无刷直流电动机控制系统

合集下载

无刷直流电动机控制系统

无刷直流电动机控制系统

目录简介错误!未定义书签。

第一章直流无刷电机的工作原理71.根本工作原理72.无刷直流电动机的组成10第二章无刷直流电机的控制121.无刷直流电机的控制原理122.转子的控制143.速度的控制15第三章电机的反应151.电流测量152. RPM转速测量16第四章硬件设计161. LPC2141的使用方法16小结17电气与信息工程系课程设计评分表错误!未定义书签。

简介直流无刷电机:又称"无换向器电机交一直一交系统〞或"直交系统〞。

是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。

无刷直流电动机Brushless Direct CurrentMotor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。

无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最正确选择。

目前,在微小功率畴直流无刷电动机是开展较快的新型电机。

由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。

大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机构造,小型通风机用外转子电机构造,家电用多极磁场构造及装式构造,电动自行车用多极、外转子构造等等。

上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。

为了满足大批量、低本钱的市场需要,直流无刷电动机的生产必须要形成规模经济。

因此,直流无刷电动机是一种高投入、高产出的行业。

第5章无刷直流电动机控制系统

第5章无刷直流电动机控制系统

图5-4 霍尔传感器的三相波形(120度)
三、三相直流无刷电动机的换相原理
图5-4表明,三相永磁无刷直流电 动机转子位置传感器输出信号Ha、 Hb、Hc在每360°电角度内给出了6 个代码,按其顺序排列,6个代码 是101、100、110、010、011、001。 当然,这一顺序与电动机的转动方 向有关,如果转向反了,代码出现 的顺序也将倒过来。 图5-5是三相永磁无刷直流电动机 的电子换向器主回路,也就是由6 只功率开关元件组成的三相H转子是由永磁材料制成的,是具有一定磁极对数的永磁体。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,但是这样定 子上的电枢通过直流电后,只能产生恒定的磁场,电动机依然转不起来。 为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样 才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁 磁场始终保持90°左右的空间角,产生转矩推动转子旋转。
B
Z
2 3 1 A 4 6
X
5
C
Y
图5-6 三相永磁无刷直流电动机 绕组结构图
可以通过两种不同的途径来分析无刷电动机的换相过程:
Ø 第一条途径是:利用“定子空间的扇区图” 来分析换相过程(6个扇 区对应6个代码) (p148), ; Ø 第二条途径是:通过分析电动机的三相反电动势来理解换相过程。
运用“定子空间扇区图”可以分析三相无刷直流电动机在360º 电角度内的换 相过程,从分析可以看出,定子的磁场是步进地、跨越地前进的,每步跨越60º 电角度,而转子当然是连续地运行的。 从分析三相无刷直流电动机的三相反电势的角度,同样也可以理解其换相 过程。基本思路是这样的:为了获得最大的转矩,应当使每相的反电势与该相的 电流的相位相同。 无论是从“定子空间扇区图”还是从电动机定子绕组的反电势来分析三相 无刷电动机的换相过程,所得出的开关管的导通和关断状态与转子位置的关系都 是相同的。

基于无刷直流电动机的电动执行器控制系统设计

基于无刷直流电动机的电动执行器控制系统设计

c a n s o l v e t h e p r o b l e m o f t h e h e a v y h y d r a u l i c s y s t e m s i mu l t a n e o u s l y . Ac c o r d i n g t i r e me n t s o f e l e c t r i c a c t u a -
量较大 的问题。根据 电动执行器控制 系统 的设计 要求 , 建立 了无刷直 流 电动 机的数学 模型 , 完成 了电动执 行器控
制 系统 的硬 件设 计和软件设计 。试验表 明 , 控制系统能够稳定 、 可靠运行 , 可以满足 系统设计要求 。
关键词 : 电动执行器 ; 无刷直流 电动机 ; 控制系统设计 中图分 类号 : T M3 3 文献标 识码 : A 文章编号 : 1 0 0 4 — 7 0 1 8 ( 2 0 1 3 ) 0 7 - 0 0 4 5 — 0 5
赵 宝伊 , 卢 刚, 李声晋 , 王严伟 , 周 勇
( 西北 工业 大学 , 陕 西西安 7 1 0 0 7 2 )

要: 电动执 行器 以其优越的性能逐步替代 气动 和液压执 行器 , 成为 全电飞机 最为重 要的特 征之一 。采用
电动执行器 等功率电传技术能够有效提 高飞行 器的机动性 、 可靠 性、 维护性和续航 性能 , 同时解决 了液 压系统其重
Ab s t r a c t : Wi t h i t s s u p e i r o r p e f r o r ma n c e , e l e c t i r c a c t u a t o r wi l l g r a d u a l l y r e p l a c e p n e u ma t i c a n d h y d r a u l i c a c t u a t o r s , a n d w i l l b e c o me o n e o f t h e mo s t i mp o r t a n t f e a t u r e s o f t h e ll a - e l e c t r i c a i r c r a f t . T h e u s e o f e l e c t i r c a c t u a t o s r s u c h a s p o w e r c a b l e t e c h n o l o g y c a n e f f e c t i v e l y i mp r o v e t h e mo b i l i t y, r e l i a b i l i t y , ma i n t a i n a b i l i t y a n d d u r a t i o n p e r f o ma r n c e o f t h e a i r c r a f t . An d i t

