圆锥曲线大题题型归纳72769

合集下载

高中圆锥曲线大题四类题型总结

高中圆锥曲线大题四类题型总结
利用不等式关系得到
2k 2
2 2
4k 4 4k 2 1
1
2
2k
2
2
1 2k
2
|AB | 2
1 4
2=3,当且仅当2k 2
1 2k 2
,
k
2 ,等号成立 2
即|OA| |OB|max = 2|AB|max 3 2
配合不等式
1. 解析几何快速画出相对标准的草图是解题的一个基础 2. 题目中给出一条直线时,看题干中给的直线斜率k,如果k给出,就不需要讨论k不存在的 情况,没有给出,一定要讨论斜率存在和不存在两种情况 3. 题目中涉及垂直,首先考虑向量数量积为0,构造出X1*X2和X1+X2的形式,再联立方程, 结合韦达定理得到结论 4. 求取值范围的或者最值的问题,最后化简得到的式子往往涉及函数的取值范围计算,方 法主要为以下几种:1.换元 2.分离常数 3.基本不等式 4.二次函数单调性 5. 题中出现圆,一定要考虑其特殊性质, 6. 换元法一定要给出新的元的的范围
, F2
,其焦距为2
3,点E在椭圆C上,EF1 EF2
,直线EF1
的斜率为
b c为半焦距。
c
1 求椭圆C的方程
2 设圆O:x2 y2 2的切线l2交椭圆于A, B两点O为坐标原点 证明:OA OB
3 在2的条件下,求|OA| |OB|的最大值
E
F1
F2
画出草图,更加直观
1由于直线EF1的斜率为
程的一个系数
AE
F1
O F2
B
2
1.当切线斜率不存在时,l2 : x 2或x 2, 于是y 2 根据对称性,不妨选择x 2的情况,此时直线与椭圆的交点

