空间向量的夹角和距离公式
空间向量的夹角和距离公式讲课
a ?b ? a1b1 ? a2b2 ? a3b3
;
a // b ? a1 ? ? b1, a2 ? ? b2 , a3 ? ? b3 (? ? R) ; ? a1 / b1 ? a2 / b2 ? a2 / b2 .
a ? b ? a1b1 ? a2b2 ? a3b3精品?PP0T ;
二、距离与夹角 (1)空间两点间的距离公式
精品PPT
三、应用举例
例1 已知 A(3 , 3 ,1)、B(1, 0 , 5) ,求:A
线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则
uuuur OM
?
1
uuur (OA
?
2
uuur OB)
?
1 2
??(3 , 3 ,1)
?
?1,
0 , 5??? ?
? ??
解: 建立如图的空间直角坐标系O ? xyz, 得
11
z
A(1,0,0), E (1,1, ), F ( ,0,1). D
uuur FA
?
(
1
,0,
?
1),
uu2ur
FE
?
(
2
1 ,1,?
1
).
A F1
1
C1 B1 E
2
22
D
O
C y
uuur | FA |?
5
,|
uuur FE
|?
6 .
A
B
x
uuur uuu2r FE gFA
§9.6 空间向量的夹角和距离公式
精品PPT
一、向量的直角坐标运算
设a ? (a1, a2 , a3 ), b ? (b1, b2 , b3)则 a ? b ? (a 1? b1, a2 ? b2, a3 ? b3) ;
1.4.2用空间向量研究距离、夹角问题之二:夹角问题
法向量的夹角即可.
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为BC的
中点,点Q, R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1.求平面PQR与平面
A1B1C1夹角的余弦值.
解:先做出平面PQR与平面A1 1 1 的
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,
∠ACB=90°,P为BC的中点,点Q, R分别在棱AA1,BB1上,
A1Q=2AQ,BR=2RB1.求平面PQR与平面A1B1C1夹角的余弦值.
分析:因为平面PQR与平面A1B1C1的夹角
可以转化为平面PQR与平面A1B1C1的法向
若异面直线l1,l2所成的角为 (0 ≤ ) ,其方向向量分别为 , Ԧ
则 =< , Ԧ >, 或 = −<, >
Ԧ
2
∙ Ԧ
= < , Ԧ > =
Ԧ
不要将两异面直线所成的角与其方向向量的夹角等
同起来,因为两异面直线所成角的范围是0 ≤ ,而
交线。
做PE⊥ 1 1 于E,则PE//Q1 ,PQ∩
1 = .
PR∩ 1 1 = ,则GH即为平面PQR与
平面A1 1 1 的交线。
做PF⊥ 于F,连C1 , ∠1 就是平面
PQR与平面A1 1 1 的二面角的平面角。
我们在⊿PF1 中求∠1 ,接下去就是
= < 1 , 2 > =
.
1 2
反思:1、三式中到底是sin还是cos,我们要通过记图来记住公
课题空间向量的坐标运算(3)--夹角和距离公式解读
1课题:空间向量的坐标运算(3)--夹角和距离公式江西省宜丰中学 熊星飞一.教学目标:1.掌握空间向量的夹角公式、两点间的距离公式;2.掌握夹角公式、两点间的距离公式的简单运用;3.会运用向量的夹角公式求异面直线所成的角。
二.教学重点、难点:夹角公式、两点间的距离公式及其运用。
三.教学过程:(一) 复习导入1.复习空间向量的数量积以及空间向量的坐标运算2.创设情境,新课导入在机场A 的正东,距地平面6千米的空中有飞机M ,同时在机场正南方向距地平面2 千米的空中有飞机N ,已知从机场A 观察M 、N 的仰角分别为045、030。
(1)此时两架飞机的直线距离MN 是多少?(2)在点A 处观察两飞机的视角是多少?(二) 对比学习,讲解概念1.由平面向量的夹角公式cos θ=||||a b a b , 到空间两向量的夹角公式:cos ,||||a b a b a b <>=, 用坐标表示空间两向量的夹角公式:cos ,||||⋅<>=⋅a b a b a b 22212a b a b a b b b ++=+(注:这里向量和a b 都是非零向量)2.空间两点间的距离公式两点间的距离:这两点表示的有向线段的长度(模)若111(,,)A x y z ,222(,,)B x y z ,则AB =212121(,,)x x y y z z ---2||(AB AB==, 或,A B d =(三)知识运用,师生互动例1.(2,1(5,(2,4,0)ABC A B C ∆-中, ABC ∆求:的面积2 分析:三角形的面积1sin 2S bc A = ||b AC =、||c AB =、sin sin ,A AB AC =<>解答略例2.解决课前引例例3.如图正方体1111ABCD A B C D -中,点E 、F 分别是棱11A B 与 11C D 上的点,111114B E D F A B ==, 求:EB 与DF 所成角的余弦值;分析及解答(略)有关夹角公式,要求学生设计问题并解答 (四) 巩固提高 形成技能机动练习:已知A(3,3,1)、B(1,0,5),求:(1)线段AB 的中点M 的坐标和长度;(2)到A,B 两点距离相等的点P (x ,y ,z)的坐标x ,y , z 满足的条件。
