小船渡河问题
小船渡河问题
小船渡河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。
3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =d v 1(d 为河宽)。
(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。
(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。
确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。
【题型1】已知某船在静水中的速度为v 1=5 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,水流速度为v 2=3 m/s ,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v 2′=6 m/s ,船在静水中的速度为v 1=5 m/s 不变,船能否垂直河岸渡河?【答案】(1)20 s 2034 m (2)25 s (3)不能【解析】(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t =d v 1=1005s =20 s. 如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移为l =d 2+x 2,由题意可得x =v 2t =3×20 m =60 m ,代入得l =2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v 1=5 m/s ,大于水流速度v 2=3 m/s ,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v 1cos θ=v 2,cos θ=v 2v 1=0.6,则sin θ=1-cos 2 θ=0.8,船的实际速度v =v 1sin θ=5×0.8 m/s =4 m/s ,所用的时间为t =d v =1004s =25 s.(3)当水流速度v 2′=6 m/s 时,则水流速度大于船在静水中的速度v 1=5 m/s ,不论v 1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.【题型2】一小船在静水中的速度为3 m/s ,它在一条河宽为150 m ,水流速度为4 m/s 的河流中渡河,则该小船( )A .能到达正对岸B .渡河的时间可能少于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短位移渡河时,位移大小为150 m【答案】C【解析】因为小船在静水中的速度小于水流速度,所以小船不能到达正对岸,故A 错误;当船头与河岸垂直时渡河时间最短,最短时间t =d v 船=50 s ,故渡河时间不能少于50 s ,故B 错误;以最短时间渡河时,沿水流方向位移x =v 水t =200 m ,故C 正确;当v 船与实际运动方向垂直时渡河位移最短,设此时船头与河岸的夹角为θ,则cos θ=34,故渡河位移s =d cos θ=200 m ,故D 错误。
小船过河问题三种情况及其公式
小船过河问题三种情况及其公式
小船渡河三种情况公式推导是:
1、小船过江时的水流速度与船过江的时间无关,只与船的速度有关。
从船的速度都是用来过河的,而不是作为分速度来说,可以推导出沿河岸垂直过河是最短的过河方式,公式为t=s/v船。
2、当船速大于水速时,当前速度和船速的组合速度可以垂直于河岸。
当船速与流速的夹角为时,即当船向(-90)度方向向上游倾斜时,船可以垂直过河,此时的渡河时间可以表示为T=S/cos(-90)V 船。
3、如果满足流速大于船速的前提,流速和船速的组合速度不能垂直于河岸。
但不要忘了船的位移最短,就是画一个以船速的长度为半径,以速度的箭头末端为圆心的圆。
这时圆上有无数条切线,所以要求出速度初始位置的切线,也就是这条切线与最短位移重合,所以此时的公式是s=河宽*v水/v船。
小船渡河问题归纳总结
小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。
以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。
2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。
3. 河流速度:河流的流速,通常记为vs。
4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。
5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。
6. 渡河距离:船只在水面上实际行驶的距离。
二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。
2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。
3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。
三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。
2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。
3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。
-计算合速度的大小,使得船只能够准确到达指定地点。
四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。
2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。
(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..
考点四:小船渡河模型1.(1.(小船渡河问题小船渡河问题小船渡河问题))小船在200 m 宽的河中横渡,水流速度是2 m/s 2 m/s,小船在静水中的航速是,小船在静水中的航速是4 m/s.4 m/s.求:求:求:(1)(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)(2)要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin =d v 船=2004s =50 s. (2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α=v 水v 船=24=12,解得α=60°. 2、一小船渡河,河宽d =180 m 180 m,水流速度,水流速度v1v1==2.5 m/s.2.5 m/s.若船在静水中的速度为若船在静水中的速度为v2v2==5 m/s 5 m/s,求:,求:,求: (1)(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头向上游偏30° 24 3 s 180 m3、已知某船在静水中的速率为v1v1==4 m/s m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m 100 m,河水的流动速度为,河水的流动速度为v2v2==3 m/s 3 m/s,方向与河岸平行,方向与河岸平行,方向与河岸平行..试分析:试分析:(1)(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?是多大?(2)(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =d v1sin α. 