圆锥曲线综合大题(考题猜想,易错必刷32题15种题型)(原卷版)2024-2025学年高二数学上学期

圆锥曲线综合大题(考题猜想,易错必刷32题15种题型)(原卷版)2024-2025学年高二数学上学期

圆锥曲线综合大题(易错必刷32题15种题型专项训练)➢韦达定理基础型➢直线横截式应用➢直线双变量型应用➢面积最值型➢面积比值范围型➢动直线过定点➢圆过定点➢圆锥切线➢定直线➢向量型定比分点➢斜率型:和定➢斜率型:积定➢斜率型:商定➢求轨迹➢新定义型第19题一.韦达定理基础型(共2题)1.(23-24高二下·四川成都·期中)已知椭圆C:22221x ya b+=(0a b>>),131,2Pæö-ç÷èø,231,2Pæöç÷èø,(30,P,()41,1P四点中恰有三点在椭圆C上.(1)求椭圆C的标准方程;(2)过右焦点F且斜率为1的直线l交椭圆C于M,N两点,点P为直线4x=上任意一点,求证:直线PM,PF,PN的斜率成等差数列.2.(23-24高二下·上海·期中)如图,由部分椭圆22221(0,0)x y a b y a b +=>>£和部分双曲线22221(0)x y y a b -=³,组成的曲线C 称为“盆开线”.曲线C 与x 轴有(2,0),(2,0)A B -两个交点,.(1)设过点(1,0)的直线l 与C 相切于点(4,3)M ,求部分椭圆方程、部分双曲线方程及直线l 的方程;(2)过A 的直线m 与C 相交于点,,P A Q 三点,求证:PBA QBA Ð=Ð.二. 直线横截式应用(共2题)3.(23-24高二上·广西南宁·期中)已知椭圆2222:1(0)x y C a b a b +=>>.(1)求椭圆C 的方程:(2)过点()1,0M 的直线l 与椭圆C 交于点A 、B ,设点1(,0)2N ,若ABN V 的面积为310,求直线l 的斜率k .4.(23-24高二下·云南玉溪·期中)在直角坐标平面内,已知点()()122,0,2,0A A -,动点P (x,y ).设1PA 、2PA 的斜率分别为12k k 、,且1234k k ×=-.设动点P (x,y )的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 1(―1,0)的直线l 交曲线C 于M N 、两点,是否存在常数l ,使11MN F M F N l =×uuuu r uuuu r恒成立?三. 直线双变量型(共2题)5.(23-24高二下·天津·期中)已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,0A -,离心率为12.(1)求椭圆C 的方程;(2)点P Q 、为椭圆C 上不同的两点,直线AP 与y 轴交于点M ,直线AQ 与y 轴交于点),N E,设()0,(0)M m m >,且满足,EM EN PQ OE ^×=-uuu r uuu r,求点M 的坐标.6.(21-22高三上·湖北·期中)已知圆O :222x y +=,椭圆C :(22221x y a b a b+=>>,P是C 上的一点,A 是圆O 上的一点,PA 的最大值为(1)求椭圆C 的方程;(2)点M 是C 上异于P 的一点,PM 与圆O 相切于点N ,证明:2PO PM PN =×.四.面积最值型(共2题)7.(23-24高二下·福建泉州·期中)已知抛物线2:2(03)C y px p =<<,其焦点为F ,点(,Q m 在抛物线C 上,且4QF =.(1)求抛物线C 的方程;(2)O 为坐标原点,,A B 为抛物线上不同的两点,且OA OB ^,(i )求证直线AB 过定点;(ii )求AFO V 与ABO V 面积之和的最小值.8.(23-24高二下·内蒙古呼和浩特·期中)已知在平面直角坐标系xOy 中,动点P 到()和)的距离和为4,设点11,2A æöç÷èø.(1)求动点P 的轨迹方程;(2)M 为线段PA 的中点,求点M 的轨迹方程;(3)过原点O 的直线交P 的轨迹于B ,C 两点,求ABC V 面积的最大值.五.面积比值范围(共2题)9.(23-24高二·山东·期中)已知抛物线()2:20C y px p =>.过抛物线焦点F 作直线1l 分别在第一、四象限交C 于K P 、两点,过原点O 2与抛物线的准线交于E 点,设两直线交点为S .若当点P 的纵坐标为2-时,OP =(1)求抛物线的方程.(2)若EP 平行于x 轴,证明:S 在抛物线C 上.(3)在(2)的条件下,记SEP V 的重心为R ,延长ER 交SP 于Q ,直线EQ 交抛物线于N T 、(T 在右侧),设NT 中点为G ,求PEG △与ESQ V 面积之比n 的取值范围.10.(23-24高三上·青海西宁·期中)已知椭圆()2222:10x y E a b a b +=>>点P 在椭圆E 上运动,且12PF F V (1)求椭圆E 的方程;(2)设A ,B 分别是椭圆E 的右顶点和上顶点,不过原点的直线l 与直线AB 平行,且与x 轴,y 轴分别交于点M ,N ,与椭圆E 相交于点C ,D ,O 为坐标原点.(ⅰ)求OCM V 与ODN △的面积之比;(ⅱ)证明:22CM MD +为定值.六.动直线过定点 (共2题)11.(23-24高二下·安徽阜阳·期中)已知抛物线()2:20C y px p =>的焦点为F ,P 是C 上一点,线段PF的中点为5,22Q æöç÷èø.(1)求C 的方程;(2)若7p <,O 为原点,点M ,N 在C 上,且直线OM ,ON 的斜率之积为2024,求证:直线MN 过定点.12.(22-23高二上·四川雅安·期中)已知()0,1P 为椭圆2222:1(0)x y C a b a b +=>>上一点,点P 与椭圆C 的两(1)求椭圆C 的标准方程;(2)不经过点P 的直线l 与椭圆C 相交于,A B 两点,若直线PA 与PB 的斜率之和为1-,证明:直线l 必过定点,并求出这个定点坐标.七. 圆过定点(共2题)13.(23-24高二下·上海·期中)已知椭圆22:12x C y +=(1)若双曲线22221x y a b -=(0,0)a b >>的一条渐近线方程为y x =,且与椭圆C 有公共焦点,求此双曲线的方程;(2)过点10,3S æö-ç÷èø的动直线l 交椭圆C 于,A B 两点,试问在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过定点T ?若存在,求出T 的坐标,若不存在,说明理由.14.(23-24高二上·江苏常州·期中)已知双曲线()2222:10,0x y C a b a b-=>>F 到渐近线的距离为1.(1)求双曲线C 的方程;(2)若直线l 过定点()4,0M 且与双曲线C 交于不同的两点A 、B ,点N 是双曲线C 的右顶点,直线AN 、BN 分别与y 轴交于P 、Q 两点,以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.八.圆锥切线 (共2题)15.(23-24高二下·上海·期中)已知圆()22:21F x y -+=,动圆P 与圆F 内切,且与定直线3x =-相切,设圆心P 的轨迹为G (1)求G 的方程(2)若直线l 过点F ,且与G 交于,A B 两点①若直线l 与y 轴交于M 点,满足(),0,0MA AF MF FB l μl μ==>>uuu r uuu r uuur uuu r,试探究l 与μ的关系;②过点,A B 分别作曲线G 的切线相交于点P ,求PAB V 面积的最小值.16.(23-24高二下·上海·期中)已知抛物线2Γ:2x y =的焦点为F ,过Γ在第一象限上的任意一点P 作Γ的切线l ,直线l 交y 轴于点Q .过F 作l 的垂线m ,交Γ于,A B 两点.(1)若点Q 在Γ的准线上,求直线l 的方程;(2)求PF 的中点M 的轨迹方程;(3)若三角形PAB ,求点Q 的坐标.九.定直线(共2题)17.(2024高二·全国·期中)已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.18.(2024·河北·期中)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.十.向量型定比分点 (共2题)19.(23-24高二下·江苏南京·期中)已知椭圆C :()222210+=>>x y a b a b (P .(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于A ,B 两点,若3AF FB =uuu r uuu r,求PAB V 的面积.20.(2023·河南·期中)已知椭圆()2222:10x y C a b a b +=>>的右焦点()10F ,,点12M ö÷÷ø在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点()2,1P 的直线l 与椭圆C 交于A ,B 两点.若PA PB l =uu u r uuu r ,()0AQ QB l l =>uuu ruuu r ,求OQ uuu r 的最小值(O是坐标原点).十一.斜率型:和定 (共2题)21.(2024·河南郑州·期中)设抛物线2:2(0)C y px p =>的焦点为F ,()00,P x y 是C 上一点且2200||||PF PF x x -=+,直线l 经过点(8,0)Q -.(1)求抛物线C 的方程;(2)①若l 与C 相切,且切点在第一象限,求切点的坐标;②若l 与C 在第一象限内的两个不同交点为,A B ,且Q 关于原点O 的对称点为R ,证明:直线,AR BR 的倾斜角之和为π.22.(23-24高二上·云南昆明·期中)在平面直角坐标系xOy 中,动点(,)M x y 1x =+.记点M 的轨迹为C .(1)求C 的方程;(2)设点T 在y 轴上(异于原点),过点T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,并且||||||||TA TB TP TQ =,求直线AB 的斜率与直线PQ 的斜率之和.十二.斜率型:积定(共2题)23.(23-24高二·辽宁鞍山·期中)已知椭圆2222:1(0)x y C a b a b+=>>,右焦点为()2,0F 且离心率为23,直线:6l x =,椭圆C 的左右顶点分别为12,A A P 、为l 上任意一点,且不在x 轴上,1PA 与椭圆C 的另一个交点为2,M P A 与椭圆C 的另一个交点为N .(1)直线1MA 和直线2MA 的斜率分别记为12M A M A k k 、,求证:12MA MA k k ×为定值;(2)求证:直线MN 过定点.24.(23-24高二·云南昆明·期中)已知点P 在椭圆C:x2a 2+y 2b 2=1(a >b >0)上,过点P 作直线l 与椭圆C 交于点Q ,过点P 作关于坐标原点O 的对称点P ¢,PP ¢的最小值为l 的斜率为0时,存在第一象限内的一点P 使得4,PP PQ =¢=(1)求椭圆C 的方程;(2)设直线l 的斜率为k (k ≠0),直线QP ¢的斜率为k ¢,求k k ¢×的值.十三.斜率型:商定(共2题)25.(2024·广东广州·期中)已知在平面直角坐标系xOy 中,双曲线C :()22221,0x y a b a b -=>过和(两点.(1)求双曲线C 的标准方程;(2)若S ,T 为双曲线C 上不关于坐标轴对称的两点,M 为ST 中点,且ST 为圆G 的一条非直径的弦,记GM 斜率为1k ,OM 斜率为2k ,证明:12k k 为定值.26.(23-24高二·广东汕头·期中)已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点31,2æöç÷èø在该椭圆上,且该椭圆的右焦点F 的坐标为(1,0).(1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为1k ,直线BN 的斜率为2k ,求证:1213k k =.十四.求轨迹 (共2题)27.(23-24高二下·上海·期中)已知A 、B 、C 是我方三个炮兵阵地,A 地在B 地的正东方向,相距6km ;C 地在B 地的北偏西30°,相距4km .P 为敌方炮兵阵地.某时刻A 地发现P 地产生的某种信号,12s 后B地也发现该信号(该信号传播速度为13km/s ).以BA 方向为x 轴正方向,AB 中点为坐标原点,与AB 垂直的方向为y 轴建立平面直角坐标系.(1)判断敌方炮兵阵地P 可能分布在什么样的轨迹上,并求该轨迹的方程;(2)若C 地与B 地同时发现该信号,求从A 地应以什么方向炮击P 地?28.(23-24高二上·安徽宿州·期中)已知直线BC 经过定点()0,2,N O 是坐标原点,点M 在直线BC 上,且OM BC ^.(1)当直线BC 绕着点N 转动时,求点M 的轨迹E 的方程;(2)已知点()3,0T -,过点T 的直线交轨迹E 于点P Q 、,且65OP OQ ×=uuu r uuu r ,求PQ .十五.新定义型第19题(共4题)29.(2024·福建·期中)贝塞尔曲线是由法国数学家Pierre Bézier 发明的,它为计算机矢量图形学奠定了基础.贝塞尔曲线的有趣之处在于它的“皮筋效应”,即随着控制点有规律地移动,曲线会像皮筋一样伸缩,产生视觉上的冲击.(1)在平面直角坐标系中,已知点1T 在线段AB 上.若A (x 1,y 1),B (x 2,y 2),1AT a AB =,求动点1T 坐标;(2)在平面直角坐标系中,已知(2,4)A -,(2,0)B -,(2,4)C ,点,M N 在线段,AB BC 上,若动点2T 在线段MN 上,且满足2AM BN MT a ABBCMN===,求动点2T 的轨迹方程;(3)如图,已知((A B C D ,若点3,,,,,M N P X Y T 分别在线段,,,,,AB BC CD MN NP XY 上,且3AM BN CP MX NY XT a ABBCCDMNNPXY======,求动点3T 的轨迹方程.30.(23-24高三上·湖北荆州·期中)已知双曲线E 的中心为坐标原点,渐近线方程为y =,点(2,1)-在双曲线E 上.互相垂直的两条直线12,l l 均过点()(,0n n P p p >)*N n Î,直线1l 交E 于,A B 两点,直线2l 交E 于,C D 两点,,M N 分别为弦AB 和CD 的中点.(2)若直线MN 交x 轴于点()()*,0N n Q t n Î,设2n n p =.①求n t ;②记n a PQ =,()*21N n b n n =-Î,求211(1)nkk k k k b b a +=éù--ëûå.31.(2024·四川·期中)已知抛物线C :()220y px p =>的焦点为F ,过点F 的直线与C 相交于点A ,B ,AOB V 面积的最小值为12(O 为坐标原点).按照如下方式依次构造点()*N n F n Î:1F 的坐标为(),0p ,直线n AF ,n BF 与C 的另一个交点分别为n A ,n B ,直线n n A B 与x 轴的交点为1n F +,设点n F 的横坐标为n x .(2)求数列{}n x 的通项公式;(3)数列{}n x 中,是否存在连续三项(按原顺序)构成等差数列?若存在,指出所有这样的连续三项;若不存在,请说明理由.32.(2024·江西新余·期中)通过研究,已知对任意平面向量(),AB x y =uuu r,把AB uuu r绕其起点A 沿逆时针方向旋转q 角得到向量()cos sin ,sin cos AP x y x y q q q q =-+uuu r,叫做把点B 绕点A 逆时针方向旋转q 角得到点P ,(1)已知平面内点(A ,点B-,把点B 绕点A 逆时针旋转π3得到点P ,求点P 的坐标:(2)已知二次方程221+-=x y xy 的图像是由平面直角坐标系下某标准椭圆()222210+=>>x y a b a b绕原点O 逆时针旋转π4所得的斜椭圆C ,(i )求斜椭圆C 的离心率;(ⅱ)过点Q 作与两坐标轴都不平行的直线1l 交斜椭圆C 于点M 、N ,过原点O 作直线2l 与直线1l垂直,直线2l 交斜椭圆C 于点G 、H 理由.。