向量法求空间距离和角
—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。
空间向量的夹角与距离求解公式-高中数学知识点讲解
空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。
平面向量的夹角公式cosθ
平面向量的夹角公式cosθ
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)。
1、a=(x1,y1,z1),b=(x2,y2,z2)。
a*b=x1x2+y1y2+z1z2。
2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、cosθ=a*b/(|a|*|b|),角θ=arccosθ。
长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
共面向量定理:
若两个向量a和B不共线,那么向量C和向量a和B共面当且仅当存在唯一的实数对x 和y,使得C=ax如果三个向量a、B和C不共面,那么对于空间中的任何向量p,存在唯一的有序实数组x、y和Z,使得P=Xa、Yb和ZC。
任意三个非共面向量都可以作为空间的基,零向量的表示是唯一的。
用空间向量研究距离、夹角问题
O
xB
y
C
n
AB
2x 3z
0
n BC 2x 3y 0
n (3,2,2)
z y
2
3 2
x x
3
cos OB, n 6 3 17 2 17 17
z
A
O
xB
y
C
直线OB与平面ABC所成角的正弦值为 3 17 17
n1 n2
cos cos n1, n2
n1 n2
n1
n2
例9 图为某种礼物降落伞的示意图,其中有8根绳子和伞面连 接,每根绳子和水平面的法向量的夹角均为30.已知礼物的质量 为1kg,每根绳子的拉力大小相同,求降落伞在匀速下落的过程 中每根绳子拉力的大小(重力加速度g取9.8m / s2精确到0.01N )
8
B
N
C
A
M
D
3.如图,在三棱锥 0 ABC中,OA,OB,OC两两垂直, OA
OC 3,OB 2,求直线 OB与平面ABC所成角的正弦值
解:如图建立空间直角坐标系
z
A
则A(0,0,3) , B(2,0,0) , C(0,3,0) OB (2,0,0) ,AB (2,0, 3)
BC (2,3,0) 设平面ABC的法向量为n (x, y, z)
2
2
1
(
1
a
b
1
b
c
2
a
a
c)
22
2
B
N
C
1 (1 3 2 1 1 23 1 32 33 7) 7
22
32
3
9
又| AN || CM | 2 2
A
《9.6空间向量的夹角和距离公式》教案
9.6空间向量的夹角和距离公式南昌大学附属中学 高莹三维目标:知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题;⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高分析问题、解决问题的能力.过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在积极活跃的思维过程中,从“懂”到“会”到“悟”.情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力,培养学生“做数学”的习惯和热情.教学重点:夹角公式、距离公式. 教学难点:数学模型的建立.关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空间向量的坐标.教具准备:多媒体投影,实物投影仪. 教学过程:(一) 创设情境,新课导入2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型问题(1)转化为:如何求空间中两点间的距离?问题(2)转化为:如何求空间中两条直线所成角的余弦值?1、空间两点间的距离公式111222(,,)(,,),A x y z B x y z 已知:,则()212121,,AB x x y y z z =---(AB AB AB x =⋅=,A B d =2、夹角公式设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB ==cos ,a b a b a b⋅<>==(二)例题示范,形成技能例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离?