显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin =d v1=1004s =25 s 船的位移为l =v 21+v 22tmin =42+32×25 m=125 m 船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m=75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ=v2v1=34,θ=arccos 34. 船的实际速度为v 合=v 21-v 22=42-32 m/s =7 m/s 故渡河时间:t′=d v 合=1007 s =10077 s. 答案 (1)t=25s ,x=75m ,l=125m (2)t=10077s 4、河宽60 m 60 m,水流速度,水流速度v1v1==6 m/s 6 m/s,小船在静水中的速度,小船在静水中的速度v2v2==3 m/s 3 m/s,则:,则:,则:(1)(1)它渡河的最短时间是多少?它渡河的最短时间是多少?它渡河的最短时间是多少?(2)(2)最短航程是多少?最短航程是多少?最短航程是多少?答案 (1)20 s (2)120 m5.(单选单选))一小船在静水中的速度为3 m/s 3 m/s,它在一条河宽为,它在一条河宽为150 m 150 m,水流速度为,水流速度为4 m/s 的河流中渡河,则该小船该小船( ( ). 答案答案 CA .能到达正对岸.能到达正对岸B B B.渡河的时间可能少于.渡河的时间可能少于50 s甲 乙 AC .以最短时间渡河时,它沿水流方向的位移大小为200 mD 200 m D.以最短位移渡河时,位移大小为.以最短位移渡河时,位移大小为150 m6. 6.一只小船在静水中的速度为一只小船在静水中的速度为5 m/s 5 m/s,它要渡过一条宽为,它要渡过一条宽为50 m 的河,河水流速为4 m/s 4 m/s,则,则,则( ( ) ) 答案答案 CA.A.这只船过河位移不可能为这只船过河位移不可能为50 mB.B.这只船过河时间不可能为这只船过河时间不可能为10 sC.C.若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变D.D.若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变7.(7.(运动的合成和分解运动的合成和分解运动的合成和分解))某河宽为600 m 600 m,河中某点的水流速度,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s 4 m/s,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是( ( ) ) 答案答案 ADA.A.船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直B.B.船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线C.C.渡河的最短时间为渡河的最短时间为240 sD.D.船离开河岸船离开河岸400 m 时的速度大小为2 5 m/s8. ( (多选多选多选))小船横渡一条两岸平行的河流,船本身提供的速度小船横渡一条两岸平行的河流,船本身提供的速度((即静水速度即静水速度))大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ( ) ) 答案答案 ACA .越接近河岸水流速度越小.越接近河岸水流速度越小B .越接近河岸水流速度越大.越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短.无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响.该船渡河的时间会受水流速度变化的影响 9. ( (单选单选单选))有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为同,则小船在静水中的速度大小为( ( ) ) 答案答案 BA.kv k2k2--1B.v 1-k2C.kv 1-k2D.v k2k2--1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=d v0,回程渡河所用时间t2=d v 20-v2.由题知t1t2=k ,联立以上各式得v0=v1-k2,选项B 正确,选项A 、C 、D 错误. 10. 10. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为(单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为u ,划船速度为v ,出发时两船相距H 332,甲、乙船头均与岸边成o 60角,且乙船恰好能直达对岸的A 点,则下列判断正确的是点,则下列判断正确的是(( D )A .甲、乙两船到达对岸的时间不同.甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇.两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸点右侧靠岸D .甲船也在A 点靠岸点靠岸11.11.如图所示,一艘轮船正在以如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1v1==3 m/s 3 m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)(1)发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;(2)(2)发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2=v2+v 21=42+32 m/s =5 m/s ,设v 与v2的夹角为θ,则cos θ=v v2=0.8.(2)熄火前,船的牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.12.如图所示,河宽如图所示,河宽d =120 m 120 m,设小船在静水中的速度为,设小船在静水中的速度为v1v1,河水的流速为,河水的流速为v2.v2.小船从小船从A 点出发,在渡河时,船身保持平行移动若出发时船头指向河对岸上游的B 点,经过10 min 10 min,小船恰好到达河正对岸的,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min 8 min,小船到达,小船到达C 点下游的D 点.求:求:(1)(1)小船在静水中的速度小船在静水中的速度v1的大小;的大小;(2)(2)河水的流速河水的流速v2的大小;的大小;(3)(3)在第二次渡河中小船被冲向下游的距离在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1=d tmin =12060×8m/s =0.25 m/s. (2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =d v1sin α,所以sin α=d v1t=0.8,故v2=v1cos α=0.15 m/s. (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。
小船渡河问题
运动的合成与分解的应用
小船渡河问题与绳拉物牵连速度问题
合运动与分运动有什么关系?
同时性:
独立性: 等效性: 同一性:
运动的合成和分解的应用 1.小船渡河
例1:一艘小船在宽为d的河中横渡 到对岸,已知水流速度是v水,小船 在静水中的速度是v船,求: (1)当v船>v水时,欲使航行距离 最短,船应该怎样渡河?渡河时间 多长?
