程队还需联合工作10天. 跟踪训练 2 1. D 2. 2003,解:设这些学生共有x 人,根据题意得286=-xx ,解得x =48.答:这些学生共有48人.典例3 解:⎩⎨⎧=+=+,②,①93822y x y x ,法1:②-①×3,得2x =3,解得:23=x ,把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .法2:由②得:2x +3(2.x-y )=9, 把①代入上式,解得:23=x .把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .跟踪训练 3解:⎩⎨⎧,②7=y +3x ,①1=y -x①+②得:4x =8,解得:x =2, 把x =2代入①得:y =1,则该方程组的解为⎩⎨⎧1=y 2=x .典例4 解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得:⎩⎨⎧,22=5y +3x ,6=y +x 解得:⎩⎨⎧ 2.=y ,4=x答:该合作社改进加工方法前用了4天,改进加工方法后用了2天. 跟踪训练4 1.A 2. 233.解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧==,90)y -x )4+6,90)y +6x ((解得:⎩⎨⎧ 3.=y ,12=x答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时. (2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:31290312--=+a a ,解得:a =4225. 答:甲、丙两地相距4225千米.中考真题1.D2.D3.A4.C5. B6. B7.4 8. ⎩⎨⎧==12y x 9.⎩⎨⎧==32y x 10.1 11,答案不唯一,如x-y12. 25 13.4 14. 915.解:⎪⎪⎩⎪⎪⎨⎧=-=+②,①.22128213y x y x①+②,得:5x-10,解得x=2,把x =2代入①,得:6+21y =8,解得y =4, 所以原方程组的解为⎩⎨⎧==42y x .16.解:(1)由题意列方程组;⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .将x =3,y =1分别代入31032-=+y ax 和x +by =15,解得34-=a ,b =12, ∴34-=a ,b =12.(2)012342=+-x x ,解得322484834=-±=x .这个三角形是等腰直角三角形. 理由如下:∵(23)2+(23)2=(26)2, ∴该三角形是等腰直角三角形. 17.解:设该电饭煲的进价为x 元.根据题意,得(1+50%)x ·80%-128=568.解得 =580. 答:该电饭煲的进价为580元.18.解:设每盒羊角春牌绿茶需要 元,每盒九孔牌藕粉需要y 元,依题意,得: ⎩⎨⎧,300=3y +x ,960=4y +6x 解得:⎩⎨⎧60.=y ,120=x答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.。

中考数学一轮复习课件_一次方程和方程组共38页

中考数学一轮复习课件_一次方程和方程组共38页
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
中考数学一轮复习课件_一次方程和 方程组
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。

2010中考数学一轮复习方程方程组测试题.doc

2010中考数学一轮复习方程方程组测试题.doc

方程与方程组测试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、精心选一选(本题满分40分,共有10道小题,每小题4分。

