华罗庚金杯2017初一试题

合集下载

(完整版)第11-17届初一华杯赛试题及答案

(完整版)第11-17届初一华杯赛试题及答案

5、甲、乙两轮船在静水中航行的速度分别为是 V 1, V 2,(V 1>V 2),下游的A 港与上游的B 港间的 水路路程为150千米。

若甲船从A 港,乙船从B 港同时出发相向航行,两船在途中的 C 点相遇。

若乙船从A 港,甲船从B 港同时出发相向航行,两船在途中 D 点相遇,已知C 、D 间的水路路程为 21千米。

则V 1 : V 2等于( )第十七届华罗庚金杯少年数学邀请赛初赛试卷 (初一组笔试版) 第十一届全国华罗庚金杯”少年数学邀请赛初赛试卷 (初一组) (时间 2006年3月 18 日 10: 00〜11:00) 仅有一个是正确的,请将表示正确答案的英文字母写在 有对称轴的图形为( (C ) 3 )个(不考虑拼接线) 一、选择题 以下每题的四个选项中, 每题后面的圆括号内。

(每小题6分) 1、下面用七巧板组成的六个图形中, 2 (D ) 4 2、有如下四个命题: ①最大的负数是一1; ③最大的负整数是一1; 其中真命题有( )个 (A ) 1 个 (B ) 2 最小的整数是1; 最小的正整数是1 ; (C ) 3个 (D )4个 3、如果a , b , c 均为正数,且a (b + c ) 的值是() (A ) 672 (B ) 688 4、下图给出了一个立体图形的正视图、左视图和右视图,图中单位为厘米。

立体图形的 体积为( )立方厘米 (A ) 2 O(B )2.5 =152, b (c + a )= 162, c (a + b )= 170,那么 abc (C ) 720 (D )750 (C ) 3 (D )3.5 2 —2正视图 2 左视图(初一组笔试版)59 里(C ) 45(D ) 4720042004, 20052005, 200於006。

大明从左往右依次计算前 a ,小光计算余下的1003个数的末位数字之和,并且记 (C )— 5 (D ) 5 二、A 组填空题(每小题8分)7、如图,以AB 为直径画一个大半圆。

第十七届华罗庚金杯少年数学邀请赛答案及解析过程(初一网络版)

第十七届华罗庚金杯少年数学邀请赛答案及解析过程(初一网络版)

word 专业资料-可复制编辑-欢迎下载第十七届华罗庚金杯少年数学邀请赛初赛试卷(初一网络版)一、选择题1. A 解析:根据题意可知,a 、b 异号,且a 为正,b 为负;2. C 解析:根据题意可知:B+D=9,A+C=13,根据竖式加法原理可知X=1,Y=3,则X+Y=43. D 解析:划过的面积为底边长为6,高为CD 的平行四边形的面积和ABC ∆的面积之和,在ADB ∆ 中,由勾股定理知:,3452222=-=-=AD AB BD 则CD=3+6=9,6646215496=⨯⨯+=+⨯=∆ABC S S 4. B 解析:第一个正方形为—,第二个正方形为X ,第三个正方形为+,第四个正方形为÷5. C 解析:32%2.6%5%8==+⨯+⨯乙甲乙甲乙甲,解得m m m m m m ,现在所求表达式为:%5.6%10032%561%83241%100%561%841=⨯+⨯⨯+⨯⨯=⨯+⨯⨯+⨯⨯乙乙乙乙乙甲乙甲m m m m m m m m 6. B 解析:设最小的一个数为a,则最大的那个数为a+n-1,根据连续n 个数的和的公式可知:20122)1=-++n n a a (,化简可知:2)1(2012--=n n a ,又503222012⨯⨯=,且a,n 均为正数,因此,(n-1)必须为偶数,故n 只能为奇数,且必须为2012的约数,所以n=503。