小试牛刀
• 某人乘船横渡一条小河,船速和水速
一定,且船速大于水速,若渡河的最
短时间为t1,用最短位移渡河的时间为
t1 1 t t2,则水速与船速之比为__________ 2
2
V船
d
θ
(一)渡河时间探究
分析:假设船在静水中渡河,我们可以把v船如
图分解,从图上可以看出:真正起到渡河效果
的是v船在垂直于河岸方向上的分速度v1,故船
d d 在静水中的渡河时间为:t v v sin 1 船
V船
V1 d θ V2
注意:
① θ=900时,即船头垂直对岸行驶时,渡 d 河时间最短,且最短时间为: t
s1
200m
s
s1 200 t 50s 解: vb 4
s1 vbt 200m s2 vr t 100m
Vb V s2 Vr
s s s2 223.6m
2 1 2
解:小船该向上游与河岸 s1
200m
Vb α(
s V s2 Vr
成α行驶
vr 1 cos vb 2 60
v船
v船 v船
v水
v水
v v船 船 v船
v船
θ θ
小船渡河问题分析及模型求解方法总结
小船渡河问题分析及模型求解方法总结小船渡河问题是一种经典的约束规划问题,它可以应用在工程实践中,最近几年受到了广泛的关注。
它的本质是将一组人、物从一岸渡到另一岸,要求每条船上的人和物的数量不能超过船的最大载重量,同时保证每个人和物都安全地渡河。
此外,小船渡河问题还要求尽可能地减少渡河次数(使用最少的船来渡河)。
小船渡河问题可以用代数式描述为:在一条河上有n 个人和物,分别用变量 Xi (i=1,2,…,n)表示;n个人和物要渡河,每条小船的最大载重量为C,小船的装载过程有以下几个约束:(1)t每条船上的人数和物品数S必须小于C,即S≤C(2)t每个人和物都必须在一次渡河中安全渡河,即∑Xi≤C(3)t每个人和物都必须通过渡河,即Xi≥1 (i=1,2,…,n)另外,问题还要求尽可能地减少渡河次数,即最小化Z=∑Xi(i=1,2,…,n)对于小船渡河问题,模型求解可以采用禁忌搜索法、遗传算法、人工神经网络、动态规划、贝叶斯网络等多种方法进行求解。
禁忌搜索法是一种模拟退火算法,具有搜索范围大、解空间大、可以接受较差解等优点,是一种非常有效的求解小船渡河问题的方法。
它根据小船渡河问题的特点,采用选择最优方案的操作,让解在解空间内搜索,人工调整算子以达到解的可控性。
此外,禁忌搜索法还可以设置“禁忌表”来限制未来的搜索,从而更好地改进搜索效率。
遗传算法是一种基于自然进化的模拟算法,可以用来求解小船渡河问题,它将解的搜索用种群的行为模拟,具有全局搜索的能力,能够有效的利用历史信息,可以得到比较满意的解,但局限在算法的参数调整,这使得实际应用中还存在改进的空间。
人工神经网络是一种机器学习技术,可以用来求解小船渡河问题,它是由输入、隐藏和输出三层组成,输入层使用小船渡河数据,每个神经元代表一条小船;隐藏层以及输出层使用激活函数,用来检测小船数量,以及小船上的总人和物数量。
通过训练可以获得一个局部最优的解,它比较适用于小规模的小船渡河问题,但对于大规模问题,效果可能不太好。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
小船渡河、斜牵引运动和关联速度问题 解析版
小船渡河、斜牵引运动和关联速度问题【考点归纳】考点一:过河最短问题考点二:船速大于水速时的最短位移问题考点三:船速小于水速时的最短位移问题考点四:小船渡河的迁移问题考点五:“关联”速度问题考点六:斜牵引运动【技巧归纳】一:“关联”速度问题的处理在实际生活中,常见到物体斜拉绳(或杆)或绳(或杆)斜拉物体的问题.规律:由于绳(或杆)不可伸长,所以绳(或杆)两端所连物体的速度沿着绳(或杆)方向的分速度大小相同.例如,小车通过跨过滑轮的绳牵引小船B ,某一时刻绳与水平方向的夹角为θ,如图所示.小船速度v B 有两个效果(两个分运动):一是沿绳方向的平动,二是垂直绳方向的转动.将v B 沿着这两个方向分解,v 1=v B cos θ=v A ,v 2=v B sin θ.二:小船渡河问题渡河时间最短和航程最短两类问题:1.关于最短时间,可根据运动等时性原理由船对静水的分运动时间来求解,由于河宽一定,当船对静水速度v 1垂直河岸时,如图所示,垂直河岸方向的分速度最大,所以必有t min =dv 1.2.关于最短航程,一般考察水流速度v 2小于船对静水速度v 1的情况较多,此种情况船的最短航程就等于河宽d ,此时船头指向应与上游河岸成θ角,如图所示,且cos θ=v 2v 1;若v 2>v 1,则最短航程s =v2v 1d ,此时船头指向应与上游河岸成θ′角,且cos θ′=v1v 2.技巧规律总结:1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。
3.三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽)。
(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d。
船头指向上游与河岸夹角为α,cosα=v2 v1。
(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河。
小船渡河模型
