纳米材料的基本性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米微粒尺寸小,表面能高,压制成块后的界面具有 高能量,在烧结中高的界面能成为原子运动的驱动力, 有利于界面中的孔洞收缩,因此在较低的温度下烧结 就能达到致密化的目的,即烧结温度降低。
明显的烧结活性,常规氧化铝粉, 2073-2173K,纳 米, 1423-1773K,致密度可达 99.7% ;传统氮化硅 Si3N4,1793K晶化成稳定的相,纳米,1673K
2.磁性能:由于纳米微粒的小尺寸效应、量子尺寸效 应、表面效应等使得它具有常规粗ຫໍສະໝຸດ Baidu材料不具备的 磁特性。主要表现为: 超顺磁性:当纳米微粒尺寸小到一定临界值时进入超 顺磁状态,即矫顽力Hc 0, 如 原因:在小尺寸下,当 各向异性能减小到与热 运动能可相比拟时,磁 化方向就不再固定在一 个易磁化方向,易磁化 方向作无规律的变化, 结果导致超顺磁性的出 现。不同种类的纳米磁 性微粒显现超顺磁的临 界尺寸是不相同的。
库仑阻塞效应造成了电子的单个传输,是单电 子晶体管、共振隧穿二极管和晶体管的基础。
表面效应(界面效应) 当微粒尺寸进入纳米领域时, 微粒比表面积(表面积与其质量的比)急剧增加,使处 于表面的原子数增多,如此多的表面原子一般处于一种 近邻缺位的状态,使得微粒的表面能增大,微粒活性增 强。
纳米粉体表面效应的宏观表现,如金属纳米粒 子在空气中燃烧,无机的纳米粒子暴露在空气 中会吸附气体,并与气体进行反应。 表面或界面效应使纳米材料具有很高的扩散速 率。对于多晶物质,扩散可沿自由表面、晶界 和晶格三种形式进行,其中沿表面的扩散系数 最大。对先进陶瓷、粉末冶金、特种合金等材 料非常重要。
2.2 纳米粉体的物化特性
1.热性能:纳米微粒的熔点、开始烧结温度和晶 化温度均比常规粉体低得多。
熔点下降
2T T LD
T和L为大块颗粒的熔点和熔化热,为表面张力
蒸汽压上升
P 2 M ln P RTD c
烧结温度:指把粉末先用高压压制成型,然后在低于 熔点的温度下使这些粉末互相结合成块,密度接近常 规材料的最低加热温度。

量子尺寸效应 当微粒尺寸进入纳米领域时, 电子运动受到束缚致使微粒的电子的能级结构 发生改变(通常是能级间距增大)而引起物性 的变化。类似的提法还有量子效应、量子限域 效应、量子尺寸限制等。
固体能带理论指出,传导电子在晶体的周期性势场 中运动时不再属于单个原子,而是属于整个晶体, 这种公有化的结果使电子在材料中的能量状态变成 准连续的能带,即相邻能级之间的能量差远小于热 起伏能(kBT),统计力学得到大块材料的比热与温度 呈线性关系 对于有限尺寸的固体颗粒,电子的能量状态将如何 改变呢?
第二章 纳米材料的基本性质

基本效应 物化特性 应用实例


2.1 纳米微粒的基本效应
粉体的粒度 ( 即颗粒尺寸 ) 会对其物理、化学 特性起者关键性的影响。 纳米粒子只包含有限数目的晶胞,不再具有 周期性的条件,其表面振动模式占有较大比 重,表面原子的热运动比内部原子激烈,因 而表面原子能量一般为内部原子能量值的 1.5-2倍,德拜特征温度随粒径减小而下降。 另外由于粒径减小,微粒内部的电子运动受 到束缚导致电子能级结构与大块固体不同。 具体呈现出四个方面的效应,并由此派生出 传统粉体材料不具备的许多特殊性质
由公式,随着d值下降,W增加。所以低温下热涨落很难改变超微 颗粒的电中性。
W kBT
当微粒的能隙大于电子的平均动能kBT时,热运动不能使电子跃过 能隙,电子的状态受到限制,即表现出量子效应。
当分立的能级间距大于热能,静磁能,静电能, 光子能量等,微粒将呈现量子尺寸效应,如微 粒的比热与温度将不再呈线性关系,而出现非 线性的指数关系,导体变绝缘体等
宏观量子隧道效应
微观粒子(电子)具有进入和穿透势垒的能力,称之为隧道效 应 微颗粒的宏观物理量如磁化强度、磁通量等,在纳米尺度时将 会受到微观机制的影响,微观的量子隧道效应在宏观物理量中 表现出来称之为宏观量子隧道效应。 它限定了磁带、磁盘进行信息存储的时间极限,将会是未来微 电子器件的基础,它确立了微电子器件进一步微型化的极限。 例如,在制造半导体集成电路时,当电路的尺寸接近电子波长 时,电子就通过隧道效应而溢出器件,使器件无法正常工作, 经典电路的极限尺寸大约在0.25微米。
久保(Kubo)理论公式 1.相邻电子能级间隙
4 EF 1 1 V 3 3N d
EF费密能,金属为几个电子伏特,随温度变化极小,N颗粒内总电子数
2.超微颗粒电中性假设
Kubo认为,对于一个超微颗粒,取走或移入一个电子都是十分困难 的。他提出了一个著名公式:
e2 W k BT d

能带理论表明,金属费米能级附近电子能级一 般是连续的,这一点只有在高温或宏观尺寸情 况下才成立。 当粒子尺寸下降到某一值时,金属费米能级附 近的电子能级由准连续变为离散能级的现象以 及纳米半导体微粒存在不连续的最高被占据分 子轨道和最低未被占据的分子轨道能级而使能 隙变宽现象均称为量子尺寸效应。
通常纳米微粒在 低温下才容易呈 现量子尺寸效应
小尺寸效应 当微粒尺寸进入纳米领域 时,其尺寸与光波波长、德布罗意波长 以及超导态的相干长度、单磁畴尺寸等 物理特征尺寸相当或更小(某一临界尺寸 ),晶格点阵周期性的边界条件将被破坏 ,微粒将处于一种不稳定的状态,从而 引起物性的发生明显的变化或突变。
结构粉体材料的熔点下降,蒸汽压上升 ,如2nm金熔点600K,大块1337K 磁性材料当颗粒尺寸为单磁畴临界尺寸 时,具有很高的矫顽力,利用其强磁性 可制成信用卡、钥匙、车票等
库仑阻塞效应是纳米材料具有尺寸效应的又一 实例 将一个电子注入一个纳米粒子或纳米线等称之 为库仑岛的小体系时,该库仑岛的静电能将发 生变化,变化量与一个电子的库仑能大体相当, 即 Ec=e2/(2C) ,其中 e 为电子的电量, C 为库 仑岛的电容。体系越小,C越小,当C足够小时, 只要注入一个电子,它给库仑岛附加的充电能 Ec>kBT,从而阻止第二个电子进入该岛,这就 是库仑阻塞效应。
相关文档
最新文档