下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.) 1.是方程ax-y=3的解,则a 的取值是 ( )A.5 B.-5 C.2 D.12.分式方程2221---x x =0的根是 ( ) A.-3 B.0 C.2 D.无解3.若方程x 2-4x +c =0有两个不相等的实数根,则c 的值可以是 ( )A.6 B.5 C.4 D.34.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则 ( )A.m=±2 B.m=2C.m=-2 D.m≠±25.两个连续偶数的积是168,则这两个偶数分别是 ( )A.12,14 B.12,14或-12,-14C.16,18 D.16,18或-16,-186.中央电视台2套“开心辞典”栏目中,有一期的题目如右图所示,两个天平都平衡,则三个球 体的质量等于几个正方体的质量 ( )7.已知方程组的解为则2a-3b 的值为 ( )A.6 B.4 C.-4 D.-68.用配方法解关于x 的一元二次方程x 2+px+q=0,此方程可变形为 ( )A. B.C. D.9.已知⊙O 1与⊙O 2半径的长x 、y 满足|2x-6|+(y-4)2=0,且O 1O 2=21,则⊙O 1与⊙O 2的位置关系是 ) A.相交 B.内切 C.内含 D.外切 10.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的,《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们呆以表述为( )A.B. C. D.第Ⅱ卷(非选择题部分,共110分)二.细心的填一填(本题有10个小题, 每小题4分, 共40分)11.一元二次方程x 2+4x=5的负根是 .12.使分式262+--x x x 的值为零的x 的值是 . 13.若关于x 的方程x 2+mx -6=0,有一个根是2,则m 的值为___________.14.已知x 1、x 2是方程2x 2-x -7=0的两根,则的值是_________.15.若方程x +y =3,x -y =1和x -2my =0有公共解,则m 的取值为__________.16.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年需付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是 .17.用换元法解分式方程x 2+x+1=xx +22时,如果设y=x 2+x ,那么原方程可化为关于y 的一元二次方程的一般形式是 .18.写出一个有实数根的一元二次方程.19. 如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是.20.曙光中学计划组织学生观看爱国主义教育影片,包场费1500元,后来实验中学的200名师生一同观看了影片,商定包场费1500元由两校按人数均摊,这样曙光中学人均比原来少支付2元钱,曙光中学有____人观看了影片.三、解答题(共70分)21、(10分)解方程组:2536x yx y+=-=⎧⎨⎩,.22、(10分)解方程23、(14分)已知关于x的一元二次方程x2+4x+m-1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根.(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.24、(10分)据统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?25、(10分)扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.26、(16分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.参考答案1.A ;提示:把x=1,y=2代入ax-y=3,得a=52.D ;提示:去分母得,方程无解3.D ;提示:由求根公式知b 2-4ac >0时有两实根,解之可得c =3符合题意.4.B ;提示:本题的m 满足两个条件:|m|=2且m+2≠0,所以m=2.5.B ;提示:连续偶数也包括负整数情况.6.D ;提示:解答本题的关键是将实际问题转化为数学问题,可设每个球、圆柱、正方体的质量分别为x 、y 、z ,则可列方程组得由①得y =x 52③,把③代入②得x x 5232⨯=,所以3x=5z. 7.A ;提示:把代入方程组,得①+②,得4a=6, ∴ a=23,②-①,得2b=-2. ∴ b=-1. ∴ 2a-3b=2×23-3×(-1)=6. 8.A ;提示:对二次项系数为1的一元二次方程配方时,方程两边都加上一次项系数一半的平方.9.C ;提示:由|2x-6|+(y-4)2=0,得2x-6=0,y-4=0,解得x=3,y=4,又因为4-3>21即两圆半径之差大于两圆 圆心距,所以两圆内含.10.A ;提示:只要正确识别算筹数及对应关系即可选对.二、 11.-5.提示:移项,得x 2+4x-5=0,用公式法得x=2)5(4442-⨯-±-=-2±3,所以x 1=1,x 2=-5,因为本题求负根,所以x=-5.12.3.提示:由题意,得解得x=3,请勿忽视分母不为0的条件. 13. 1.14.429.提示:可先把变形为,然后求解.15.1.提示:先通过x +y =3,x -y =1列方程组可求得x 、y 的值,然后代入x -2my =0可求得m 的值.16. 6.1万元、6.9万元.提示:设甲种贷款为x 万元,则乙种贷款为(13-x )万元,根据题意,得 6%x+3.5%(13-x )=0.6075. 解得x=6.1.所以13-x=13-6.1=6.9.说明:本题也可列二元一次方程组求解,列方程或方程组时注意要统一单位.17. y 2+y-2=018.一元二次方程的概念是等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程.此题还要注意列出的方程要有解,如x 2+1=0就无解.解:x 2-1=0.19.两个一次函数图象的交点表示与之对应的二元一次方程组的解. 解:20.【分析】 由题意我们可得到这样的关系:“两校均摊前的人均花费=两校均摊后的人均花费+2”,这样可列方程求解.解:设曙光中学有x 人观看了影片,根据题意,得200150021500++=x x . 化简得 x 2+200x-15000=0.解得x 1=300,x 2=-500.经检验,x 1,x 2都是分式方程的解,但x 2=-500不合题意,应舍去.所以 x=300答:曙光中学有300人观看了影片.三、21、解:25,3 6.x yx y+=-=⎧⎨⎩①×3,得 6x+3y=15.③②+③,得7x=21,x=3.把x=3代入①,得2×3+y=5,y=-1.∴原方程组的解是31 xy==-⎧⎨⎩,.22、解得x=20.经检验,x=20是原方程的解.23、解:(1)b2-4ac=42-4(m-1)=20-4m.∵原方程有两个不相等的实数根.∴ 20-4m>0,解得m<5.又∵ m为整数∴ m取4.(2)由(1)得,当m=4时,方程变为x2+4x+3=0.解这个方程,得 x1=-3,x2=-1.又∵α、β是此方程的两个实数根,∴不妨设α=-3,β=-1,α2+β2+αβ=(-3)2+(-1)2+(-3)×(-1)=9+1+3=13.24、解:设严重缺水城市有x座,依题意,得4x-50+2x+x=664.解这个方程,得 x=102.答:严重缺水城市有102座.25、解:设这种药品包装盒的宽为xcm,高为ycm,则长为(x+4)cm,根据题意得解这个方程组,得因此长为9cm,宽为5cm,高为2cm,体积V=9×5×2=90(cm3).答:这种药品包装盒的体积为90cm3.26、解:(1)设甲种型号手机要购买x部,乙种型号手机要购买y部,丙种型号手机要购买z部,根据题意,得不合题意,舍去.答:有两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部或甲种型号手机购买20部,丙种型号手机购买20部.(2)由题意,得解得答:若甲种型号手机购买26部,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.。