小船渡河模型一、模型建构1、小船渡河问题:小船运动时一个方向上的位移不变,求解最短运动时间和最小位移。
2、两类问题第一类:静水船速大于水流速度一条河宽度为L,水流速度为为v水, 已知船在静水中的航速v船,v 水<v船,(1)渡河最短时间?(2)渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系船速在y轴方向:v y=v船sinθ,渡河所需的时间:t=L/v y=L/v船sinθ在L、v船一定时,t随sinθ增大而减小当θ=90时,sinθ=1,最大,即船头与河岸垂直时,渡河时间最短t min=L/v船船的合速度v的方向与河岸垂直时,渡河的最小位移即河的宽度L。
沿河岸方向的速度分量:v x=v船cosθv水<v船时,v水=v x=v船cosθ即cosθ=v水/v船v合=v船sinθ垂直河岸,位移最小等于河宽L。
一、解题思路:1、沿河岸和垂直河岸建立坐标系2、比较船速沿河岸分速度与水速关系3、判断小船能否垂直渡河4、列方程求最小位移和渡河时间二、解题方法:运动的合成与分解三、解题关键点:1、合理分解速度2、确定渡河位移最小时船速的方向四、解题易错点1、渡河最短时间与水速和船速的大小关系无关2、静水船速小于水流速度时,最小第二类:静水船速小于水流速度一条河宽度为L,水流速度为为v水,已知船在静水中的航速v船,v 水>v船,渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系沿河岸方向的速度分量:v x=v船cosθv水>v船时,v x始终小于v水即v合不会垂直河岸,不能垂直渡河以v水的矢尖为圆心,v船为半径画圆,当与圆相切时α角最大。
α角越大,船到下游的距离x越短。
此时sinα=v船/v水,船的最短航程为X m in=L/sinα=Lv船/v水二、例题精析例题、河宽60m,水流速度v1=2m/s,小船在静水中速度v2=3m/s,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?【解答】(1)、当静水速的方向与河岸垂直时,渡河时间最短,最短时间t===20s;(2)、船在静水中的速度v2=3m/s,大于水流速度v1=2m/s,因此当船的合速度垂直河岸时,则渡河位移最小,即为河宽60m;三、针对训练1.甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成θ角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A.甲乙船不可能同时到达对岸B.若仅是河水流速v0增大,则两船的渡河时间都变短C.不论河水流速v0如何改变,只要适当改变θ角甲船总能到达正对岸的A点D.若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L2.一只小船渡过两岸平行的河流,河中水流速度各处相同,且恒定不变,方向平行于河岸,小船的初速度均相同,且船头方向始终垂直于河岸,小船相对于水分别做匀加速、匀减速和匀速直线运动,其运动轨迹如图所示,下列说法错误的是()A.沿AC和AD轨迹小船都是做匀变速运动B.AD是匀减速运动的轨迹C.沿AC轨迹渡河所用时间最短D.小船沿AD轨迹渡河,船靠岸时速度最大3.某人划船横渡一条河,河水流速处处相同且恒定,船的划行速率恒定。
(完整版)小船渡河问题练习题大全
小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。
人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。
问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。
《小船渡河问题》 知识清单
《小船渡河问题》知识清单在物理学中,小船渡河问题是一个经典且有趣的运动学问题,它涉及到速度的合成与分解,对于理解物体的运动规律有着重要的意义。
下面就让我们一起来详细探讨一下小船渡河问题。
一、问题描述通常情况下,小船渡河问题的场景是这样的:小船在宽度一定的河流中渡河,船头的指向可以改变,水流速度恒定。
我们需要研究小船如何以最短的时间渡河、如何以最短的位移渡河,以及在给定条件下小船的实际渡河路径等。
二、基本概念1、合速度小船在水中的实际速度是由小船自身的速度(船头指向的速度)和水流速度合成的,这个合成的速度称为合速度。
2、分速度小船自身的速度和水流速度分别称为分速度。
三、常见类型1、最短时间渡河当船头垂直于河岸时,小船渡河时间最短。
此时,渡河时间 t = d/ v 船(d 为河宽,v 船为小船在静水中的速度)。
因为在垂直河岸的方向上,小船的速度分量最大,所以能在最短时间内到达对岸。
2、最短位移渡河(1)当 v 船> v 水时,合速度可以垂直于河岸,此时渡河位移最短,等于河宽 d 。
(2)当 v 船< v 水时,无论船头指向如何,合速度都无法垂直于河岸,此时要使渡河位移最短,船头应斜向上游,并且与合速度的方向垂直。
四、速度的合成与分解这是解决小船渡河问题的关键方法。
我们要根据平行四边形定则,将小船的速度和水流的速度进行合成与分解。
例如,假设小船在静水中的速度为 v 1 ,水流速度为 v 2 。