二、填空题7. 2010 解析:[][]=⨯⨯⨯=+⨯=+⨯⨯=2013-2013201220132010-201020122013-12012201220132010-2-201220122013-2012201220132010-20122-201222222323)()()(原式[]201020131-2012201320101-201222=⨯⨯⨯)()( 8. 0 解析:本题通过取特殊值法解题,发现当时,0====d c b a 等式成立,故0=+++d c b a9. 77 解析:取AG 中点I,因为,27)166(21)(21=+⋅⨯=+⋅=∆IC GH AB IC S ACG 解得1127=IC ,由IH BI GH AB GHI ABI =∆∆相似得与,解得:83=IH BI ,又113911276=-=-=IC BC BI ,所以1110438113938=⨯=⨯=BI IH ,7112711104=-=-=IE IH CH ,77)166(721)(21=+⨯⨯=+⨯⨯=HG CD CH S DHGC 10. 12,解析:令,32,6-=+=m a m b 则要使原式为整数,即要ab 为整数即可,又152=-a b ,两边同时处以1152+=b a 得:,为使取值如下:与只能为奇数,为整数,则m a a b 15 则。

17th华杯赛初一试题及解答

17th华杯赛初一试题及解答

1
初一竞赛数学(上)
竞赛题讲解
课件
第十七届全国华杯赛初赛试题 (初一组笔试)答案
选择题 题号 答案 1 B 2 A 3 C 4 D 5 D 6 B
T1:两点确定一条直线,另外两点在该直线的同侧或异侧,分情况讨论,如图是最少三角形个数情形,为 4 个。
A
D C
B
T2: 173+286=459; 观察发现: (1) 因为 H=4,I=5,所以还剩下 1,2,3,6,7,8,9;百位数 A 和 D 只能是 1 和 2,反之如果 是 1 和 3,则十位数只能是 2 和 6 或 2 和 7,不能进位,它们的和分别为 8 和 9,最多再增加 各位的进位 1,始终到不了 5,与 I=5 矛盾; (2) 剩下 5 个数 3,6,7,8,9,又十位两个数之和进位,其和必定为 14 或 15,有 3 种可能: (6, 8) , (6,9) , (7,8) ; (3) 还剩下 3 个数字之和的末尾数字为另外一个数字,可知当且仅当十位数字为 7 和 8,末位数字 为 3 和 6 时,J=9 才成立; (4) 综上所述,结论为 173+286=273+186=183+276=……=459. (100+200)+(70+80)+(3+6) =459,共有 2×2×2=8 种可能的情形,但是最小和只有一个 459。 T3: 首先,内角都小于 180 度的角有钝角、直角和锐角,其次钝角小于 180 度,直角和锐角小于等于 90 度。 根据多边形内角和公式可知,这个七边形内角和为 180°×(7-2)=900°, 设这个七变形有 x 个钝角,则 900 < 180x+90(7-x) ; 解这个不等式 90x+630>900, x+7>10, x>3, 又因为 x 为整数, 所以 x 最小为 4 答:内角都小于 180 度的七边形的内角至少有 4 个钝角. 另外 :七边形的内角中,最多有 3 个锐角,最多有 7 个钝角(正七边形的内角都为 900°/7,是钝角) 。 T4: 四队进行单循环赛,共赛 6 场,每场比赛无论输赢,得分都是 3 分,所以 6 场比赛的总分是 6×3=18 分,即比赛后四个队的总得分是 18 分,因为比赛后各队得分恰好是四个连续的自然数,所以,设最高分 为 x, 则第二名得分为 x-1, 第三名得分为 x-2, 第四名得分为 x-3, 且 x+(x-1)+ (x-2) + (x-3) =18, 4x-6=18,x=6,所以选 D. 只有 6+5+4+3=18 满足条件。 注:关键是每场比赛得分总数总是 3 分。 T5:因为 ABCD 是平行四边形,故 AB∥CN,∴ △ABM △NCM

华杯赛初一组试题及答案

华杯赛初一组试题及答案

华杯赛初一组试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个等腰三角形的两个底角相等,如果其中一个底角是45度,那么顶角是多少度?A. 45度B. 90度C. 135度D. 180度答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. ±6C. 36D. ±36答案:B4. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是多少?A. abcB. ab + bc + acC. a + b + cD. a/b + b/c + c/a答案:A5. 下列哪个分数是最简分数?A. 3/4B. 4/6C. 5/8D. 7/9答案:D6. 一个圆的半径是r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 2πr^2答案:B7. 如果一个数x满足方程x^2 - 5x + 6 = 0,那么x的值是多少?A. 2B. 3C. 2或3D. 以上都不是答案:C8. 一个等差数列的首项是a1,公差是d,那么它的第n项是多少?A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A二、填空题(每题5分,共30分)9. 一个数的相反数是-5,那么这个数是______。