PLC微机控制直流无刷电动机调速系统

PLC微机控制直流无刷电动机调速系统

一、概述电动机主要类型有同步电动机、异步电动机和直流电动机三种,而直流电动机具有运行效率高和调素性能好等诸多优点得以被广泛运用,但传统的直流电动机均采用电刷,以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火花、无线电干扰以及寿命短等致命弱点,再加上成本高及维修困难等缺点,大大限制了它的应用范围。

随着社会生产力和科学技术的发展,大功率开关器件、模拟和数字集成、高性能磁性材料技术等取得了很大的进步,又因直流无刷电动机具有寿命长、结构简单、运行可靠、维护方便等特点,在性能上,有启动转矩大、动态制动简便、转速——转矩特性呈线性及效率等优点而得以广泛应用。

(一)直流无刷电动机的基本组成环节及工作原理1、直流无刷电动机的基本组成环节直流无刷电动机的基本组成框图如图1-1所示。

它主要由电动机本体、位置传感器和电子开关线路三部分组成。

图1—1 直流无刷电动机的结构原理图电动机本体在结构上与永磁同步电动机相似,但没有笼形绕组和其它启动装置,它有永磁的转子和多相定子绕组。

多相定子绕组分别与电子开关线路中相应的功率开关器件联接。

位置传感器的跟踪转子与电动机转轴相联接,其信号在转子位置译码器中转换成正确的换相顺序信号,控制功率开关器件,使定子相电流随转子位置的变化而按一定的次序换相。

由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。

因此,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位置传感器三者组成的“电动机系统”。

其中转子的永磁钢与永磁有刷电动机中所用的永磁钢的作用相似,均是在电动机的气隙中建立足够的磁场,其不同之处在于直流无刷电动机中永磁钢装在转子上,而直流有刷电动机的磁钢装在定子上。

直流无刷电动机的电子开关线路是用来控制动机定子上各相绕组通电的顺序和时间主要由功率逻辑开关单元和位置传感器信号处理单元两个部分组成。

功率逻辑开关单元是控制电路的核心,其功能是将电源的功率以一定的逻辑关系分配给流无刷电动机定子上各相绕组,以便电动机产生持续不断的转矩。

直流无刷电动机工作原理与控制方法

直流无刷电动机工作原理与控制方法

For personal use only in study and research; not for commercial use直流无刷电动机工作原理与控制方法序言由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。

一个多世纪以来,电动机作为机电能量转换装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活中。

其主要类型有同步电动机、异步电动机和直流电动机三种。

由于传统的直流电动机均采用电刷以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火化、无线电干扰以及寿命短等弱点,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用范围,致使目前工农业生产上大多数均采用三相异步电动机。

针对上述传统直流电动机的弊病,早在上世纪30年代就有人开始研制以电子换向代替电刷机械换向的直流无刷电动机。

经过了几十年的努力,直至上世纪60年代初终于实现了这一愿望。

上世纪70年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为直流无刷电动机的广泛应用奠定了坚实的基础。

三相直流无刷电动机的基本组成直流无刷永磁电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。

其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。

图1所示为三相两极直流无刷电机结构,图1 三相两极直流无刷电机组成三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、C相绕组分别与功率开关管V1、V2、V3相接。

位置传感器的跟踪转子与电动机转轴相联结。

当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各项绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。

无刷直流电动机控制系统的仿真

无刷直流电动机控制系统的仿真

mo l . Th u r n n h o q v fr t a e rm h i l t n a e n a l hes me a h tg tbyt etm ese pe des e c re ta d t e tr uewa e om h tg tfo t e smu ai r e ry t a st a e h i tp r o i ie ee ntm t o I h wst a h sa ls fn t lm e eh d. ts o h tt e e t b ihme to h t e tc lm o e n he smulto to S o e ta d n f te ma h mai a d la d t i ai n meh d i c r c n ly t e fun to ff t e t y o r a e tma n tb us l s tr a h o dain o urh rsud n pem n n g e r h e s DC moo . Ke y wor s: u hls d br s e sDC motr l o —up t be; i lnk; o r ls se ; d ln o ;o k a l S mu i c nto y t m mo e ig
0引 言
近 年来 , 刷 直流 电动机 越 来 越 多应 用 于工 业 无 控制 的各个 领域 , 于是 对 电机控 制 系统 的成 本 、 研发
率, 克服 了文 献 [ ] 3 的建 模 方 法 中存 在 的 不 足 。 同 时 , 控制 系统 的建 模上 , 于 电流控制 环节 的模 型 在 对 建立 , 也没 有采 用 s F n t n来 生成 给定 三 相 电流 — u co i 信号 , 同样 是 采 用 了 查 表 的方 法 , 在 此 基 础 上 并