以小船的速度 v 1 的方向为邻边,水流速度 v 2 的方向为对边,作平行四边形,那么平行四边形的对角线就是小船的实际速度。
在分解速度时,通常将速度分解为沿着河岸方向和垂直河岸方向的两个分速度。
沿着河岸方向的速度影响小船在河岸方向上的移动距离,垂直河岸方向的速度影响小船渡河的时间。
五、实例分析假设河宽为 100 米,小船在静水中的速度为 5m/s,水流速度为3m/s。
1、求最短时间渡河船头垂直河岸,t = 100 / 5 = 20s 。
小船渡河和关联速度问题课件
缺点
数值模拟和仿真需要一定的计 算资源和时间,同时模型的建 立和方程的求解也可能存在误 差和不确定性,需要谨慎处理
。
适用范围
数值模拟和仿真适用于各种小 船渡河问题,包括静水、急流 、多船等情况,同时也可以用 于其他相关问题的研究和分析
。
04
小船渡河问题的实际应用 和案例分析
实际应用中的小船渡河问题
小船渡河问题的分类和特点
小船渡河问题可以分为垂直渡河和 斜线渡河两种情况。
斜线渡河:小船以一定的角度θ行驶 ,需要同时考虑水流速度v1和小船 速度v0的影响。
垂直渡河:小船以垂直方向行驶, 需要克服水流速度v1的影响。
小船渡河问题的特点是多因素影响 ,包括水流速度、小船速度、航向 角度等。
02
小船渡河问题的数学模型 和解析
小船渡河和关联速度问题课 件
2023-11-01
目录
• 小船渡河问题概述 • 小船渡河问题的数学模型和解析 • 小船渡河问题的数值模拟和仿真 • 小船渡河问题的实际应用和案例分析 • 小船渡河问题的解决方案和建议
01
小船渡河问题概述
问题的起源和重要性
小船渡河问题起源 于实际生活中的运 输问题,具有重要 的现实意义。
案例分析二:某水库中的小船渡库问题
水库情况
某水库面积约为1平方公里,平均水 深约为30米,水流平缓。
小船情况
小船与河流中的小船类似,但可能 更加适应水库的环境。
渡库时间
由于水库面积较大,渡库时间可能 会更长,约为20分钟到30分钟。
安全问题
由于水库较深,小船在渡库过程中 可能会遇到水下障碍物或暗流,需 要注意安全问题。
小船渡河问题对于 理解物理学中的运 动、力和速度等概 念具有重要意义。
小船渡河练习题及答案
小船渡河练习题及答案在生活中,我们常常遇到许多需要解决问题的情况,而解决问题的能力和智慧正是我们成长的基石。
小船渡河练习题作为一种常见的逻辑思维训练题,可以帮助我们锻炼思维的灵活性和解决问题的能力。
下面将为大家介绍一些关于小船渡河的练习题以及相应的答案。
题目一:小船渡河问题有一对夫妇和两个小孩需要渡河,河边只有一条只能承载两人的小船。
夫妇需要船带回来,而且小孩之间不能独自在河边,夫妇之间也不能独自在河边。
请考虑一种渡河方案,使得所有人都成功渡河。
解答:首先,夫妻一起渡河,然后丈夫返回,而妻子和其中一个小孩留在对岸。
随后,丈夫从河对岸返回,然后带着另一个小孩一起渡河。
接下来,丈夫留在对岸,而妻子返回河边。
最后,妻子和其中一个小孩一起渡河,完成所有人的渡河任务。
题目二:加入限制条件在之前的小船渡河问题的基础上,加入以下限制条件:1. 大家都需要戴口罩。
2. 大家每次渡河都需要保持安全距离(至少1米)。
解答:在考虑口罩和安全距离的情况下,解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回。
然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回。
最后,夫妻一起上船,丈夫将妻子送回对岸后返回。
在整个过程中,每个人都要佩戴口罩,并在上下船和接触时保持安全距离,以确保安全。
题目三:时间限制在之前的小船渡河问题中,加入以下时间限制条件:1. 整个渡河过程需要在10分钟内完成。
2. 每次通行船程不能超过5分钟。
解答:这个问题需要考虑每次船行的时间。
解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回(用时5分钟)。
然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回(用时5分钟)。
最后,夫妻一起上船,丈夫将妻子送回对岸后返回(用时5分钟)。
通过按照这个方案行动,整个渡河任务可以在10分钟内完成。
通过以上的小船渡河练习题,我们可以锻炼自己的逻辑思维和问题解决能力。
无论是在日常生活中还是工作中,这种能力都是非常重要的。
高一物理小船渡河问题知识点
高一物理小船渡河问题知识点
嘿,朋友们!今天咱来聊聊高一物理里超有意思的小船渡河问题呀!
你想想看,小船在河里要去到对岸,这就好像你要去一个你特别想去的地方,可不能瞎走对吧!这里面的门道可不少呢。
先说最短渡河时间,那就是让船头直直地指向对岸呀,就像你目标明确地直接朝着目的地冲刺一样!比如说,小船速度是 5 米每秒,河宽 20 米,那最短渡河时间不就是 20 除以 5 等于 4 秒嘛!
还有最短渡河位移呢!这就好比你想走最短的路到达目的地。
如果水流速度比较小,那小船可以斜着开,找到那个最合适的角度,让渡河的位移最短。
就好像你要避开一些障碍,找到最佳路线一样!比如水流速度是 3 米每秒,小船速度是 4 米每秒,那通过计算就能找到那个神奇的角度啦!