10. 一个数的绝对值是8,那么这个数可以是______或______。

答案:8或-811. 一个等腰直角三角形的斜边长是10,那么它的直角边长是______。

答案:5√212. 一个数列的前三项是1,2,3,如果每一项都是前一项的两倍,那么第10项是______。

答案:2^9 = 51213. 一个圆的周长是2πr,如果周长是12π,那么半径r是______。

14. 一个长方体的长、宽、高分别是2,3,4,那么它的表面积是______。

答案:5215. 一个数列的前三项是1,3,5,如果每一项都比前一项多2,那么第n项是______。

第十届全国华罗庚金杯少年数学邀请赛初一组决赛试卷与解答

第十届全国华罗庚金杯少年数学邀请赛初一组决赛试卷与解答

第十届全国”华罗庚金杯”少年数学邀请赛决赛试题:初一组一. 填空(每题10分,共80分)1.①计算: 22111134413(12)(0.5)(2)22412433⎡⎤-⨯-÷-÷⨯-⨯--=⎣⎦ . ②已知: 0abc ≠且0a b c ++=,则a b b c c a a b b c c a++= . 2.m 和n 均不为零, 233x y 和2235m nx y ++-是同类项,则322332233395369m m n mn n m m n mn n -++=+-+ . 3.由于浮力的作用,金放在水里秤量和它的重量比较,在水中的”重量”会减少119;银放在水里秤量和它的重量相比较,在水中的”重量”会减少110.某个只含有金银成分的古文物,重量是150克,在水中秤量,”重量”是141克,则古文物中金占 %.(精确到1%)4.图1是几何学中非常著名的美丽的轴对称的图形,它有 条对称轴.5.甲加工一种零件,乙加工另一种零件.甲用A 型机器需要6小时才能完成任务,用B 型机器效率降低60%;乙用B 型机器需要10小时才能完成任务,用A 型机器效率提高20%.如果甲用A 型机器,乙用B 型机器同时开始工作,中途某一时刻交换使用机器,甲和乙同时完成任务.则甲完成任务所用的时间是 小时.6.一个直角三角形三条边的长度是3,4,5.如果分别以各边为轴旋转一周,得到三个立体,那么三个立体中最大的体积和最小的体积的比是 .7.一列自然数0,1,2,3……,2005,……,2024.第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2004.现在将这列自然数排成以下数表:3 8 15 (1)2 7 14 (4)5 6 13 …… 9 10 11 12 ………… …… …… …… ……规定横排为行,竖排为列,则2005在数表中位于第 行和第 列。

8。

(31)635m x x -=-是关于x 的方程,为确保该方程的解是负整数,m 能取的最大 值 。

第十七届华杯赛决赛初一笔试A答案

第十七届华杯赛决赛初一笔试A答案

第十七届华罗庚金杯少年数学邀请赛决赛笔试一试题A(初一组 )第十七届华罗庚金杯少年数学邀请赛决赛笔试一试题 A 参照答案(初一组)一、填空(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案-16 330 4 71 4 231 11 5一、填空题(每题 10 分, 共 80分)3( 2)4 ( 1)3 | 10| 11. 计算:21 1 .22 [1 32 ( )]8 2原式 = 241023 1912 2 3=12 26=24162.一串有规律摆列的数 , 从第二项起每一项都等于 1 加前一项的倒数之和 .当第五项是 0 时,第一项为哪一项.剖析:设这列数从第一项起挨次为a1, a2 , a3 ,a4 , a5依据题意 0 1 1,能够得出a4a4 1 。

倒推能够获得a1 3 53.如图 , AB=BC=CA=AD,则∠ BDC=.A解:设 AC 与 BD的交点是 E DE ∵AB=BC=CA=ADB C∴△ ABC是正三角形,每个内角为 600,△ABD和△ ACD是等腰三角形。