基于单片机的无刷直流电动机控制系统研究 的文献综述2000字左右

基于单片机的无刷直流电动机控制系统研究 的文献综述2000字左右

基于单片机的无刷直流电动机控制系统研究的文献综述2000字左右研究无刷直流电动机控制系统是电气工程领域的一个重要课题,它涉及到控制理论、电机原理、嵌入式系统等多个学科领域。

以下是一个关于基于单片机的无刷直流电动机控制系统研究的文献综述,大约2000字左右:________________________________________文献综述:基于单片机的无刷直流电动机控制系统研究1. 引言无刷直流电动机(BLDC)以其高效率、低噪音和长寿命等优点在工业和家用电器中得到了广泛应用。

而基于单片机的无刷直流电动机控制系统,作为一种先进的电机控制技术,具有成本低、响应快、可靠性高等特点,受到了研究者们的广泛关注。

2. 无刷直流电动机的工作原理无刷直流电动机是一种将电能转换为机械能的装置,其工作原理基于电磁感应和电流的相互作用。

通过在电动机中的定子和转子上安装恰当的磁铁,配合适当的控制电路,可以实现对电机转速和转矩的精确控制。

3. 基于单片机的无刷直流电动机控制系统设计基于单片机的无刷直流电动机控制系统一般由三部分组成:传感器模块、控制算法和功率放大模块。

传感器模块用于获取电机的运行状态,包括转速、位置等信息;控制算法根据传感器获取的信息计算出适当的电机控制信号;功率放大模块将控制信号放大驱动电机。

4. 常用的控制算法常用的无刷直流电动机控制算法包括电枢电流控制、感应电动机模型控制、空间矢量调制控制等。

这些控制算法在实际应用中各有优缺点,研究者们通常根据具体的应用场景选择合适的算法。

5. 实验与应用基于单片机的无刷直流电动机控制系统已经在工业自动化、电动汽车、无人机等领域得到了广泛应用。

研究者们通过实验验证了该控制系统的稳定性、精度和可靠性,并不断改进和优化控制算法,以适应不同的应用需求。

6. 结论与展望基于单片机的无刷直流电动机控制系统是电机控制领域的一个重要研究方向,其在提高电机性能、降低能耗、推动电动化技术发展等方面具有重要意义。

无刷直流电动机控制系统课件

无刷直流电动机控制系统课件

针对电机在实验中表现出的稳 定性不足的问题,可以增强系 统的稳定性以提高其运行可靠 性。例如,增加保护电路或改 进散热设计等。
06 无刷直流电动机控制系统 的发展趋势与展望
技术创新与进步
数字化控制
采用先进的数字信号处理器和控制器,实现无刷直流电动机的高 性能控制,提高系统精度和稳定性。
智能传感技术
航空航天
无刷直流电动机控制系统在航空航 天领域中也得到了广泛的应用,如 无人机、直升机、卫星等。
汽车电子
无刷直流电动机控制系统在汽车电 子领域中也有广泛的应用,如汽车 空调、电动车窗、电动座椅等。
02 无刷直流电动机控制系统 的工作原理
无刷直流电动机的工作原理
结构特点
无刷直流电动机主要由电机本体、位置传感器和电子换向器 组成。电机本体具有多个线圈,电子换向器通过晶体管控制 电流的流向,实现电机的旋转。
通信协议调试
对通信协议进行调试,确保通信的稳定性和可靠性。
调试与优化
系统调试
对整个无刷直流电动机控制系统进行调试,包括 硬件电路、软件程序和通信等。
性能测试
对控制系统的性能进行测试,包括响应时间、稳 态误差等指标。
优化建议
根据调试和性能测试的结果,提出优化建议,进 一步提高控制系统的性能。
05 无刷直流电动机控制系统 的性能测试与评估
应用磁编码器、光电编码器等传感器,实现对无刷直流电动机的精 确速度和位置控制。
容错控制技术
引入多种传感器和算法,提高系统的容错能力,确保无刷直流电动 机在故障情况下的安全运行。
应用领域拓展
工业自动化
随着工业自动化水平的提高,无刷直流电动机控制系统在 机器人、数控机床等领域的应用不断扩大。

无刷直流电机控制系统的设计及仿真

无刷直流电机控制系统的设计及仿真

目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。

无刷直流电机控制系统的仿真与分析

无刷直流电机控制系统的仿真与分析

无刷直流电机控制系统的仿真与分析一、本文概述随着科技的不断进步和电机技术的快速发展,无刷直流电机(Brushless Direct Current, BLDC)因其高效、低噪音、长寿命等优点,已广泛应用于电动汽车、无人机、家用电器等众多领域。