哎呀,这小船渡河问题是不是特别有趣呀!真的超级神奇的!我觉得学物理就是这么有意思,能发现好多生活中的奇妙现象呢!大家一定要好好学物理呀!。
小船渡河问题归纳总结
小船渡河问题归纳总结引言小船渡河问题是一个经典的逻辑问题,通常用于考察人们在限制条件下寻找解决办法的能力。
本文将对小船渡河问题进行归纳总结,包括问题背景、常见解法以及相关思考等内容。
问题背景小船渡河问题通常描述为:有一条河流,一只小船和一些人要从一岸渡到对岸。
然而,根据以下限制条件,需找到一种方法满足所有人的渡河需求。
限制条件: 1. 小船每次只能搭载一至两个人; 2. 如果岸上有若干人,其中有一人在场,则可以使用小船; 3. 在任意一岸,如果岸上有人比待渡人数少,则小船必须离开,并将其他人带往对岸。
基本解法基本解法是指最简单且最直接的小船渡河问题解决方法。
1.初始状态下,将所有人和小船都放在河的一侧。
2.选定一种策略,例如每次渡船都尽量多带人,即每次渡船都将小船上的人数最大化。
3.重复以下步骤,直至所有人和小船都到达对岸:–将小船上的一至两个人带到对岸;–如果岸上有人数少于待渡人数的一侧,则将小船返回,将人带往对岸;–如果岸上没有人数少于待渡人数的一侧,则将小船返回并不带任何人。
4.完成渡河任务。
变体解法除了基本解法外,还有一些变体解法用于增加问题的难度,考察解决问题的灵活性和创造力。
以下是一些常见的变体解法。
1. 增加障碍物在河流中增加障碍物,如岩石、鳄鱼等,限制小船的移动。
解决这个问题需要额外的策略和判断。
2. 不同速度的人员假设不同的人员具有不同的渡河速度,解决这个问题需要合理安排人员的搭乘顺序,以达到最短的总渡河时间。
3. 具有特殊技能的人员假设某些人员具有特殊技能,例如划船或拆除障碍物等,解决这个问题需要合理利用特殊技能,提高渡河效率。
思考与拓展小船渡河问题是一个具有挑战性的逻辑问题,可以引发一些思考和拓展。
1.如何扩展问题规模?如果人员较多、小船的承载能力不同或对应岸上的人数限制不同,如何解决渡河问题?2.如何应用算法解决小船渡河问题?例如,可以使用图论中的最短路径算法来解决渡河问题。
小船过河问题的代数证明
小船过河问题的代数证明一、小船过河问题基本原理回顾。
1. 合速度与分速度的关系。
- 小船在静水中有一个速度v_船,水流有一个速度v_水。
当小船过河时,小船的实际运动是船在静水中的运动与水流运动的合运动。
- 根据平行四边形定则,小船的实际速度v = √(v_船)^2+v_{水^2}(当v_船与v_水垂直时)。
2. 渡河时间与渡河位移。
- 渡河时间t=(d)/(v_船)sinθ(d为河宽,θ为v_船与河岸的夹角),当sinθ = 1,即船头垂直河岸渡河时,渡河时间t=(d)/(v_船)最短。
- 渡河位移s=√(d^2)+x^{2},其中x = v_水t(x为小船沿水流方向的位移)。
当v_船cosθ=v_水时,渡河位移最小。
二、题目与解析。
1. 一条宽度为d = 100m的河,水流速度v_水=3m/s,船在静水中的速度v_船=5m/s。
求小船以最短时间渡河时的渡河时间和渡河位移。
- 解析:- 当船头垂直河岸渡河时,渡河时间最短,t=(d)/(v_船)=(100)/(5)=20s。
- 此时沿水流方向的位移x = v_水t=3×20 = 60m。
- 渡河位移s=√(d^2)+x^{2}=√(100^2)+60^{2}=√(10000 +3600)=√(13600)=20√(34)m。
2. 河宽d = 80m,水流速度v_水=2m/s,船在静水中的速度v_船=4m/s,求小船渡河的最小位移。
- 解析:- 设船头与上游河岸夹角为θ,要使渡河位移最小,则v_船cosθ = v_水。
- 已知v_水=2m/s,v_船=4m/s,则cosθ=frac{v_水}{v_船}=(2)/(4)=(1)/(2),θ = 60^∘。
- 渡河位移s = d = 80m。
3. 河宽d = 120m,水流速度v_水=4m/s,船在静水中的速度v_船=3m/s,求小船渡河的最短时间和此时的渡河位移。
- 解析:- 最短时间t=(d)/(v_船)=(120)/(3)=40s。
《小船渡河问题》课件
当船速和水速垂直时,实际航线偏离最小,此时渡河时间最短。
03
渡河问题的解决方案
船头垂直于河岸渡河
船头垂直于河岸时,船的合速度方向即为船头指向,与河岸垂直。此时,船渡河时 间最短,但船的位移不是最小。
船渡河时间等于河宽除以船在静水中的速度。
船的位移等于船在静水中的速度与水流速度的合速度在垂直于河岸方向上的投影。
科学实验中的应用
物理实验
在流体力学实验中,渡河问题常常被用来模拟和研究流体动力学现象,如水流的阻力、流速等问题。
生物学实验
在生态学研究中,渡河问题也被用来模拟和研究物种迁移、基因传播等现象,帮助科学家理解生物多 样性的形成和演化。
05
小船渡河问题的思考与启示
小船渡河问题中的哲学思考
自然规律的客观性
水速对渡河的影响
水速越大,实际航线偏离越少
当水速大于船速时,船头斜向下游,实际航线偏离越少。
水速越小,实际航线偏离越多
当水速小于船速时,船头垂直河岸,实际航线偏离越多。
船速与水速的相互作用
船速与水速相等时,船头方向任意
当船速和水速相等时,船头方向可以任意选择,渡河时间不变。
船速与水速垂直时,实际航线偏离最小
战术部署
在军事行动中,渡河点常常成为重要 的战术支点。通过控制渡河点,可以 有效地分割敌军,实现各个击破。
日常生活中的应用
竹筏等水上工具的使 用,使得人们可以方便地渡过河 流。
救援行动
在洪涝灾害等紧急情况下,渡河 成为救援人员和受困群众的重要 通道,及时的救援可以大大降低 灾害损失。
船的渡河位移和时间都介于船 头垂直于河岸和船头斜向下游 之间。
在这种情况下,船的位移和时 间都大于船头垂直于河岸渡河 的情况。
小船渡河问题知识点总结
小船渡河问题知识点总结小船渡河问题通常涉及到数学逻辑、图论和排列组合等方面的知识。
解决这类问题需要玩家具备一定的数学逻辑能力,能够对问题进行分析、归纳和推理。
同时,还需要注意到一些常见的解题技巧和方法,比如状态空间搜索、限制条件推理和剪枝等。
以下是小船渡河问题的一些关键知识点总结:1. 状态空间搜索:小船渡河问题实质上是一个状态空间搜索问题。
在这个问题中,状态空间可以表示为一个状态图,其中每个节点代表一个状态,每条边代表一次渡河操作。
玩家需要通过搜索状态空间,找到一条能够满足所有条件的路径,使得所有的乘客都能够安全地渡河。
2. 限制条件推理:在解决小船渡河问题时,通常会存在一些限制条件,比如小船的容量、乘客之间的矛盾关系等。