中考总复习:一次方程及方程组--巩固练习

中考总复习:一次方程及方程组--巩固练习

中考总复习:一次方程及方程组--巩固练习【基础练习】 一、选择题1. 小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 2 2.方程组的解是( ).A.x 1y 1⎧=-⎨=-⎩ B.x 1y 1⎧=⎨=⎩ C.x 2y 2⎧=-⎨=-⎩ D.x 2y 1⎧=-⎨=-⎩3.已知方程组ax by 4ax by 2⎧-=⎨+=⎩的解为x 2y 1⎧=⎨=⎩,则2a-3b 的值为( ).A.4B.-4C.6D.-6 4.方程x+2y=5的正整数解有( )A .一组B .二组C .三组D .四组5.小明买书需用48元,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根题意,下列所列方程正确的是( )A .x +5(12-x )=48B .x +5(x -12)=48C .x +12(x -5)=48D .5x +(12-x )=486.九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( )A.17人B.21人C.25人D.37人 二、填空题7.已知x 、y 满足方程组则x -y 的值为________.8.已知│x-1│+(2y+1)2=0,且2x -ky=4,则k=_____.9.如图所示,在桌面上放着A 、B 两个正方形,共遮住了27cm 2的面积,若这两个正方形重叠部分的面积为3cm 2,且正方形B 除重叠部分外的面积是正方形A 除重叠部分外的面积的2倍,则正方形A 的面积是 .10.已知关于x 、y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是________. 11.已知关于x 的方程a(2x -1)=3x -2无解,则a 的值为 .12.已知下面两个方程3(x +2)=5x …①;4x -3(a -x)=6x -7(a -x) …②;有相同的解,则a 的值为 . 三、解答题13.某校的一间阶梯教室,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010中考数学第一轮复习专题训练(四)
(一次方程及方程组)
一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。