∴∠ ABD=∠ ADB,∠ ACD=∠ADC∵∠ ABE+ ∠BAE+∠BEA= ∠ EDC+ ∠DCE+∠CED。

∵∠ BEA=∠ CED∴∠ ABE+ ∠BAE= ∠EDC+ ∠DCE。

∵∠ DCE=∠ EDC+∠ ADB∴∠ ABE+ ∠BAE=∠EDC+∠EDC+∠ADB。

∴∠ BAE=∠ EDC+∠ EDC,即 600=2∠ EDC∴∠ EDC=30 04. 已知a b 2c , b 3c , c 7b a 20 , 那么 b =_______.解:∵ a b 2c , b 3c∴ a 5c把 a, b 的值代入c7b a 20 ,得4c 21c 5c 20,得解方程得 c= 3 4把解方程得 c= 3带入b3c ,得b 45c c4获得对于 c 的一元一次方程。

c21c5c 20,解方程得 c= 3 ,b 4。

第17届“华杯赛”网上决赛试题以及答案(初一组)

第17届“华杯赛”网上决赛试题以及答案(初一组)

.
பைடு நூலகம்
2. 如图所示 , 绳上挂着一个风铃 , 分别 由正三角形、正四、五、六、八、十 边形和圆形的饰物组成, 共重 144 克 (绳子和横杆的重量忽略不计) . 那么, 正三角形和正方形饰物的重量和是 ______克. 3. 已知关于 x 的不等式 的 x 的最小值为
ax b 0 的解集是 x
1 , 则满足不等式 bx 2a 0 3
.
x, 当 x 0 4. 定义一个运算, x ★ , 0, 当 x 0
如果
x 满足方程 ( x 10)★ | ( x★ 5) 1999 | 2012 , 则 x 的值为
.
5. 如右图所示, 一个直角三角形的两条直角边分别为 21cm 和 28cm, 在这个三角形内画一个正方形, 正方形的一个 顶点在斜边上, 则这个正方形的边长是 cm.
8. 设 12 2 2 32 20112 2012 2 被 3 除的余数等于 m , 而被 5 除的余数 等于 n , 则 m n = .
二、回答下列各题(每题 10 分, 共 40 分, 写出答案即可)
9. 从甲地到乙地有 20 站, 并且任何相邻两站之间的距离相同, 快车和慢车每小 时从甲地各发一趟, 快车整点发车, 慢车发车时间晚半小时. 快车每站车费 5 元, 慢车每站车费 2 元, 但快车的速度是慢车速度的 2 倍, 快车从甲地到乙 地共需 2 个小时. 上午九点半, 一位只有 70 元钱的旅客在甲地乘车, 问: 他 从甲地到乙地所需的最短时间为多少小时? (忽略车进出站上下乘客的时间, 但旅客等车时间要计算在内.) 10. x, y 为自然数, x y , 满足 x y 2 A , xy G 2 , A 和 G 都是两位数, 且互 为反序数, 求 x y 的值. 11. 4 枚硬币中可能混有伪币, 已知真币每枚重 18 克, 伪币每枚重 17 克, 用一台 可以称出物体重量的台秤, 为了鉴别出每枚硬币的真伪, 至少需要做几次称 重. 12. 如右图所示, 直角三角形 ACB 的两条直 角边 AC 和 BC 的长分别为 14 cm 和 28 cm, CA 和 CB 分别绕点 A 和 B 点旋转 90 至 DA 和 EB. 若 DB 和 AE 相交于点 P, 求三角形 PAB 的面积.

第17届华罗庚金杯少年数学邀请赛初一组(含答案)

第17届华罗庚金杯少年数学邀请赛初一组(含答案)

第17届华罗庚金杯少年数学邀请赛初赛试卷(初一组)一、选择题(每小题10分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.若ab<0 ,a-b>0 ,则a,b两数的正负情况为〔〕.(A)a>0,b<0 (B) a>0,b>0(C)a<0,b>0(D)a<0,b <02.右图是一个两位数的加法算式,已知A+B+C+D=22,贝X+Y=〔〕.(A)13 (B) 7 (C) 4 (D)23.右图中,ABC是一个钝角三角形,BC=6cm,AB=5 cm,BC边上的高AD为4cm.若此三角形以每秒3 cm的速度沿DA所在直线向上移动,2秒后,此三角形扫过的面积是〔〕cm2(A)36 (B) 54 (C) 60 (D)664在10口10口10口10口10的四个"口"中分别填入“+”“-”“×”“÷”运算符号各一次,所成的算式的值的最小值为〔〕. (A)-84 (B) -89 (C) -94 (D)-995.已知甲瓶盐水浓度为8%,乙瓶盐水浓度为5%,混合后浓度为6.2%,那么四分之一的甲瓶盐水与六分之一的乙瓶盐水混合后的浓度为〔〕.(A)5.0% (B) 6% (C) 6.5% (D)7.5%6.将2012表示为n个的连续自然数之和〔n≥2 〉,则n有〔〕种不同的取值.(A)0 (B) 1 (C) 2 (D)3二、填空题(每小题10分,满分40分)8.有理数a ,b ,c,d满足等式8a2十7c2=16ab ,9b2十4d2=8cd ,那么a十b十d十d=_______.9.如右图所示,正方形ABCD的面积为36 cm2,EFGH正方形的面积为256cm2,三角形ACG的面积为27cm2,则四边形CDHG的面积为_____cm2第十七届全国华罗庚金杯少年数学邀请赛初赛试题〔初一组〕答案1、A 2、C 3、D 4、B 5、C 6、B7、2010 8、0 9、77 10、12。