(2)此时的视线与开始时的视线所成角的余弦值?(不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系,xyzO111(,,)A x y z222(,,)B x y z aabC 1A则 ()()130,0,0,0,30,30A C()()0,18,30,24,0,0M N ; (1)24MN ==(2)()()124,18,30,30,30,30MN AC =--=-.111cos ,MN AC MN AC MN AC ⋅〈〉=⋅2430183030305⨯-+-⨯+-⨯==-此题所求的是空间两条直线所成角的余弦值,而不是两个空间向量夹角的余弦值,两者有什么区别?我们又如何转化为本题的结论? (三)学生互动 巩固提高变式训练:实际上,我们刚刚就是在一个正方体中讨论两点间的距离, 两条直线所成的角,而在正方体中还有许多的点与线,例2:(1)若G 为MN 的中点,求GB 两点间的距离.(2)若1111114A B B E D F ==,求1BE 与1DF 所成的角的余弦值. (1)解:设G 点的坐标为(,,)G x y z ,则 ()12D G D M D N =+ ()()10,18,3024,0,02=+⎡⎤⎣⎦()12,9,15=. ∴()()12,9,15,30,30,0G B , GB ∴==(2)解:如图,()14530,30,0,30,,302B E ⎛⎫⎪⎝⎭()1150,0,0,0,,302D F ⎛⎫⎪⎝⎭.1115150,,30,0,,3022BE DF ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.111111cos ,BE DF BE DF BE DF ⋅〈〉=⋅1515303015.17⎛⎫-⨯+⨯ ⎪== 请在上面例题的基础上,各编一个关于求夹角和距离的题目.拓展提高:我们知道平面上到两点距离相等的点的轨迹是一条直线,那么猜想空间上到两点距离相等的点的轨迹是一个平面,我们能不能把它表示出来呢?例3:求到M ,N 两点距离相等的点),,(z y x P 的坐标x 、y 、z 满足的条件. 解: 点),,(z y x P 到M ,N 两点距离相等,则P M P N ==化简,得435540x y z --+= 即到到M ,N 两点距离相等的点的坐标点(,,)x y z 满足的条件是 435540x y z --+= (四)概括提炼,总结升华求空间两点间的距离 求空间两条直线的夹角(五)布置作业,探究延续 1.课本P 42习题9.6 ⒎⒏ ⒐2.请同学们各编写一道关于求夹角和距离的题目,并解答.MNP3.思考题:引例:何时小船与火炬手之间的距离最短?(六)板书设计:。
空间向量的距离和夹角公式
例2 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 D1 B1的中點,求證:EF⊥ DA1
例3 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 CD的中點,求證:D1F⊥ 平面ADE
例4 如圖,在正方體ABCD-A1B1C1D1中,已知
B1E1
D1F1
1 4
AB
,與BE1與DF1所成的角的余弦值。
BC=1,AA1=√6,M是棱CC1的中點,
求證:A1B⊥AM
C1
B1
A1
M
C
B
A
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(1) 求證:EF⊥B1C ;
D1
C1
A1 E
B1 H
D
G
C y
F
A
B
x
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
| a| | b |
a12 a22 a32 b12 b22 b32
(2) 空間兩點間的距離公式 在空間直角坐標系中,已知A(x1 , y1 , z1),
B(x2 , y2 , z2),則
AB (x2 x1, y2 y1, z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(2) 求EF與C1G所成的角的余弦; D1
C1
(3) 求FH的長。A1 EB1 H NhomakorabeaD
G
C y
F
1.4.2 用空间向量研究距离、夹角问题(课件)
则
cos
θ=|cos<n1,n2>|
=
|n1·n2| |n1|·|n2|
0,2π
自主学习
图(1)直线与平面所成角 图(2)平面与平面所成角
自主学习
思考 1:平面与平面所成的夹角与两平面的法向量所成夹角有何关系? 两平面的夹角是两法向量的夹角或其补角.
思考 2:两个平面的夹角与二面角的平面角的区别?
B→C·n=0
- 3x+y=0
由
,得
,
A→1C·n=0
y- 3z=0
→
取 n=(1,
3,1),故
sin
θ=|cos〈E→F,n〉|=
|EF·n| →
=45.
|EF|·|n|
因此直线 EF 与平面 A1BC 所成角的余弦值为35.