然而,无刷直流电机的控制系统设计复杂,涉及电子技术、控制理论、电机学等多个学科领域,因此,对其进行深入研究和仿真分析具有重要意义。

本文旨在探讨无刷直流电机控制系统的基本原理、仿真方法以及性能分析。

将简要介绍无刷直流电机的基本结构和控制原理,包括其电机本体、电子换向器、功率电子电路等关键部分。

将详细介绍无刷直流电机控制系统的仿真建模过程,包括电机模型的建立、控制算法的设计以及仿真环境的搭建。

通过对仿真结果的分析,评估无刷直流电机控制系统的性能,包括动态响应、稳态精度、效率等指标,并提出优化建议。

本文的研究不仅有助于深入理解无刷直流电机控制系统的运行机制和性能特点,还可为实际工程应用提供理论支持和指导。

通过仿真分析,可以预测和优化无刷直流电机控制系统的性能,提高系统的稳定性和可靠性,推动无刷直流电机在更多领域的应用和发展。

二、无刷直流电机控制系统基本原理无刷直流电机(Brushless DC Motor, BLDCM)是一种采用电子换向器替代传统机械换向器的直流电机。

其控制系统主要由电机本体、电子换向器(也称为功率电子电路或逆变器)以及控制器三部分组成。

无刷直流电机控制系统的基本原理,就在于如何准确地控制逆变器的开关状态,从而改变电机内部的电流流向,实现电机的连续旋转。

控制器根据电机的运行状态和用户的输入指令,生成适当的控制信号。

这些控制信号是PWM(脉宽调制)信号,用于控制逆变器的开关状态。

逆变器一般由六个功率开关管(如MOSFET或IGBT)组成,分为三组,每组两个开关管串联,然后三组并联在直流电源上。

每组开关管分别对应电机的一个相(A、B、C),通过控制每组开关管的通断,可以改变电机每相的电流大小和方向。

基于单片机的无刷直流电动机的控制系统设计

基于单片机的无刷直流电动机的控制系统设计

文章标题:基于单片机的无刷直流电动机的控制系统设计一、引言在现代工业生产和民用设备中,无刷直流电动机(BLDC)的应用越来越广泛。

它具有高效率、高功率密度、响应速度快等特点,在电动汽车、家电、医疗器械等领域都有着重要地位。

而基于单片机的无刷直流电动机控制系统设计,正是为了更精准地控制电动机的运行,以满足不同领域的需求。

二、无刷直流电动机的原理和特点1. 无刷直流电动机的工作原理及结构无刷直流电动机是一种能够将直流电能转换为机械能的电动机,它的结构简单、维护成本低、寿命长。

其工作原理是利用永磁铁和定子电磁绕组之间的磁场相互作用,通过改变转子上的磁场来实现电动机的转动。

2. 无刷直流电动机的特点高效率:相比传统的直流电动机,无刷直流电动机具有更高的能量转换效率。

响应速度快:由于无需使用机械换向装置,无刷直流电动机转速响应速度快。

寿命长:由于无刷直流电动机少了机械换向装置,因此减少了摩擦,提高了机械寿命。

三、基于单片机的无刷直流电动机控制系统设计1. 电机驱动器在基于单片机的无刷直流电动机控制系统中,选择合适的电机驱动器至关重要。

常见的电机驱动器包括晶闸管驱动器、电子换向驱动器等。

通过合理选择电机驱动器,可以实现对电动机的高效控制,提高电动机的性能和稳定性。

2. 控制算法控制算法是影响电动机性能的关键因素之一。

在基于单片机的控制系统设计中,PID控制算法是常用的一种。

通过对电机转速、转矩进行实时调节,可以使电机在不同工况下获得良好的控制效果。

3. 硬件设计在基于单片机的无刷直流电动机控制系统设计中,硬件设计包括单片机选型、外围电路设计等。

根据具体的应用场景和要求,选择合适的单片机,并设计与之匹配的外围电路,保证整个系统的稳定性和可靠性。

四、个人观点和理解在基于单片机的无刷直流电动机控制系统设计中,我认为需要充分考虑电机的工作环境和要求,选择合适的控制算法和电机驱动器,并进行合理的硬件设计。

对系统进行充分的测试和验证,以确保控制系统设计的可靠性和稳定性。

基于DSP的无刷直流电动机控制系统

基于DSP的无刷直流电动机控制系统

1 I技术在电动机控制系统 中的应用 PD
在 绝 大 多数 工 业控 制 中 ,使 用 最 多 的控 制 方 法一 般 是PD控 制算 法 。虽 然 当前控 制 理论 和控 制 I 技 术在 信 息技 术 、集 成 电 路技 术 的 高速 发 展 的 推 动 下 有 了很 大 的发 展 ,但是PD控 制作 为一 种稳 定 I 的 、可 靠 的 、实 现 简 单 的算 法 仍 然得 到 了广 泛 的 应用 。随 着计 算机 技 术 的发展 ,在 传 统 的模拟 PD I 控 制基 础上 ,出现 了很 多 改进 的数 字P D算法 ,如 I 微 分 先 行P D控 制 、积 分 分 离P D控 制 等 。对 于数 I I 字PD控 制算 法 又可 分为 位 置式 P D控 制 算法 和 增 I I
弱 。在P D控制 的 三种 作用 中, 比例 作 用可对 系统 I 的 偏 差 做 出 及时 响 应 ;积 分 作 用 主要 用 来 消 除 系
统 静 差 ,改善 系统 的静 态 特 性 ,体 现 了 系统 的静 态 性 能 指 标 ;微 分 作 用 主 要用 来 减少 动 态 超 调 , 克 服 系统 振 荡 ,加 快 系 统 的动 态 响应 ,改 善 系统
量式PD控 制算 法 。 I
l+ T f + K