(完整版)第11-17届初一华杯赛试题及答案

(完整版)第11-17届初一华杯赛试题及答案
a-b≡1+2^2+3^3-(2004^2004+2005^2005+2006^2006)≡1+4+7-(6+5+6)≡-5(mod10)
二、A组填空题
7.4/9设AB=2r则{πr^2/2-[π(r/3)^2/2+π(2r/3)^2/2]}/ (πr^2/2)=1-(1/9+4/9)=4/9
8.1.98原式=[2^2/(1×3)]×[3^2/(2×4)] ×[4^2/(3×5)] ×[5^2/(4×6)] ×[6^2/(5×7)] ×……×[98^2/(97×99)] ×[99^2/(98×100)]=2×99/100=1.98
(A) (B) (C) (D)
6、有一串数:1,22,,33,44,……,20042004,20052005,20062006。大明从左往右依次计算前面1003个数的末位数字之和,并且记为a,小光计算余下的1003个数的末位数字之和,并且记为b,则a-b=()。
(A)-3(B)3(C)-5(D)5
二、A组填空题(每小题8分)
4、下图给出了一个立体图形的正视图、左视图和右视图,图中单位为厘米。立体图形的体积为()立方厘米。
(A)2 (B)2.5 (C)3 (D)3.5
5、甲、乙两轮船在静水中航行的速度分别为是v1,v2,(v1>v2),下游的A港与上游的B港间的水路路程为150千米。若甲船从A港,乙船从B港同时出发相向航行,两船在途中的C点相遇。若乙船从A港,甲船从B港同时出发相向航行,两船在途中D点相遇,已知C、D间的水路路程为21千米。则v1∶v2等于()
2006
中,汉字“第、十、一、届、华、杯、赛”代表1~9中的9个数字,不同的汉字代表不同的数字,恰使得加法算式成立。则不同的填法共有;三位数华杯赛的最大可能值为。