经典例题
题型二 利用空间向量求夹角
例 6-变式 如图所示,在直四棱柱 ABCD-A1B1C1D1 中,AD∥BC,∠BAD=90°,AB= 3,
1+0×(t-2)+0= 2× 1 t 22 ·cos 60°,
所以 t=1,所以点 E 的位置是 AB 的中点.
经典例题
题型二 利用空间向量求夹角
角度2:线面角 若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下:
经典例题
题型二 利用空间向量求夹角
例 6 如图,已知三棱柱 ABC-A1B1C1,平面 A1ACC1⊥平面 ABC,∠ABC=90°, ∠BAC=30°,A1A=A1C=AC,E,F 分别是 AC,A1B1 的中点. (1)证明:EF⊥BC; (2)求直线 EF 与平面 A1BC 所成角的余弦值.
(2)范围:异面直线所成角的范围是0,π2,故两直线方向向量夹角的余弦 值为负时,应取其绝对值.
空间向量的直角坐标运算律
.空间向量的直角坐标运算律:(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若,,则,,,,,;,.夹角公式:.(3)两点间的距离公式:若,,则或。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。
3.用向量法求距离的公式设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。
向量法在求空间角上的应用平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。
(注意:线线角的范围[00,900])线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。
二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)利用法向量求空间距离⑴点A到平面的距离:,其中,是平面的法向量。
⑵直线与平面之间的距离:,其中,是平面的法向量。
⑶两平行平面之间的距离:,其中,是平面的法向量。
①线线平行的判定:判定定理性质定理判定定理判定定理性质定理判定定理总结:从中可以看出,一般情况下,往往借助一些“性质定理”来构造满足“判定定理”的条件。
(2)还会考查到的位置关系:异面直线的判定。
判定方法:定义(排除法与反证法)、判定定理。
二、基本例题例1已知:分析:利用线面平行的性质与平行公理。
注意严格的公理化体系的推理演绎。
说明:过l分别作平面∴l∥m同理l∥n∴m∥n又又例2. 已知:AB是异面直线a、b的公垂线段,P是AB的中点,平面经过点P且与AB垂直,设M是a上任意一点,N是b 上任意一点。
1.4.2 用空间向量研究距离、夹角问题(第1课时)
2 30
.
5
4.求点到平面的距离
①等体积法(将点面距离看作三棱锥的高)
D1
P35-2(3).棱长为2的正方体ABCD-A1B1C1D1中,E,F
分别是线段DD1的中点,求点A1到平面AEB1的距离.
B1
A1
析 : 设点A1到平面AEB1的距离hA1 .
C1
E
VA1 AEB VB1 AEA1 ,
a
2 8
4
C1
A
C
B
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 )
2
d a (
②等面积法(将点线距离视为三角形的高)
a l 2
)
|l |
[变式]棱长为a的正方体ABCD-A1B1C1D1中,M是线段DC1上的动点,
求点M到直线AD1的距离的最小值.