2、已知 2x -y =1,用含 x 的代数式表示 y =____。

3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。

4、方程 2x +y =5 的所有正整数解为______。

5、若
x =1
y =2
是方程 3ax -2y =2 的解,则 a =____。

6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。

7、试写出一个解为 x =-1 的一元一次方程________。

8、方程组
x +y =3
2x -3y =-4 的解是______。

9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。

10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。

11、如图,四个一样大的小矩形拼成一个大矩形,如果大矩形的周长为 12cm ,那么小矩形的周长为____cm 。

12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。

二、选择题:(每题 4 分,共 24 分)
1、下列方程中,属于一元一次方程的是( )
A 、x =y +1
B 、1x
=1 C 、x 2
=x
-1 D 、x =1
2、已知 3-x +2y =0,则 2x -4y -3 的值为( ) A 、-3
B 、3
C 、1
D 、0
3、用“加减法”将方程组
2x -3y =92x +4y =-1 中的 x 消去后得到的方程是( ) A 、y =8
B 、7y =10
C 、-7y =8
D 、-7y =10
4、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )
A 、280 元
B 、300 元
C 、320 元
D 、200 元
5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )
A 、一种
B 、两种
C 、三种
D 、四种
6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为( )
A 、x +y =2400x -90%+y (1-20%)=2400
B 、
x +y =2400
(1-90%) x +(1+20%) y =2400 C 、x +y =2400(1+90%) x +(1+20%) y =2400 D 、
x +y =2400
90%x +(1+20%) y =2400
三、解下列方程(组):(每题 6 分,共 36 分)
1、12x -1=1
3
(x -2) 2、x -30.2-x +40.1=5
1 8
7
4
3
5
2
共计44
共计26
3、72[53 (65
x -3)-1]=10x 4、
3x +y =2
5x -y =6
5、x -3y =5
2x +5y =-12 6、
x +23+y -1
2=3x +23+1-y
2=1
四、解答题:(每题 8 分,共 32 分)
1、当 x 为何值时,代数式x +12的值比5-x
3
的值大 1。

2、在等于 S =V 0t +12
at 2
中,当 t =1 时,S =5,当 t =2 时,S =14,
① 求 V 0、a 的值。

②当 t =3 时,求 S 的值。

3、初一⑶班课外活动小组买了个篮球,若每人付 9 元,则多了 5 元,后来组长收了每人 8 元,自己多付了 2 元,问这个篮球价值多少?
4、根据下图给出的信息,求每件 T 恤衫和每瓶矿泉水的价格。

五、(10分)某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费。

①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)?
②下表是这户居民 3 月、4 月的用电情况和交费情况:
月份 用电量(度) 交电费总数(元)
3月 80 25 4月
45
10
根据上表数据,求电厂规定A 度为多少?
六、(12分)小明参加“开心词典”答题的活动中,在回答第五道题时,被难住了,题目如下:如图所示,天平两端能保持平衡。

请回答在右图中,天平的右边应放几个圆形,才能使天平保持平衡,他打电话向你求助,你
能通过计算,并给他一个正确的答案吗?请说出你的做法。

答案:
(四)
一、1、x =2 2、2x -1 3、x +62=12 4、x =1
y =3 x =2
y =1 5、2 6、12
7、2x +2=0 8、
x =1
y =2
9、3 10 10、9 □里的数是两边的和 11、6 12、35 二、1、D 2、B 3、D 4、B 5、C 6、D
三、1、x =2 2、x =-12 3、7
2
[2x -5-1]=10x 7x -21=10x 3x =-21 x =-7 4、x =1
y =-1 5、x =-1
y =-2 6、x =4y =3 四、1、
x +12-5x 3=1 3x +3-10+2x =6 5x =13 x =13
5
2、①5=V 0+1
2a 14=2V 0+2a
解得:V 0=3
a =4
②S =3t +2t 2=9+18=27
3、设 x 人,蓝球 y 元,则9x -5=y 8x +2=y ,解得x =7
y =58
4、设T 恤 x 元,矿泉水 y 元,则2x +2y =44x +3y =26,解得x =20
y =2
五、①10+1
2
(90-A) ②25=10+12(80-A) 解得:A =50
六、设○为 x ,▲为 y ,□为E ,则3x +2y =E +5y……①
2E =x +4y……② 由①得,3x -3y =E 4x -4y =4E 3
…③
②+③,得:10E
3
=5x 10E =15x 2E =3x ∴右边设三个圆形即可
○ ▲▲ ▲▲
□□
□ ▲▲▲ ▲▲ ▲ ▲ ○○ ○


□□
△。

相关文档
最新文档