d t
( 1 )
1 )式 中K 比例 增 益 系 数 ,起 比例 调 整 作 为 用 ;T是 积 分 时 间常 数 ,它 决 定 了积 分 作 用 的 强 i 弱 ;T 是 微 分 时 间 常 数 ,它 决 定 了微 分 作 用 的 强
直 流 电 动 机 得 到 了长 足 的发 展 。许 多小 型 无刷 直 流 电 动 机 ,在 应用 时 往 往 需 要 精 确 的 速 度控 制 , 尤 其 在 高 速运 行场 合 ,对 信 号 反 馈 控 制 灵敏 度 的

无刷直流电动机控制系统文献综述

无刷直流电动机控制系统文献综述

毕业设计文献综述4)电动机出力高:该电动机在体积和最高工作转速相同时,较异步电动机输出功率提高30%。

5)适应性强:电源电压偏离额定值+10%或-15%,环境温度相差40K以及负载转矩从0-100%额定转矩波动时,无刷直流电动机的实际转速与设定转速的稳态偏差,不大于设定转速的±1%。

6)无刷直流电动机是一种自控式调速系统,它无需像普通同步电动机那样需要启动绕组;在负载突变时,不会产生振荡和失步。

8)无刷直流电动机适合长期低速运转、频繁启动的场合,这是变频调速器拖动Y系列电动机不可能实现的。

四、无刷直流电动机系统的组成无刷直流电动机基本上有二种方案。

其中一种方案:由受控制的变换器和同步电动机并用,它由变换器、同步电动机、转子位置传感器和逻辑电路组成。

同步电动机是指多相(三、四、五相等)电枢绕组定子和永磁体转子。

定子可采用与传统直流电机转子非常相似的方式绕成,绕组原应接于换向器升高片的位置现由晶体管开关所代替,应用转子位置传感器和相关的逻辑电路,开关可依次接通和关断,以仿效换向器的作用,并在定子内产生了跳跃式的磁场,使永磁转子跟着旋转。

故无刷直流电动机和传统直流电动机有相同的工作原理。

无刷直流电动机的简图如下图所示。

图I 无刷直流电动机的简图1无刷直流电动机(BLDCM)由电动机本体和驱动器构成,是一种典型的机电一体化产品。

2 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机转子由钕铁硼等永磁材料构成。

在定转子形成的气隙中产生N-S极相间的方波磁场,所以也把这种电动机称为“方波电动机”。

为了使电动机绕组准确换向,在电动机内装有位置传感器,。

毕业论文--无刷直流电动机控制系统设计方案

毕业论文--无刷直流电动机控制系统设计方案

无刷直流电动机控制系统设计方案摘要无刷直流电动机是在有刷直流电动机的基础上发展起来的。

现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍的关注。

自20世纪90年代以来,随着人们生活水平的提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具有精度高、速度快、效率高等特点,无刷直流电机的应用也因此而迅速增长。

本设计是把无刷直流电动机作为电动自行车控制系统的驱动电机,以PIC16F72单片机为控制电路,单片机采集比较电平及电机霍尔反馈信号,通过软件编程控制无刷直流电动机。

关键词无刷直流电动机单片机霍尔位置传感器AbstractBrushless DC motor in a brush DC motor developed on the basis of. At this stage, although exchanges of all kinds of DC motors and motor drive in the application of the dominant, but brushless DC motor is under common concern。

Since the 1990s,as people's living standards improve and modernize production, the development of office automation, household appliances, industrial robots and other equipment are increasingly tend to be high efficiency,small size and high intelligence, as the implementation of components An important component of the motor must have a high accuracy, speed, high efficiency, brushless DC motor and therefore the application is also growing rapidly.This design is the brushless DC motor as the electric bicycle motor—driven control system, PIC16F72 microcontroller for control circuit, SCM collection and comparison—level electrical signal Hall feedback, software programming through brushless DC motor control . Key words bldcm the single chip processor hall position sensor 摘要 (I)Abstract (II)第1章概述 (1)1。