(完整版)圆锥曲线大题题型归纳,推荐文档

(完整版)圆锥曲线大题题型归纳,推荐文档

精心整理圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注4. 5. 1.2.3无关;45“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少?点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。

变式2、已知F 1,F 2为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|?|PF 2|的最大值; (2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值 题型二过定点、定值问题例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,),离心率为3,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=u u u r u u u r时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

圆锥曲线经典题型总结(含答案)

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b ya x (0ab >>),焦点在y轴上时2222b x a y +=1(0a b >>)。

(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

(完整)圆锥曲线大题题型归纳,推荐文档

(完整)圆锥曲线大题题型归纳,推荐文档

圆锥曲线大题题型归纳基本方法:1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等;a b c e p 2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4.点差法:弦中点问题,端点坐标设而不求。

也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式;2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。

这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、已知F 1,F 2为椭圆+=1的两个焦点,P 在椭圆上,且∠F 1 PF 2=60°,则△F 1 PF 2的面积为多少?2100x 264y 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1-1 已知分别是双曲线的左右焦点,是双曲线右支上的一点,且12,F F 223575x y -=P=120,求的面积。

12F PF ∠︒12F PF ∆处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

圆锥曲线大题题型分类归纳大全

圆锥曲线大题题型分类归纳大全

圆锥曲线大题题型归纳梳理圆锥曲线中的求轨迹方程问题解题技巧求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。

【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。

【例2.】已知点P 在椭圆1422=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 31=求动点M 的轨迹方程。

【例3.】已知圆),,(,)(:0236222B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。

【例4.】过点),(10的直线l 与椭圆1422=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。

巩固提升1. 在平面直角坐标系xOy 中,点()(),,,,4010B A 若直线02++-m y x 上存在点P ,使得,PB PA 21=则实数m 的取值范围为_________________.2. 已知()Q P ,,24-为圆422=+y x O :上任意一点,线段PQ 的中点为,M 则OM 的取值范围为________________.3. 抛物线x y C 42:的焦点为,F 点A 在抛物线上运动,点P 满足,FA AP 2-=则动点P 的轨迹方程为_____________________.4. 已知定圆,)(:100422=++y x M 定点),,(40F 动圆P 过定点F 且与定圆M 内切,则动圆圆心P 的轨迹方程为____________________.5. 已知定直线,:2-=x l 定圆,)(:4422=+-y x A 动圆H 与直线l 相切,与定圆A 外切,则动圆圆心H 的轨迹方程为____________________6. 直线033=+-+t y tx l :与抛物线x y 42=的斜率为1的平行弦的中点轨迹有公共点,则实数t 的取值范围为_________________.7. 抛物线y x 42=的焦点为,F 过点),(10-M 作直线l 交抛物线于B A ,两点,以BF AF ,为邻边作平行四边形,FARB 求顶点R 的轨迹方程。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

高三高考数学总复习《圆锥曲线》题型归纳与汇总

高三高考数学总复习《圆锥曲线》题型归纳与汇总

高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。

圆锥曲线题型归纳(经典含答案)

圆锥曲线题型归纳(经典含答案)

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( B )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( D )A.椭圆B.圆C.直线D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( B )A.椭圆B.圆C.直线D.点4. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 4 。

5. 选做:F 1是椭圆15922=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。

解:26||2||2||||||221-=-≥-+=+AF a PF a PA PF PA(二) 标准方程求参数范围1. 试讨论k 的取值范围,使方程13522=-+-k y k x 表示圆,椭圆,双曲线。

(略)2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( C ) A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3. 若方程1cos sin 22=+ααy x 表示焦点在y 轴上的椭圆,α所在的象限是( A ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. 方程231y x -=所表示的曲线是 椭圆的右半部分 .5. 已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 k>1(三) 待定系数法求椭圆的标准方程1. 根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26;114416922=+x y (2)长轴是短轴的2倍,且过点(2,-6);137148,113522222=+=+y x x y 或 (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求椭圆方程. 13922=+y x2. 简单几何性质1. 求下列椭圆的标准方程(1)32,8==e c ; (2)过(3,0)点,离心率为36=e 。

圆锥曲线10类大题梳理(解析版)