D1
析 : 建系Dxyz , A(a,0,0), D1 (0,0, a ), 设M (0, x, x )
AB (0,2,0), AC1 (2,2,2), AB AC1 4, | AB | 2, | AC1 | 2 3,
D
C
2
A
B
点B到直线AC1的距离为 AB (
AB AC1 2
4 2 2 6
) 4(
)
3
2 3
| AC1 |
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 或单位方向向量 )
D1
a a
析 : 建系Dxyz, A(a,0,0), D1 (0,0, a ), M (0, , )
2 2
a a
用空间向量研究距离,夹角问题公式
用空间向量研究距离,夹角问题公式
对于距离和夹角问题的研究,空间向量提供了一种有效的方法。
空间向量是指具有方向和大小的矢量,可以用来表示在三维空间中的物理量或者几何对象。
首先,我们来讨论两个点之间的距离问题。
在空间向量中,两个点的距离可以通过计算它们的欧几里得距离来确定。
欧几里得距离是指从一个点到另一个点的直线距离。
如果我们将两个点表示为向量A和向量B,那么它们之间的欧几里得距
离可以使用以下公式计算:
距离 = |向量AB| = √((Bx-Ax)^2 + (By-Ay)^2 + (Bz-Az)^2)
其中,Ax、Ay、Az分别表示向量A的x、y、z坐标,Bx、By、Bz分别表示
向量B的x、y、z坐标。
通过这个公式,我们可以计算出两个向量之间的距离。
接下来,让我们来看一下关于夹角问题的公式。
在空间向量中,可以使用两个向量的点积和模长之间的关系来计算它们之间的夹角。
如果我们将两个向量表示为向量A和向量B,它们的夹角可以通过以下公式计算:
夹角θ = arccos((向量A·向量B) / (|向量A| × |向量B|))
其中,向量A·向量B表示两个向量的点积,|向量A|和|向量B|分别表示向量A 和向量B的模长。
通过这个公式,我们可以确定两个向量之间的夹角。
通过使用上述的距离和夹角问题的公式,我们可以将空间向量用于研究并解决各种几何和物理问题。
这些公式能够提供详细而完整的信息,帮助我们深入了解空间中不同物体之间的距离和夹角关系。
无论是在几何学、物理学还是其他相关领域,空间向量的研究都具有重要的应用价值。
夹角和距离公式
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
A1B1 4
D1F1
,求 BE1 与 DF1 所成的角的余弦值。
1 1 DF1 0 , ,1 (0 , 0 , 0) 0 , ,1 . 4 4
15 1 1 BE1 DF1 0 0 1 1 , 16 4 4
时,可以先建立直角坐标系,然后把向量、点坐
标化,借助向量的直角坐标运算法则进行计算或
证明。
思考题:
已知A(0,2,3)、B( 2,1,6), C (1,1,5), 用向量 方法求ABC 的面积S。
a (a1 , a2 , a3 ),( R) ;
a b a1b1 a2b2 a3b3
;
a // b a1 b1 , a2 b2 , a3 b3 ( R) ; a1 / b1 a2 / b2 a2 / b2 .
a b aபைடு நூலகம்b1 a2b2 a3b3 0 ;
4)空间向量的数量积性质
对于非零向量 a , b ,有:
1) a e a cos a, e 2) a b a b 0 3) a a a
注意: ①性质2)是证明两向量垂直的依据; ②性质3)是求向量的长度(模)的依据;
2
二、距离与夹角
1.距离公式
(1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式
终点坐标减 在空间直角坐标系中,已知 A( x1起点坐标 , y1 , z1 ) 、
空间向量两直线夹角公式
空间向量两直线夹角公式
空间向量的两直线夹角是指两条直线在空间中的夹角。
在三维空间中,如果两条直线不平行,则它们一定会相交或者平面上相交,此时它们的夹角就是它们所在平面的夹角。
否则,如果两条直线平行,它们的夹角就是零。
在计算两条直线在空间中的夹角时,可以采用向量的方法。
假设有两个向量a和b,它们是两条直线的方向向量。
则它们的夹角θ的计算公式为:
cosθ=a·b/|a|·|b|
其中,a·b表示a和b的点积,|a|和|b|分别表示a和b的模长。
这个公式的物理意义是,cosθ等于a和b的点积除以它们的长度乘积,也就是它们的夹角所对应的三角形的底边长与斜边长的比值。
在实际计算中,可以先通过向量叉积来求出a和b所在的平面的法向量n,然后计算n与a、b之间的夹角,再根据平面夹角和空间夹角的关系来计算最终的结果。
除了向量的方法,还有一些几何方法来计算两条直线的夹角。
比如可以通过两条直线在平面上的投影来计算它们的夹角,或者通过它们在空间中的投影来计算它们的夹角。
总之,在计算空间向量的两条直线的夹角时,需要先确定它们的方向向量,然后采用向量或几何方法来计算它们的夹角。
这个夹角可以作为判断两条直线是否相交、平-行或垂直的重要指标。
两个空间向量的夹角公式
两个空间向量的夹角公式
cos(θ) = (a·b) / (||a|| ||b||)。
其中,a·b表示a和b的点积,||a||和||b||分别表示向量a
和b的模长。
通过这个公式,我们可以计算出两个向量之间的夹角,从而更好地理解它们之间的关系。