玩家需要通过对这些限制条件进行推理和分析,找到一种合理的解决方法。
通常可以利用逻辑推理或者排除法,逐步缩小解空间,从而找到一个满足所有条件的解答。
3. 剪枝技巧:在搜索状态空间时,通常会遇到一些无效操作或者不必要的搜索路径。
玩家可以通过一些剪枝技巧,比如最优先搜索、启发式搜索等,来避免不必要的搜索,从而提高解题效率。
4. 数学逻辑:小船渡河问题还涉及到一些数学逻辑方面的知识,比如组合数学、排列组合等。
通过对乘客的数量、小船的容量等进行数学分析和推理,可以更好地理解和解决这类问题。
5. 图论知识:在某些小船渡河问题中,可以将问题建模为图论问题,通过图论的知识和方法来解决。
比如可以将渡河过程建模为一个图,通过图的遍历和路径搜索来解决问题。
总之,小船渡河问题是一个涉及到数学逻辑、图论和排列组合等知识点的经典问题。
通过掌握这些知识点和解题技巧,可以更好地理解和解决小船渡河问题,提高解题效率。
同时,这类问题也可以培养玩家的逻辑思维能力和解决问题的能力。
人教高中物理 必修二 5.1 小船渡河模型(含答案)
人教高中物理必修二 5.1 小船渡河模型(含答案)运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v(d为河宽).1②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v.1船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流的大小情况用三角形法速度v水则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s905m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是() A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线C.船在河水中的加速度大小为0.4 m/s2D.船在河水中的最大速度是5 m/s 答案 C解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005s =20 s ,A 错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010m /s 2=0.4 m/s 2,同理x =50 m 到x =100 m之间a 2=0-410m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41m/s ,D 错误.3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则()A.船渡河的最短时间是60 s B.船在行驶过程中,船头始终与河岸垂直C.船航行的轨迹是一条直线D.船的最大速度是5 m/s答案BD解析当船头指向垂直于河岸时,船的渡河时间最短,其时间t=d v2=3003s=100 s,A错,B对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v=42+32m/s=5 m/s,C 错,D对.4、(2019·江苏·3)如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B 点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为 ()A.t甲<t乙B.t甲=t乙C.t甲>t乙D.无法确定答案 C解析设两人在静水中游速为v0,水速为v,则t甲=x OAv0+v+x OAv0-v=2v0x OAv20-v2t乙=2x OBv20-v2=2x OAv20-v2<2v0x OAv20-v2故A、B、D错,C对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H,河水流速为v0,划船速度均为v,出发时两船相距233H,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A点,则下列判断正确的是()A.甲、乙两船到达对岸的时间不同B.v=2v0C.两船可能在未到达对岸前相遇D.甲船也在A点靠岸答案BD解析渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v0得v=2v0,甲船在该时间内沿水流方向的位移为(v cos 60°+v0)Hv sin 60°=233H,刚好到达A点,综上所述,A、C错误,B、D正确.6、一快艇要从岸边某处到达河中离岸100 m远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则()A.快艇的运动轨迹可能是直线B.快艇的运动轨迹只能是曲线C.最快到达浮标处通过的位移为100 m D.最快到达浮标处所用时间为20 s解析快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A错误,B正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m,C错误;由题图甲可知快艇的加速度为a=Δv=0.5 m/s2,最短位移Δt为x=100 m,对快艇由x=12得:t=2x a=2at2×1000.5s=20 s,即最快到达浮标处所用时间为20 s,D正确.答案BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、那么在什么情况下渡河时间最短?在什么情况 下渡河的位移最小。
A、当船头与河岸始终垂直时,渡河时上游,航行的
路径与河岸垂直时位移最小。(等于河宽)
当船速小于水流速度:船头朝向与实际航向垂直时,
位移最小,(最小位移大于河宽)
A
3
设船在静水中的航行速度为V船、 V船 V
V船 V合
2、船头斜向上游,航向与 河岸垂直,渡河位移最小。
300m
v v v V水
合=
2 船
-
2 水
=
2
2 m /s
t2
=
S
v合
=
300 22
S
水流方向
t2 = 107S
答以最短时间渡河渡河时间是100s航向与A河岸的夹角是arctan3.以最小位移渡河…9
课本25页:1、2。
A
10
一小船在宽为200米的河中间在下游173米处有落 差很大的瀑布,若水流速度为4米/秒,要使船安全 渡河,船速至少要多大?船头与河岸的夹角多大?