圆锥曲线10类大题梳理(解析版)

圆锥曲线大题梳理考情分析圆锥曲线问题是高考的热点问题之一,多数情况在倒数第二题出现,难度为中高档题型。

纵观近几年高考试卷,圆锥曲线的大题主要有以下几种类型:已知过定点的直线与圆锥曲线相交于不同两点,求直线方程或斜率、多边形面积或面积最值、证明直线过定点或点在定直线上等。

各种类型问题结构上具有一定的特征,解答方法也有一定的规律可循。

热点题型突破题型一:最值问题1(2024·安徽合肥·统考一模)已知抛物线C:x2=2py(p>0)的焦点为F 0,1,过点F的直线l与C交于A,B两点,过A,B作C的切线l1,l2,交于点M,且l1,l2与x轴分别交于点D,E.(1)求证:DE= MF;d1d(2)设点P是C上异于A,B的一点,P到直线l1,l2,l的距离分别为d1,d2,d,求2d2的最小值.【思路分析】(1)利用导函数的几何意义求得直线l1,l2的表达式,得出D,E,M三点的坐标,联立直线l与抛物线方程根据韦达定理得出 DE= MF;d1d2d2k=221+1≥2,可求出d d12d2(2)利用点到直线距离公式可求得【规范解答的最小值.】(1)因为抛物线C的焦点为F 0,1,所以p=2,即C的方程为:x2=4y,如下图所示:设点A x 1,y 1,B x 2,y 2,由题意可知直线l 的斜率一定存在,设l :y =kx +1 ,=y =联立 x kx 2 y 4+1得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4.11由x 2=4y ,得y =4x 2,y =2x ,所以l 1:y -y 1=x 1 x -x 1,即y =x 122x -x 14.2令y =0,得x =x 12x12,即D ,0 ,同理l 2:y =x 222x -x 24x22,且E ,0 ,1 1所以 DE =2 x 1-x 2=2 x 1+x 22-4x 1x 2=2k 2+1.x 122x 14x 22x -x -2x 24由y =y ==2y ,得 x =-k1,即M 2k ,-1 .所以 MF =4k 2+4=2 k 2+1,故 DE = MF .(2)设点P x 0,y 0,结合(1)知l 1:y -y 1=x12x -x 1,即l 1:2x 1x -4y -x 2=101因为x 2=4y 1,x 2=4y 00,所以d 1=4y -x 022x 1x 01-24x 1+16=0-2x 0-x 21 2x 1x42x 1+16x =1-x 0222x 1+4.同理可得d 2=x 2-x 022x 2+24,所以d 1d 2=x x 10- 222x 1+4-x ⋅2x 0222x 2+4x =1-2x 0x +x 21 + 0x x 22x 42x 122+4x + 1x 222 +16-4=kx -0+4 x 022k 322+1.又d =y kx 0+01-k 2+12=x 04kx 0+1-+k 21 4kx 0+2=x 04-4k 2+1,d 1所以d 2d 2-4=kx 0 -04+x 2232+k 2116⋅k 2+1 -2x 04kx 0 +42k =221+1≥2.当且仅当k =0时,等号成立;d21即直线l 斜率为0时,d 1d 2取最小值2;求最值及问题常用的两种方法:(1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决;(2)代数法:题中所给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值,求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等。

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。

2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。

3、圆锥曲线弦长问题弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4、定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5、最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6、轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。

定义法:(1)判断动点的运动轨迹是否满足某种曲线的定义;(2)设标准方程,求方程中的基本量(3)求轨迹方程相关点法:(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;(2)寻求关系式,x0=f(x,y),y0=g(x,y);(3)将x0,y0代入已知曲线方程;(4)整理关于x,y的关系式得到M的轨迹方程。

(完整word版)圆锥曲线题型总结

(完整word版)圆锥曲线题型总结

高三数学概念、方法、题型、易误点总结(八)八、圆锥曲线1。

圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值"与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支.如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是A .421=+PF PFB .621=+PF PFC .1021=+PF PF D .122221=+PF PF(2)方程8表示的曲线是_____(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y),则y+|PQ |的最小值是__ ___2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>).方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C同号,A ≠B)。