全套课件特种电机及其控制1

全套课件特种电机及其控制1

特种电机及其控制
41
无刷直流电动机的等效电路如图所示
VT1 VD1 VT3 VD3 VT5 VD5
US
A
B
C
VT4 VD4 VT6 VD6 VT2 VD2
ia
r LM + ea -
ib
r LM + eb -
ic
r LM + ec -
特种电机及其控制
42
1.4.2 无刷直流电动机的反电动势
无刷直流电动机气隙磁密及反电动势波形如下图所示
特种电机及其控制
30
2. 三三导通方式
三相绕组的反电动势波形及其三三导通方式下的导通规律
特种电机及其控制
31
1.2.3 角形连接三相桥式主电路
+
VT1
VT3
VT5
US
VT4
VT6
VT2
A
C CB
如图所示的角形联结三相桥式主电路的开关管也采用功率
MOSFET。与星形联结一样,角形联结的控制方式也有二二
式中 UT——开关器件的管压降; Ia ——电枢电流;
E ——线电动势,即电机的反电动势。
特种电机及其控制
46
对于三相六状态无刷直流电动机,任一时刻都有两相绕 组导通,故电机的反电动势为
式中
Ce
E
2Em
2 pW
15i
n
Ce
——电机的电动势常数,Ce
n
2 pW
15i
电枢绕组的电流为
Ia
US
2UT 2r
顺转时子针磁旋场转顺时针连续旋转、定子磁场隔60O跳跃E旋+-转A-C-E- →电机顺时针旋转
——自同步电机

无刷直流电机

无刷直流电机

三、无刷直流电机的工作原理
1.机械结构(无刷)
普通直流电动机的电枢在转子上,而定子产生固 定不动的磁场。为了使直流电动机旋转,需要通过换 向器和电刷不断改变电枢绕组中电流的方向,使两个 磁场的方向始终保持相互垂直,从而产生恒定的转矩 驱动电动机不断旋转。无刷直流电动机为了去掉电刷 ,将电枢放到定子上去,而转子制成永磁体,这样的 结构正好和普通直流电动机相反。
10
光电式位置传感器 (利用光电效应)


固定在定子上的几个光电耦合开关 和固定在转子轴上的遮光盘所组成每只 光电耦合开关是由相互对着的红外发光 二极管(或激光器)和光电管(光电二极管 , 三极管或光电池)所组成。 红外发光二极管(或激光器)通上电 后, 发出红外光(或激光); 当遮光盘 随着转轴转动时,光线依次通过光槽( 孔), 使对着的光电管导通, 相应地产 生反应转子相对定子位置的电信号, 经放大后去控制功率晶体管, 使相应 的定子绕组切换电流。 光电式位置传感器产生的电信号一 般都较弱, 需要经过放大才能去控制 功率晶体管。但它输出的是直流电信号 , 不必再进行整流。
位 置 检 测 器
霍尔式(霍尔元件) 无位 置传 感器 检测 (控制算法) 反电动势检测
续流二极管工作状态检测
定子三次谐波检测 瞬时电压方程法
电磁式位置传感器 (利用电磁效应)
定、转子磁芯均由高频导磁 材料(如软磁铁氧体)制成。
定子有6个级,间隔的三 个极为同一绕组,接高频电 源,作为励磁极,其他为感 应极,作为输出端。 电机运行时,输入绕组 中通以高频激磁电流,当转 子扇形磁芯处在输出绕组下 面时,输入和输出绕组通过 定、转子磁芯耦合,输出绕 组中则感应出高频信号,经 滤波整形和逻辑处理后,即 可控制逆变器开关管。

直流无刷电机控制实验系统设计与实现

直流无刷电机控制实验系统设计与实现

直流无刷电机控制实验系统设计与实现摘要:伴随着社会和科技的发展,在产业的制造与使用中,永磁材料、电力电子技术、传感器技术、现代控制理论以及微型计算机技术都取得了巨大的进展。

基于上述相关材料、技术的研发与集成,使得其在直流无刷电动机的应用技术更为完备与成熟,并具有高效率、长寿命、低噪声等优良的速度-转矩性能等优点。

在新时期、新情况下,直流无刷电动机以其众多的优势和特点,在工业、家电等行业得到了越来越多的应用,这就对电动机的控制提出了越来越高的要求。

本文在已有的科研成果的前提下,针对当前我国在直流无刷电机方面的研发现状,提出了直流无刷电机的发展方向。

关键词:直流无刷电机;发展;现状分析由于其具有高效率、低噪声、结构紧凑、可靠性高、维修费用低等优点,在各类新能源汽车和各类家用电子产品中得到了广泛应用。

本文所设计的 BLDCM控制试验系统是以EV汽车为原型,具有EV汽车的基础性能;并对电动式汽车控制系统中的每一个功能进行了分区、分区的划分,方便了详细的试验方案的实施;同时,本试验所使用的24V的电压,使整个试验系统的直流母线电流不超过2A,从而避免了因大功率而造成的安全隐患和设备的损坏。

在软件设计方面,对程序的流程图进行了细致的设计,将各种控制功能以不同的形式包装起来,方便了软硬件的协作调试。

该实验平台可以应用于课堂实验,可以应用于课程设计,可以进行创新实验。

一、直流无刷电机(一)直流无刷电机基本结构直流无刷电机是同步电机的一种,即电机转子的转速主要受电机定子旋转磁场的速度和周边相应转子极数的影响直流无刷电机是21世纪发展起来的一种新型的机电一体化装备,它的主要组成是由电机本体、传动机构等组成,尤其是在工业生产中,被越来越多的人所采用。