这个夹角公式在实际应用中非常有用,比如在物理学、工程学
和计算机图形学等领域都有广泛的应用。
通过计算向量之间的夹角,我们可以确定它们之间的相互关系,进而应用到具体的问题中。
在实际问题中,我们可以利用夹角公式来判断两个向量之间的
关系,比如它们是否垂直、平行或者成某一特定角度。
这对于解决
实际问题非常有帮助,比如在计算力的合成、判断空间中两条直线
的关系等方面都可以得到应用。
总之,两个空间向量的夹角公式是一个非常重要的数学工具,
它可以帮助我们理解向量之间的关系,并在实际问题中得到应用。
通过深入理解和应用这个公式,我们可以更好地解决各种复杂的问题,为实际应用提供更加精确的解决方案。
线到面的距离公式空间向量
线到面的距离公式空间向量
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)1、a=(x1,y1,z1),b=(x2,y2,z2)。
a*b=x1x2+y1y2+z1z2 2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。
3、
cosθ=a*b/(|a|*|b|)
1.直线与面的夹角:求出直线的一个方向向量l和平面的一个法向量n,用向量的夹角公式求出两个向量夹角余弦cos=m直线与平面所成角π/2-arccos|m|。
2.二面角:分别谋出来两个平面的法向量m,n利用公式谋出来两个法向量夹角余弦cos,二面角的平面角与两法向量夹角成正比或优势互补,(融合图确认,若两法向量同时指
向平面外或内则优势互补;若一个指向内一个指向外则成正比)。
3.点到面距离:设平面外一点a,找到平面内任意一点b,求出向量ab坐标,求平面一
个法向量n,则点a到平面距离d=|ab*n|/|n|。
4.线面平行的距离其实也就是点面距离(直线上任一一点至平面距离),所以带发修
行和点面距离方法一样,a在直线上投,b在平面内挑,先至面的距离d=|ab*n|/|n|(*则表
示数量内积,还有些向量符号没标箭头,你能够看看明白不)。
长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相
等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
1.4.2.1用空间向量解决夹角、距离问题(一)
则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0), A→E =(0,1,1), A→D1 =(-1,0,2),D→E=(1,1,1)
设平面AD1E的法向量为n=(x,y,z),则- y+x+ z=20z=0
令z=1,则n=(2,-1,1)
∴cos〈n,D→E〉=2-31·+61=
又A→D是平面AEFB的一个法向量,
∴cos 〈n,A→D〉=|nn|··A|→A→DD|=23
∴平面CDF与平面AEFB所成锐二面角的余弦值为23.
方法归纳
利用法向量求二面角的大小的一般步骤 1.建立适当的空间直角坐标系. 2.分别求出二面角的两个半平面所在平面的法向量. 3.求出两个法向量的夹角的余弦值. 4.确定二面角的平面角的大小,方法有:(1)根据几何图形直 观判断二面角的平面角是锐角还是钝角,从而决定其余弦值的正 负;(2)依据“同进同出互补,一进一出相等”求解;(3)在二面角 的一个半平面内取一点P,过P点作另一个半平面所在平面的垂 线,若垂足在另一个半平面内,则所求二面角为锐二面角,若垂 足在另一个半平面的反向延长面上,则所求二面角为钝二面角.
A. 2 B. 3 C. 5 D.3
解析:
以O为坐标原点,建立如图所示的空间直角坐标系,由题设可 知A(1,0,0),B(0,2,0),C(0,0,2),∴ A→B =(-1,2,0), B→C =(0,- 2,2),|A→B|= 1+4距离d= 5-2= 3. 答案:B
跟踪训练2 如图,在四棱锥P-ABCD中,AD∥BC, AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面
ABCD,直线PE与平面PAC所成的角的正弦值为
5 5.
(1)求异面直线PB与CD所成的角;
空间向量的夹角和距离公式
空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。
点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。
夹角θ的取值范围是[0,π],即0到180度。
此外,空间向量的夹角还可以通过向量的叉乘计算。
设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。
叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。
距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。
这个公式适用于二维和三维空间的点之间的距离计算。
总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。
这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。