圆锥曲线大题题型总结

圆锥曲线大题题型总结

圆锥曲线大题题型总结在数学学科中,圆锥曲线是一个重要的概念。

它们由平面上一定点到一定直线的距离比的几何特征来定义。

而掌握圆锥曲线的性质和应用是许多数学问题的关键。

在国内高中数学教育中,圆锥曲线也是一个考点重、难度大的知识点。

下面将对圆锥曲线的大题题型进行总结。

一. 求曲线方程求解曲线方程是圆锥曲线的基本题型之一。

这类题目通常给出曲线上的若干点或者一些特征条件,要求求出曲线的方程。

常见的曲线方程有抛物线、椭圆和双曲线。

对于抛物线,题目中通常会给出焦点、准线等信息,要求求出抛物线的方程。

解题的关键是利用焦距的定义关系,以及抛物线的几何特性,进行方程的推导。

椭圆需要通过给出的焦点和离心率来确定,其方程的求解要点是利用椭圆的几何性质和椭圆的焦点位置来进行推断。

双曲线的方程求解也是一个常见的问题。

对于已知双曲线的焦点和离心率的情况,需要利用双曲线的几何性质和特征进行方程的推导。

以上三种曲线方程的求解方法都是基于焦点、准线和离心率等几何性质进行的。

二. 判断曲线类型判断给定的曲线是何种类型也是圆锥曲线大题中常见的一类题型。

这类题目通常给出曲线方程,要求判断其类型。

对于抛物线,常用的判断方法是根据方程的系数来判断抛物线的开口方向以及是否与坐标轴相交。

例如,当二次项系数为正时,抛物线的开口方向向上;当常数项为负时,抛物线与x轴相交。

判断椭圆和双曲线的类型则要利用离心率等几何性质。

椭圆的离心率小于1,双曲线的离心率大于1。

三. 曲线性质应用题利用曲线的性质进行应用题的解答也是圆锥曲线大题中常见的一类题型。

这类题目通常会结合实际问题,利用曲线的性质进行问题的求解。

比如,题目给出一条抛物线和一个点,要求求解从该点到抛物线的切线方程。

解答的关键是利用切线的几何性质和抛物线的方程,推导出切线方程。

另外,题目还可能给出一个曲线和一个点,要求求解过该点并且与曲线相切的直线方程。

解答的关键是利用切线和直线的几何性质,结合曲线方程进行推导。

(完整)(整理)圆锥曲线常考题型总结-配有大题及练习,推荐文档

(完整)(整理)圆锥曲线常考题型总结-配有大题及练习,推荐文档

圆锥曲线大综合第一部分 圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值的问题题型八:角度问题题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线 y = kx + m ,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1. 定义与轨迹方程问题2. 交点与中点弦问题3. 弦长及面积问题4. 对称问题5. 范围问题6. 存在性问题7. 最值问题8. 定值,定点,定直线问题第二部分 知识储备一.与一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 相关的知识(三个“二次”问题)1.判别式:2. 韦达定理:若一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 有两个不等的实数根 x 1, x 2 ,则,3. 求根公式:若一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 有两个不等的实数根 x 1, x 2 ,则x + x = - b1 2ax ⋅ x = c1 2 a ∆ = b 2 - 4acp p AB = 1+ k 2 x - x = (1+ k 2 )[(x + x )2 - 4x x ]( 或 AB = 1+ 1y - y )1 2 1 2 1 2k 2 12x =x 1 + x 1 , y = y 1 + y 22 2二.与直线相关的知识1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式2. 与直线相关的重要内容:①倾斜角与斜率: y = tan ,∈[0,) ;②点到直线的距离公式:d = Ax 0 + By 0 + C(一般式)或 (斜截式) A 2 + B 23. 弦长公式:直线 y = kx + b 上两点 A (x 1, y 1), B (x 2 , y 2 ) 间的距离:4. 两直线 l 1 : y 1 = k 1x 1 + b 1, l 2 : y 2 = k 2 x 2 + b 2 的位置关系:①5. 中点坐标公式:已知两点 A (x 1, y 1), B (x 2 , y 2 ) ,若点 M (x , y )线段 AB 的中点,则三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。