至于直流无刷电机,则是将新老两代直流电机的优势相结合,不仅保留了传统直流电机的优势,而且在具体的结构设计上,基本上去掉了碳刷和滑环,达到了无级调速,而且速度范围也相对较宽,这样的话,在使用过程中,其过载能力会得到极大的提高,而且可靠性、稳定性和适应性也会得到很好的改善,最主要的是,在维护和维护过程中,可以方便地进行操作和维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无刷直流电动机控制系统题目无刷直流电动机控制系统专业班级学生姓名学号教师一.摘要无刷直流电动机是在有刷直流电动机的基础上发展起来的。

现阶段,虽然各种交流电动机和直流电动机在传动应用中占主导地位,但无刷直流电动机正受到普遍的关注。

自20世纪90年代以来,随着人们生活水平的提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都越来越趋向于高效率化、小型化及高智能化,作为执行元件的重要组成部分,电机必须具有精度高、速度快、效率高等特点,无刷直流电机的应用也因此而迅速增长。

本设计是把无刷直流电动机作为电动自行车控制系统的驱动电机,以PIC16F72单片机为控制电路,单片机采集比较电平及电机霍尔反馈信号,通过软件编程控制无刷直流电动机二.无刷直流电动机2.1无刷直流电动机发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。

有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。

但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。

为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。

早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。

1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。

无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用,1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础,无刷直流电动机系统因而得到了迅速的发展。

在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了 MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。

随着人们对无刷直流电动机特性了解的日益深入,无刷直流电动机的理论也逐渐得到了完善。

1986年,H.R.Bolton对无刷直流电动机作了全面系统的总结,指出了无刷直流电动机的研究领域,成为无刷直流电动机的经典文献,标志着无刷直流电动机在理论上走向成熟。

我国对无刷直流电动机的研究起步较晚。

1987年,在北京举办的联邦德国金属加工设备展览会上,SIEMENS和BOSCH两公司展出了永磁自同步伺服系统和驱动器,引起了国内有关学者的广泛注意,自此国内掀起了研制开发和技术引进的热潮。

经过多年的努力,目前,国内已有无刷直流电动机的系列产品,形成了一定的生产规模。

2.2无刷直流电动机结构2.3无刷直流电动机控制系统图2.4无刷直流电动机工作原理电机本体的电枢绕组为三相星型连接,位置传感器与电机转子同轴,控制电路对位置信号进行逻辑变换后产生控制信号,控制动信号经驱动电路隔离放大后控制逆变器的功率开关管,使电机的各相绕组按一定的顺序工作。

图1-1 无刷直流电动机工作原理示意图如图1-1所示,当转子旋转(顺时针)到图a所示的位置时,转子位置传感器输出的信号经控制电路逻辑变换后驱动逆变器,使T1、T6 导通,即A、B两相绕组通电,电流从电源的正极流出,经T1流入A相绕组,再从B相绕组流出,经T6回到电源的负极,此时定转子磁场相互作用,使电机的转子顺时针转动。

当转子在空间转过60电角度,到达图b所示位置时,转子位置传感器输出的信号经控制电路逻辑变换后驱动逆变器,使T1、T2导通,A、C两相绕组通电,电流从电源的正极流出,经T1流入A相绕组,再从C相绕组流出,经T2回到电源负极。

此时定转子磁场相互作用,使电机的转子继续顺时针转动。

转子在空间每转过60电角度,逆变器开关就发生一次切换,功率开关管的导通逻辑为T1、T6—T1、T2—T3、T2—T3、T4—T5、T4—T5、T6—T1、T6。

在次期间,转子始终受到顺时针方向的电磁转矩作用,沿顺时针方向连续旋转。

转子在空间每转过60电角度,定子绕组就进行一次换流,定子合成磁场的磁状态就发生一次跃变。

可见,电机有6种磁状态,每一状态有两相导通,每相绕组的导通时间对应于转子旋转120电角度。

无刷直流电动机的这种工作方式叫两相导通星型三相六状态,这是无刷直流电动机最常用的一种工作方式。

无刷直流电动机的位置一般采用三个在空间上相隔120电角度的霍尔位置传感器进行检测,当位于霍尔传感器位置处的磁场极性发生变化时,传感器的输出电平将发生改变,由于三个霍尔传感器位检测元件的位置在空间上各差120电角度,因此从这三个检测元件输出端可以获得三个在时间上互差120度、宽度为180度的电平信号,分别用A、B、C来表示,如图1-2所示,以信号A为例,A相位置宽度为180电导角:在0-60度,T1必须导通,故T1状态为1,而C相还剩下60度通电宽度,所以此段时间为T1和T6等于1,(此时下部可供导通的管子为T4、 T6和T2,而为避免桥臂直通,T4不能导通;T2的导通时间未到,故只能是T6导通);而在60度—120度,此时只有A相通电,B和C相处于非导电期,故导通的开关管为T1和T2(T1和T2等于1),其中T2是为B相导电作准备;而在120度—180度时,由于每一相只有120电导角导电时间,故此时T1关断(T1=0),T2仍然导通(B相开始进入导电期),此时可知,T1关断,T5不能开通(防止桥臂直通),则此时只能开通T3,所以T3信号此时间段为1。