v v v 合
2
2
船水
渡河时间 t =S/V 船头与河岸上游的夹角
水流方向
v水
a
v船
v合
a
v水
Cosa=V水 /V船
a= arccosV水 /V船
A
5
v v v 船直速于小河合 于岸速 水驶度 流向V正速=对度时岸22,,都无12要论....被船sin水头a冲向向那v下个.游方...,向v但,渡船2河都sin的不a位能移垂
水流速度为V水、合速度为V、河
S
宽为S。 当船头垂直于河岸时
V水
渡河时间t=S/ V船 沿河岸的位移是S1=V水t=V水S/V船
实际位移[合位移]S合=Vt=VS/V船= tana=S/S1
S S 2 2 1
合位移与河岸的夹角
a=arctanS/S1
a
A
4
小船渡河位移最短问题:
船速大于水速时,船头斜向上游,船可以垂直于河岸驶向 正对岸。设船速V船,水流速度V水,实际速度[合速度]V。
V船
S=300m a
V合 V水
解:1、船头与河岸垂 直,航向与河岸夹角为 a渡河时间最短。
V=S/t t1=S/V船
t1=300/3 s=100s
tana=V船/V水=3 a=arctan3
A
8
河宽300m,水流速度1m/s,船在静水中的航行 速度3m/s按下列要求渡河, 1、以最短时间渡 河;船的航向应与河岸成多大角度?渡河时间 是多少?2、以最小位移渡河;情况又怎样?
a=arccosV1/V2
A
6
练习:河宽为d水流速度为V2,船在静水的航速为 V1,要使小船渡河时路程最小,则最小路程是多少?
V1大于V2 (V船大于V水) V1 小于V2 (V船小于V水)
S= S= d
V2d/V1
实际位移S=Vt=d/cosa=dV2/V1
A
7
河宽300m,水流速度1m/s,船在静水中的航行 速度3m/s按下列要求渡河,船的航向应与河岸 成多大角度?渡河时间是多少?1、以最短时间 渡河;2、以最小位移渡河;
分析:船沿水漂下173米时刚好靠岸船速最小,这 时沿垂直河岸方向上的位移是100米。
解:设实际航速与河岸夹角为a,
则:tana=100m/173m 船/V水
V船=V水sin300=2m/s
a =300 cos[900-300]=V
A
11
A
12
①实际路径上发生的运动--合运动; ②想象参与的运动--分运动; ③作图示时、合运动在中央,分运动在两边。
A
1
A a
V
a
B
v 画出B物体的合运动和分运动, V2
当A匀速下落时B做什么运动? B左移时,a增大,cosa减小,
cos a
1
V
V1不变,则V增大,B向左作 加速运动。
A
V v1
cos a2
1、小船渡河时,在垂直于河岸的方向上和水流的 方向上都可能发生位移,即可同时参与两个方向的 运动。
2、通常有时间最短和位移最小。的问题。
A
B
C
D
A
13
V1
θ
V2
θ
θ
V
V1
A
14
V1
V2
θ
θ
θ
V
例:上图中汽车匀速行驶时,物 V1 体作什么运动?
Cosθ=V1/ V V1=V cosθ
汽车匀速运动时,θ减小,cosθ增大,V1增大,物体 加速上升.
产生向上的加速度,合力向上,绳对物体的拉力
大于它的重力.
A
15
v 也有一个最小值。
2
v 当船头ta斜na向上v游.,...v并与行1t驶an的a路径垂直时位移最小。 v1
Sina=V3/V1 垂直于河岸的速度V3=V1 sina 渡河的时间是:t=d/V3=d/V1 sina
V3
a
a
cosa=d/s=V1/V2 s=d/cosa
最小位移S=Vt=d/cosa=dV2/V1 船头与河岸的夹角:cosa=V1/V2