(完整版)圆锥曲线大题归类

(完整版)圆锥曲线大题归类

圆锥曲线大题归类•定点问题X2例1•已知椭圆C:孑+ /= 1(a>1)的上顶点为A,右焦点为F,直线AF与圆M : (x-3)2+ (y—1)2 = 3 相切.(1)求椭圆C的方程;(2)若不过点A的动直线I与椭圆C交于P, Q两点,且APAQ= 0,求证:直线I过定点,并求该定点的坐标.[解析]⑴圆M的圆心为(3,1),半径r = 3.由题意知A(0,1), F(c,0),x直线AF的方程为c+ y= 1,即x+ cy—c= 0,w解得c2= 2, a2= c2+ 1 = 3,x2故椭圆C的方程为3+y2= 1.(2)方法一:由=0知AP I AQ,从而直线AP与坐标轴不垂直,1 故可设直线AP的方程为y= kx+1,直线AQ的方程为y=—只+ 1.y= kx+ 1,联立x22整理得(1+ 3k2)x2+ 6kx= 0,3 + y2= 1,解得x= 0 或x= 1+;:2,―6k 1 ― 3 k2故点P的坐标为(1 + 3k2,1 + 3k2),6k k 2— 3同理,点 Q 的坐标为(QT 匚3,Q 品)k 2 — 3 1 — 3k 2k 2 + 3 ― 1 + 3k 2 k 2 — 16k — = 4k ,k 2 + 3— 1 + 3k 21•••直线i 过定点(o ,— 2).方法二:由=0知AP I AQ ,从而直线PQ 与x 轴不垂直,故可设直线I 的方程为y = kx + t (t 丰1),y = kx +1, 联立X 2 23+宀3整理得(1 + 3k 2)x 2 + 6ktx + 3(t 2— 1) = 0.—6ktx1 +x 汁碍, 设 P(X 1, y”,Q(x 2, y 2)则3t 2— 1(*)x1x2=7+3?,由△= (6kt)2 — 4(1 + 3k 2) x 3(t 2— 1)>0,得 3k 2>t 2— 1•由=0,得 =(冷,y 1 — 1) •(,y 2 — 1)= (1 +『)x 1x 2+ k(t — 1)(x 1 + X 2) + (t — 1)2 = 0,1将(*)代入,得t = — 1,•••直线i 过定点(0,—刁.3•••直线I 的斜率为•••直线I 的方程为y = k 2— 1 6k k 2 — 34k % — k 2+ 3) + k 2 +3,即y = k 2—1 1 4k x — 2.例2•已知抛物线C :寸=2px(p>0)的焦点F(1,0), O为坐标原点,A, B是抛物线C上异于0的两点.(1)求抛物线C的方程;1⑵若直线OA, 0B的斜率之积为—㊁,求证:直线AB过x轴上一定点.[解析](1)因为抛物线y2= 2px(p>0)的焦点坐标为(1,0),所以号二1,所以p =2.所以抛物线C的方程为y2= 4x.(2)证明:①当直线AB的斜率不存在时,设A(4, t), B(4,—t).1因为直线OA, OB的斜率之积为一刃t —t 1所以』= —q,化简得t2= 32.4 4所以A(8, t), B(8,—t),此时直线AB的方程为x= 8.②当直线AB的斜率存在时,设其方程为y= kx+ b, A(X A, y A), B(X B, y B),2y2= 4x,联立得化简得ky2—4y + 4b= 0.y= kx+ b,根据根与系数的关系得y A y B=4b,因为直线OA,OB的斜率之积为一2,所以y A^B=—2,2 x A x B 2y A y B即X A X B + 2y A y B = 0.即;壬 + 2y A y B= 0,解得y A y B = 0(舍去)或y A y B= —32所以y A y B =匸=—32,即b= —8k,所以y= kx —8k, y= k(x —8).综上所述,直线AB过定点(8,0).圆锥曲线中定点问题的两种解法(1) 引进参数法:引进动点的坐标或动线中系数为参数表示变化量, 再研究变化 的量与参数何时没有关系,找到定点.(2) 特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变 量无关. 二.定值问题X y例3•已知椭圆C:孑+ bj>= 1(a>b>0)的两个焦点分别为F i (— ,2,0),F 2「2,0),点M(1,0)与椭圆短轴的两个端点的连线互相垂直.导学号30072628(1) 求椭圆C 的方程;⑵过点M(1,0)的直线I 与椭圆C 相交于A , B 两点,设点N(3,2),记直线 AN , BN 的斜率分别为k 1, k 2,求证:k 1+ k 2定值. [解析](1)依题意,由已知得c = ,2,则a 2— b 2= 2,x 2 由已知易得b = |OM|= 1,所以a = .3,所以椭圆的方程为"3 + y 2^ 1. ⑵①当直线I 的斜率不存在时,不妨设 A(1,书,B (1,—¥),则k 1 + k 22 J6 2丄血2—3 2十 3=—2 — + —2 — = 2 为定值.②当直线I 的斜率存在时,设直线I 的方程为y = k(x — 1),依题意知,直线I 与椭圆C 必相交于两点,设A (X 1, y”, B (X 2, y 2), 冲 6k 2 3k 2 — 3 e则 x 1 + X 2= 3k 2 + 1, x 1x 2 = 3k 2+ 1,又 y 1 = k(X 1 — 1), y 2 = k(X 2— 1),y =k x —1 ,由x3+宀1得(3k 2 + 1)x 2 — 6/x + 3k 2— 3 = 0,所以k1+k2=3—1+3—2=2 — y 13 — X 2 + 2 — y 3 —X 13 — X 3 — X[2 — kx i —1] 3 — X 2 + [2 — kx 2— 1 ] 3— x i3 — x i 3— X 2 12— 2 x i + x ? + k[2x i x 2—4 x i + x 2 + 6]9— 3 x i + X 2 + X 1X 26k 2 3k 2 — 3 6k 212— 2X3k +1+ k[2 % 3k +1— 4X 3k^ + 6] 12 2k 2 + 1 c二 6k 2~~3k 2— 二 6 2k 2+ 1 二 2,9 — 3X3k +1+ 3k +1 综上,得k i + k 2为定值2. 例4 (2016北京理科) 求定值问题常见的方法(1) 从特殊入手,求出定值,再证明这个值与变量无关.(2) 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 三•探索性问题例5.(2015新课标全国U, 12分,理)已知椭圆C : 9x 2 + y 2= m 2(m>0),直 线I 不过原点O 且不平行于坐标轴,I 与C 有两个交点A ,B ,线段AB 的中点 为M.(1)证明:直线OM 的斜率与I 的斜率的乘积为定值;⑵若l 过点(m ,m ),延长线段OM 与C 交于点P ,四边形OAPB 能否为平 行四边形?若能,求此时l 的斜率;若不能,说明理由.[解析](1)设直线 l : y = kx + b (k M 0,0),A (x i ,y i ),B (x ,y 2),M (X M , y M ).将 y = kx + b 代入 9X 2 + y 2= m 2得(『+ 9)x 2 + 2kbx + b 2 — m 2= 0,故于是直线OM 的斜率kOM 二豐二-4即kOM k =- 9. 所以直线OM 的斜率与I 的斜率的乘积为定值.x i + X 2 — kb 2 二 k 2+ 9, y M = kx M + b = 9bk 2+ 9.⑵四边形OAPB 能为平行四边形.因为直线I 过点(m , m),所以I 不过原点且与C 有两个交点的充要条件是 k>0,心 3.9 由(1)得OM 的方程为y = — RX .设点P 的横坐标为X P .9由尸—宀得应 9/ + y 2= m 2k 2m 2 ikm_9k 2+ 81,即 x p — 3 &9.将点(m , m)的坐标代入 I 的方程得bm3— k,因此X M Y —3,.四边形OAPB 为平行四边形当且仅当线段 AB 与线段OP 互相平分,即X P=2X M .因为 k i >0, k i 丰3, i = 1,2,所以当I 的斜率为4— .7或4+ .7时,四边形OAPB 为平行四边形. X 2 y 2例6.已知椭圆C:孑+含=1(a>b>0)的右焦点为F(1,0),右顶点为A,且AF|(1)求椭圆C 的标准方程;⑵若动直线l : y = kx + m 与椭圆C 有且只有一个交点P ,且与直线x =4 交于点Q,问:是否存在一个定点M(t,0),使得=0.若存在,求出点M 的坐标; 若不存在,说明理由.[解析]⑴由 c = 1, a — c = 1,得 a = 2,二 b=>3,2 2故椭圆C 的标准方程为X +3=1.于是ikm3求+ 92X k k — 3 m 3 k 2+ 9, 解得 k i = 4— 7, k 2= 4+ . 7.y = kx + m , ⑵由 3X 2+ 4y 2= 12,消去 y 得(3 + 4k 2)x 2+ 8kmx + 4m 2— 12= 0,••• △= 64k 2m 2— 4(3+ 4k 2)(4m 2— 12)= 0,即 m 2 = 3 + 4k 2., 4k 2 3 前 z 4k 3、y p = kx p + m = — — + m = m ,即卩 p ( — m ,伸- ••• M(t,0), Q(4,4k + m),4k 3••• = (― m — t, m),=(4 — t,4k + m),4k 3 4k••• = (—^— t) • —t)+m • (4+ m)=t 2—4t +3+ m (t —1)=0 恒成立,•••存在点M(1,0)符合题意.故 t =1, 故 t 2—4t + 3= 0,即 t = 1.•••存在点M(1,0)符合题意.设 P(x p , y p ),则 X P =4km 3+ 4k 24k m ,y p = kx p + m =—空 + m = 3 m m 即P(-半m)-••• M(t,0), Q(4,4k + m),••=(—签—t , m )‘= (4 — t,4k + m),4k4k —1) • —1)+-(4+ m) = t 2— 4t + 3+ 4km (t —1)= 0恒成立,故 t =1, 故 t 2—4t + 3= 0,即 t = 1.四、取值范围问题x例7.(2015浙江,15分)已知椭圆+ 卄1上两个不同的点A , B 关于直线1 y = mx +2 对称.(1)求实数m 的取值范围;⑵求△ AOB 面积的最大值(O 为坐标原点).1[解析] ⑴由题意知 m 工0,可设直线 AB 的方程为y 二一冷乂 + b.由 消去 y ,得(2 + m^x 2 — 2b x + b 2— 1 = 0.因为直线 y =—三乂+ bx 2 4与椭圆2 + y 2 = 1有两个不同的交点,所以 △= — 2b 2+ 2 +帚2>0,①2mbm 2b设M为AB 的中点,则M (m +2, R ,1 m2 + 2代入直线方程y = mx + 2,解得b =— 2m 2 .② 由①②得m< — f 或m 〉-^.上2 +丄⑵令t = m € (—普^, 0)U (0,普),则且O 到直线AB 的距离d ^j==. 设厶AOB 的面积为S (t ),所以 —2t 2— ;2+ 2=子,当且仅当t 2 =殳时,等号成立•2 ___ 、/- 2t 4+ 2t 2 + 号故厶AOB 面积的最大值为_2_.|AB|= . t 2+ 1 • 1 ,x 2 V 2例8.已知圆x 2 + y 2= 1过椭圆孑+詁=1(a>b>0)的两焦点,与椭圆有且仅有x 2 2 2+y = 1, 1 u 尸—m x+ b ,S(t)= 2|AB | d =t 2+- t+2两个公共点,直线I : y = kx + m 与圆x 3 + y 2= 1相切,与椭圆孑+詁=1相交于 — —— 23A ,B 两点.记A OA?OB •且于U 4. (1) 求椭圆的方程; (2) 求k 的取值范围;(3) 求厶OAB 的面积S 的取值范围.解:(1)由题意知2c = 2,所以c = 1•因为圆与椭圆有且只有两个公共点,从而bx 2=1,故a = .2,所以所求椭圆方程为2 + y 2^ 1.(2)因为直线I : y = kx + m 与圆x 2 + y 2= 1相切,所以原点O 到直线I 的距离为是-1,-今u2 1(3)|ABf = (X 1-X 2)2+ (y 1-y 2)2= (1 + k 2)[(x 1 + X 2)2-4x 1X 2]二 2— 2疋+〔 2,由236 4 1 1< k 2< 1,得"2 = AB|<3.设△ OAB 的 AB 边上的高为 d ,贝U S = 2AB|d = 2AB|, 所以S < 2■.即△ OAB 的面积S 的取值范围是 专,2 .例9•已知椭圆E:彳+ y3 = 1的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A , M 两点,点N 在E 上, MA 丄NA.得(1 + 2k 2)x 2 + 4kmx + 2m 2- 2 = 0.设 A (X 1, y 1), B(x 2, y 2),则 X 1 + x 2 = —4km 1+ 2k 2, 2m 2— 2x1x2 二 G? "A=X 1X 2+ y 〔y 2 = (122k 2 +1+ k 2)X 1 x 2 + km(x 1 + X 2)+ m 2=仔? 2 3 1 由3^圧4,得2=1, 即卩k 的取值范围 =1, 即 卩 m 2= k 2 + 1.由y = kx + m ,⑴当t = 4, |AM|= |AN|时,求△ AMN的面积;⑵当2AM|=|AN|时,求k的取值范围.x y【解】(1)设M(x i, y i),则由题意知y i>0.当t= 4时,E的方程为+号=、. n1, A( —2, 0).由已知及椭圆的对称性知,直线AM的倾斜角为4.因此直线AMX y212的方程为y= x+ 2.将x=y —2代入4 + = 1得7y2—12y= 0.解得y= 0或y=〒,12 1 12 12 144所以y1 =—.因此△ AMN的面积S MMN = 2X 2^7 X-y = 药.x2(2)由题意知t>3, k>0, A( —t, 0).将直线AM的方程y= k(x+ . t)代入yy2t2k2—3t+ 3 = 1 得(3 + tk2)x2+ 2录tk2x + t2k2—3t = 0.由X1 •—*) = "3+lk^得为=t 1 + k22 k由2AM E IAN得穴二冇,即(k3—2)t= 3k(2k—1).当k= 3 2时上式不成立,因此3k 2k—1 y人十k3—2k2+ k—2 k—2 k2+ 1t-卞〒.t>3等价于k3 —2 - k3 -2 <0,即厂<0.由此得k3 —2<0,或k3—2>0, 解得3 2<k<2.因此k的取值范围是(32, 2).kz2 k—2>°,誹k—2<0,由题设知,直线AN的方程为y= —k(x+Jl),故同理可得五.最值问题卡左、右焦点分别是F i , F 2.以F i 为圆心、以3为半径的圆与以F 2为圆心、 以1为半径的圆相交,且交点在椭圆 C 上.(1)求椭圆C 的方程;x 2 y⑵设椭圆E :荷+ 4b 2= 1, P 为椭圆C 上任意一点,过点P 的直线y = kx + m 交椭圆E 于A , B 两点,射线PO 交椭圆E 于点Q.① 求器|的值;② 求△ ABQ 面积的最大值.解】(1)由题意知2a =4,则a = 2.又a =^,a 2-c 2二b 2,可得 b = 1,a 2 X 2 y 2⑵由⑴知椭圆E 的方程为16+ 4 = 1.由题意知Q(—入x,—入y . 因为弓+y o = 1,所以入=2,即|OQ|| = 2. 所以椭圆C 的方程为4 + y 2= 1.②设 A(X 1, y 1), B(x 2, y 2).将y = kx + m 代入椭圆E 的方程,可得(1 + 4k 2)x 2+ 8kmx + 4m 2 — 16= 0,由 40,可得 m 2<4 + 16k 2.① ①设P(x o , y o ), 1OQ1_ .|OP|_ 人2 2刊一入x —入y又 + 儿16 =1,即处 + y 0 = 1,因为直线y = kx + m 与y 轴交点的坐标为(0, m),所以△ OAB 的面积1 2 16k 2 + 4— m 2|m|S = 2|m||x1 — X2I = 一 1 + 4k 2将y = kX + m 代入椭圆C 的方程, 可得(1 + 4k 2)X 2 + 8kmx + 4m 2 — 4 = 0, 由0,可得m 2< 1 + 4k 2.② 由①②可知0<t w 1, 因此 S = 2「4 — 11= 2 . — t 2 + 4t , 故 S < 2 ,3.当且仅当t = 1,即m 2= 1 + 4k 2时取得最大值2,3. 由①知,△ ABQ 的面积为3S , 所以△ ABQ 面积的最大值为6.3. 例11.定圆M : (X +. 3)2 + y 2= 16,动圆N 过点F( 3, 0)且与圆M 相切, 记圆心N 的轨迹为E.①求轨迹E 的方程;贝U 有 X l + X 2 = 8km 1+ X 1X 2 = 4m 2 — 16 1+ 4k 2 .所以 x 〔 一 X 2I = 4 16k 2 + 4— m 2 1 + 4k 2 m 2 1 +4k 2 t. 216k 2+ 4— m 2m 2 1+ 4k 2 ^2 24— m 2 m 2 一 1+ 4k 2 1+②设点A , B , C 在E 上运动,A 与B 关于原点对称,且|AC| = |BC|,当△ ABC 的面积最小时,求直线 AB 的方程.⑵解:①••• F( 3,0)在圆M : (x + 3)2 + y 2= 16内,.••圆N 内切于圆M. ••• |NM|+ |NF|=4>|FM|,「.点N 的轨迹E 为椭圆,且2a = 4, c =. 3,二b = 1 ,二轨迹x 2E 的方程为4 + y 2= 1.②a.当AB 为长轴(或短轴)时,1S A ABC = 2|OC| AB|= 2.b .当直线AB 的斜率存在且不为0时,设直线AB 的方程为y = kx , A(X A ,X 2丄 2 d2 + y 2= 14 4k 2 y A ),联立方程 4得,x A 二 1+40 y A 二帀恳,:|°A|2= x A +y A 二y = kx 4 1 + k 2 1 4 1 + k 21+ 4k 2 •将上式中的k 替换为一R ,可得|OC|2= 0 + 4 .S\ABC = 2S ^AOC = |OA| OC|••• 1+ 4k 2 k 2 + 4 < 5 1 + R 2 8= 2 , • S A ABC >8,当且仅当1 + 4k 2= k 2 + 4,即k =±l 时等号成立,8 8 o此时△ ABC 面积的最小值是°.v 2>8,.・.A ABC 面积的最小值是 三 此时直线 5 5 5 AB 的方程为y =x 或y = — x. 4 1 + k 2 1+ 4k 2 •4 1 + k 2 k 2 + 4 4 1 + k 2 .1+ 4k 2 k 2 + 4。