其他时间段的开关管导通情况与此类似。

理论上,只要保证三个位置传感器在空间上互差120度,开关管的换流时刻总是可以推算出来的。

然而,为了简化控制电路,每个霍尔传感器的起始安装位置在各自相绕组的基准点(r0=00)上.那么在r0=00的控制条件下,A相绕组开始通电的时刻(即该相反电势相位30度位置)恰好与A相位置传感器输出信号A的电平跳变时刻重合,此时应将T1开关管驱动导通。

同理,其他开关管的导通时刻也可以按同样方法确定。

本设计选用的是三相无刷永磁直流电动机,其额定电压UH=36V,电枢额定电流IaH =8.5A,电枢峰值电流IaP15A,额定转速nH=350r/min,额定功率PH=250W。

图1-2 无刷电动机位置检测及开关管驱动信号2.5无刷直流电动机机械特性在无刷直流电机中,工作特性主要包括如下几方面的关系:电枢电流和电机效率与输出转矩之间的关系。

(1)电枢电流和输出转矩的关系由式T=KmIacp可知,电枢电流随着输出转矩的增加而增加,如图1所示。

(2)电机效率和输出转矩之间的关系这里只考察电机部分的效率与输出转矩的关系。

电机效率式中,ΣP为电机的总损耗;P1为电机的输入功率,P1=IacpU;P2为输出功率,P2=M2n。

M2=0,即没有输出转矩时,电机的效率为零。

随着输出转矩的增加,电机的效率也就增加。

当电机的可变损耗等于不变损耗时,电机效率达到最大值。

随后,效率又开始下降,如图2所示。

2.6无刷直流电动机调节特性无刷直流电动机的调节特性如图1-4所示。

图1-4 调节特性调节特性的始动电压和斜率分别为:22eTTrTU UCδφ=+(1-2)1eKCδφ=(1-3)从机械特性和调节特性可以看出,无刷直流电动机与一般直流电动机一样,具有良好的调速控制性能,可以通过调节电源电压实现无级调速。

但不能通过调节励磁调速,因为永磁体的励磁磁场不可调。

2.7无刷直流永磁电动机与有刷直流永磁电动机的比较项目无刷直流电动机有刷直流电动机换向借助转自子位置传感器实现电子换向由电刷和换向器进行机械换向维护由于没有电刷和换向器,很少需要维护需要周期性维护寿命比较长比较短机械(速度/力矩)特性平(硬)在负载条件下能在所有速度上运行中等平(中等硬)。

在较高速度上运行时,电刷摩擦增加,有用力矩减小效率由于没有电刷压降,所以效率高中等输出功率/外形尺寸之比高由于电枢绕组设置在与机壳相连的定子上,容易散热。

这种优异的热传导中等/低。

电枢产生的热量消散在气隙内,这样增加了气隙温度,从而限制霍尔器件是一种磁传感器。

按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。

前者输出模拟量,后者输出数字量,可用于磁场的测量和控制。

霍尔器件具有许多优点,它们的体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1 MHz) ,耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。

此外,其工作温度范围宽,可达-55 0C~150o C。

1 在无刷直流动机中常用的转子位置传感器转子位置传感器是永磁无刷直流电机的关键部件。

它对电机转子位置进行检测,其输出信号经过逻辑变换后去控制开关管的通断,使电机定子各相绕组按顺序导通,保证电机连续工作。

转子位置传感器也由定、转子组成,其转子与电机本体同轴,以跟踪电机转子的位置;其定子固定于电机本体定子或端盖上,以感应和输出转子位置信号。

转子位置传感器的主要技术指标为:输出信号的幅值、精度,响应速度,工作温度,抗干扰能力,损耗,体积重量,安装方便性以及可靠性等。

其种类包括磁敏式、电磁式、光电式、接近开关式、正余弦旋转变压器式以及编码器等。

其中最常用的有以下几种:(1)霍尔元件式位置传感器霍尔元件式位置传感器是磁敏式位置传感器的一种。

它是一种半导体器件,是利用霍尔效应制成的。

当霍尔元件按要求通以电流并置于外磁场中,即输出霍尔电势信号,当其不受外磁场作用时,其输出端无信号。

用霍尔元件作转子位置传感器通常有两种方式。

第一种方式是将霍尔元件粘贴于电机端盖内表面,靠近霍尔元件并与之有一小间隙处,安装在与电机轴同轴的永磁体,如图2.3所示。

对于两相导通星形三相六状态无刷直流电机,三个霍尔元件在空间彼此相隔120°电角度,永磁体的极弧宽度为180°电角度。

这样,当电机转子旋转时,三个霍尔元件便交替输出三个宽度为180°电角、相位互差120°电角的矩形波信号。

第二种方式是直接将霍尔元件敷贴在定子电枢铁心气隙表面或绕组端部紧靠铁心处,利用电机转子上的永磁体主极作为传感器的永磁体,根据霍尔元件的输出信号即可判断转子磁极位置,将信号放大处理后便可驱动逆变器工作。

相关文档
最新文档