高中数学圆锥曲线难题汇总(75道题)

高中数学圆锥曲线难题汇总(75道题)

高中数学圆锥曲线难题汇总1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为,求的离心率;(2)若直线在轴上的截距为,且,求,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点 为椭圆 : 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆 有且仅有一个交点.(1)求椭圆 的方程; (2)设直线与 轴交于 ,过点 的直线 与椭圆 交于不同的两点 ,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方x程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且(32,2)P 在直线l 的左上方. (1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过yAB#PNx=m O AxyOPB坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥; ¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O为中心,F 为右焦点的双曲线C的离心率2e =. (1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. (43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H. 是否存在m,使得对任意的⊥若存在,求m的值;若不存在,请说明理由.k>,都有PQ PH…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆6其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得6ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线大题题型归纳基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4. 点差法:弦中点问题,端点坐标设而不求。

也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。

这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例1、 已知F 1,F 2为椭圆2100x +264y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。

变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且12F PF ∠=120︒,求12F PF ∆的面积。

(2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值 题型二过定点、定值问题例2.(淄博市2017届高三3月模拟考试)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,)2,离心率为32,点A 为椭圆C 的右顶点,直线l 与椭圆相交于不同于点A 的两个点1122(,),(,)P x y Q x y . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当0AP AQ •=时,求OPQ ∆面积的最大值;(Ⅲ)若直线l 的斜率为2,求证:OPQ ∆的外接圆恒过一个异于点A 的定点.处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。

例3、(聊城市2017届高三高考模拟(一))已知椭圆()2222:10x y C a b a b+=>>的离心率为32,一个顶点在抛物线24x y =的准线上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,,M N 为椭圆上的两个不同的动点,直线,OM ON 的斜率分别为1k 和2k ,是否存在常数p ,当12k k p =时MON ∆的面积为定值若存在,求出p 的值;若不存在,说明理由.变式1、已知椭圆()2222:10x y C a b a b+=>>的焦距为1223,A A ,点为椭圆的左右顶点,点M 为椭圆上不同于12,A A 的任意一点,且满足1214A M A M k k ⋅=-.(I)求椭圆C 的方程:(2)已知直线l 与椭圆C 相交于P ,Q(非顶点)两点,且有11A P A Q ⊥. (i)直线l 是否恒过一定点若过,求出该定点;若不过,请说明理由. (ii)求2PA Q ∆面积S 的最大值.点评:证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明变式2、已知椭圆22221x y a b+=(a >b >0)的离心率为焦距为2.(1)求椭圆的方程;(2)过椭圆右焦点且垂直于x 轴的直线交椭圆于P ,Q 两点,C ,D 为椭圆上位于直线PQ 异侧的两个动点,满足∠CPQ=∠DPQ ,求证:直线CD 的斜率为定值,并求出此定值.变式3、(临沂市2017届高三2月份教学质量检测(一模))如图,椭圆C :()222210x y a b a b+=>>的离心率为32,以椭圆C 的上顶点T 为圆心作圆T:()()22210x y r r +-=>,圆T 与椭圆C 在第一象限交于点A ,在第二象限交于点B. (I)求椭圆C 的方程;(II)求TA TB ⋅的最小值,并求出此时圆T 的方程;(III)设点P 是椭圆C 上异于A ,B 的一点,且直线PA ,PB 分别与Y 轴交于点M ,N ,O 为坐标原点,求证:OM ON ⋅为定值.例4、设椭圆C :22221x y a b+=(a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e=12且过椭圆右焦点F 2的直线l 与椭圆C 交于M 、N 两点. (1)求椭圆C 的方程; (2)是否存在直线l ,使得若存在,求出直线l 的方程;若不存在,说明理由(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:为定值.变式1、(烟台市2017届高三3月高考诊断性测试(一模))如图,已知椭圆2222:1(0)x y C a b a b+=>>的左焦点F 为抛物线24y x =-的焦点,过点F 做x 轴的垂线交椭圆于,A B 两点,且3AB =. (1)求椭圆C 的标准方程;(2)若,M N 为椭圆上异于点A 的两点,且满足||||AM AF AN AFAM AN ••=,问直线MN 的斜率是否为定值若是,求出这个定值;若不是,请说明理由. 题型三“是否存在”问题例5、(泰安市2017届高三第一轮复习质量检测(一模))已知椭圆()222210x y C a b a b+=>>:经过点)2,1,过点A(0,1)的动直线l 与椭圆C 交于M 、N 两点,当直线l 过椭圆C 的左焦点时,直线l的斜率为2. (I)求椭圆C 的方程;(Ⅱ)是否存在与点A 不同的定点B ,使得ABM ABN ∠=∠恒成立若存在,求出点B 的坐标;若不存在,请说明理由.例6.【2016高考山东理数】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.例7、(滨州市2017届高三下学期一模考试)如图,已知DP y ⊥轴,点D 为垂足,点M 在线段DP 的延长线上,且满足DP PM =,当点P 在圆223x y +=上运动时. (1)当点M 的轨迹的方程;(2)直线:3(0)l x my m =+≠交曲线C 于,A B 两点,设点B 关于x 轴的对称点为1B (点1B 与点A 不重合),且直线A 与x 轴交于点E . ①证明:点E 是定点;②EAB ∆的面积是否存在的最大值若存在,求出最大值;若不存在,请说明理由.例8、(潍坊市2017届高三下学期第一次模拟)已知椭圆C 与双曲线221y x -=有共同焦点,且离心率为3(I)求椭圆C 的标准方程;(Ⅱ)设A 为椭圆C 的下顶点,M 、N 为椭圆上异于A 的不同两点,且直线AM 与AN 的斜率之积为-3. (i)试问M 、N 所在直线是否过定点若是,求出该定点;若不是,请说明理由; (ii)若P 为椭圆C 上异于M 、N 的一点,且MP NP =,求△MNP 的面积的最小值.点评:最值问题的方法:几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等。

变式2、(青岛市2017年高三统一质量检测)已知椭圆:Γ221x y a+=(1)a >的左焦点为1F ,右顶点为1A ,上顶点为1B ,过1F 、1A 、1B 三点的圆P 的圆心坐标为. (Ⅰ)求椭圆的方程;(Ⅱ)若直线:l y kx m =+(,k m 为常数,0k ≠)与椭圆Γ交于不同的两点M 和N . (ⅰ)当直线l 过(1,0)E ,且20EM EN +=时,求直线l 的方程;(ⅱ)当坐标原点O 到直线l 的距离为2时,求MON ∆面积的最大值. 题型五求参数的取值范围例9、(济宁市2017届高三第一次模拟(3月))如图,已知线段AE ,BF 为抛物线()2:20C x py p =>的两条弦,点E 、F 不重合.函数()01x y a a a =>≠且的图象所恒过的定点为抛物线C 的焦点. (I)求抛物线C 的方程;(Ⅱ)已知()12,114A B ⎛⎫- ⎪⎝⎭、,,直线AE 与BF 的斜率互为相反数,且A ,B 两点在直线EF 的两侧.①问直线EF 的斜率是否为定值若是,求出该定值;若不是,请说明理由. ②求OE OF 的取值范围.变式1、(德州市2017届高三第一次模拟考试)在直角坐标系中,椭圆1C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,其中2F 也是抛物线2C :24y x =的焦点,点P 为1C 与2C 在第一象限的交点,且25||3PF =.(Ⅰ)求椭圆的方程;(Ⅱ)过2F 且与坐标轴不垂直的直线交椭圆于M 、N 两点,若线段2OF 上存在定点(,0)T t 使得以TM 、TN 为邻边的四边形是菱形,求t 的取值范围. 小结解析几何在高考中经常是两小题一大题:两小题经常是常规求值类型,一大题中的第一小题也经常是常规求值问题,故常用方程思想先设后求即可。

解决第二小题时常用韦达定理法结合以上各种题型进行处理,常按照以下七步骤:一设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=mmy+n 的区别)二设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)三则联立方程组;四则消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)五根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”⇔OA OB ⊥⇔121K K •=-(提醒:需讨论K 是否存在)⇔0OA OB •=⇔12120x x y y +=②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题”⇔“向量的数量积大于、等于、小于0问题”⇔1212x x y y +>0;③“等角、角平分、角互补问题”⇔斜率关系(120K K +=或12K K =);④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等);⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);六则化简与计算;七则细节问题不忽略;①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.。

相关文档
最新文档