17届初一华杯赛试题及答案

17届初一华杯赛试题及答案

17届初一华杯赛试题及答案总分学校____________ 姓名_________ 参赛证号联系电话电子邮件密封线内请勿答题第三届“华罗庚金杯”少年数学邀请赛初赛试卷(初中组)(建议考试时间:xx 年3 月22 日10:00~11:00 )一、选择题(每小题10 分、以下每题的四个选项中,仅有一个是正确的、请将表示正确答案的英文字母写在每题的圆括号内)1、若有理数a、b在数轴上的位置如图1所示、则下列各式中错误的是()、(A)-ab<2 (B)>(C)<(D)<-12、关于数a有下面四个命题: ①若,则a必为0; ②若,则a,a+1,a-1中至少有一个为零;③若,则a=0,或a=1; ④若,则的值必为零、四个命题中正确的个数为()、(A)1 (B)2 (C)3 (D)43、图2(a)是长方形纸带,∠SAB=20,将纸带沿AB折叠成图2(b),再沿BN折叠成图2(c),则图2(c)中的∠TBN为()、(A)(B)(C)(D)4、今有四个数,其中一个数与其它三个数的平均数之和分别为92,86,80,90,那么,这四个数中最大的数等于()、(A)51 (B)48 (C)33 (D)425、依次排列4个数:2,11,8,9、对相邻的两个数,都用右边的数减去左边的数,所得之差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9、这称为一次操作,做二次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9、这样下去,第100次操作后得到的一串数的和是()、(A)737 (B)700 (C)723 (D)7306、如图3所示,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足()、(A)5<S≤6 (B)6<S≤7(C)7<S≤8 (B)8<S≤9二、填空题(每小题10 分,满分40分,第10题每空5分)7、计算:= 、8、如图4所示,圆的半径为2,圆的两条弦AB,CD互相垂直,垂足为E、若圆心O到弦AB的距离OF=1,EF=1、则图中阴影部分的面积等于、(取3、41)9、可将1~30这30个整数写成一行,使得由第二个数开始的每个数都是它前面所排列的所有数之和的约数、则排在第30个位置上的数最大应是、10、把符号“★”放在图5的小方格中,则含有“★”的由小方格组成的正方形个数随“★”的放法而改变、在所有的放法中,含有“★”的正方形个数最多时有个,最少时有个、第三届“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)(建议考试时间:xx年4月19日10:00~11:30)一、填空(每题10分,共80分)1、某地区xx年2月21日至28日的平均气温为-1℃,2月22日至29日的平均气温为-0、5℃,2月21日的平均气温为-3℃,则2月29日的平均气温为、2、已知(新+奥+运)=xx,其中每个汉字都代表0到9的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则算式= 、3、代数和-1xx+2xx-3xx+4xx+…-10031006+10041005的个位数字是、4、用一个平面去截一个长方体,裁面是一个多边形, 这个多边形的边数最多有条、5、一列数1,3,6,10,15,21,…中,从第二个数开始,每一个数都是这个数的序号加上前一个数的和,那么第xx个数是、6、当x取相反数时,代数式ax+bx对应的值也为相反数,则ab等于、7、已知是以x为未知数的一元一次方程,如果,那么的值为、8、在34方格网的每个小方格中心都放有一枚围棋子,至少要去掉枚围棋子,才能使得剩下的棋子中任意四枚都不构成正方形的四个顶点、二、解答下列各题(第题10分,共40分,要求写出简要过程)9、如果一个锐角三角形的三个角的度数都是正整数,且最大角是最小角的4倍,那么这个三角形的最小角的度数可能是哪些值?10、小明将164个桃子分给猴子,余下的几个留给了自己,每只猴子得到了数目相同的桃子,小明留给自己的桃子数是一只猴子的四分之一,问共有多少只猴子?11、下图中,E,F为三角形ABC边上的点,CE与BF相交于P、已知三角形PBC的面积为12, 并且三角形EBP, 三角形FPC及四边形AEPF的面积都相同,求三角形EBP的面积、12、现有代数式x+y, x-y, xy和 ,当x和y取哪些值时,能使其中的三个代数式的值相等?三、解答下列各题(每题15分,共30分,要求写出详细过程)13、对于某些自然数n, 可以用n个大小相同的等边三角形拼成内角都为120的六边形、例如, n=10时就可以拼出这样的六边形,见右图,请从小到大,求出前10个这样的n、14、对于有理数x,用[x]表示不大于x的最大整数, 请解方程第三届“华罗庚金杯”少年数字邀请赛决赛试题参考答案(初一组)一、填空(每题10分,共80分)题号12345678答案1℃2986064二、解答下列各题(每题10分,共40分,要求写出简要过程)9、答案:20,21,22、解答: 设最小角为x, 最大角为4x, 另一个角为y、则由题目的条件得, , ①由①的前两个式子得到: , 解得; 又由①的第三个式子得到, 所以、评分参考:1)给出三个关系①给4分;2)得出范围给4分;3)给出答案给2分、10、答案:10、解答: 设有n只猴子, 小明留给自己p个桃子、每只猴子分到了4p个桃子、则, 所以p是4的倍数, 令, 则, 是4的倍数、令, 则, , 因为n是正整数, 所以、当时, 、评分参考:1)给出p, n的关系给3分;2)得到n, k的最终关系给4分;3)得到答案给3分、11、答案:4解答: 设三角形EBP的面积为X, 连接AP、若令三角形APF的面积为Y, 则三角形AEP的面积为、因为, 而, , 所以有, 解得, 即, 所以X=4、三角形EBP的面积为4、评分参考:1)引出辅助线给2分;2)得到X与Y的关系给4分;3)得到答案给4分、12、答案: , , , 、解答: 首先必须, 否则没有意义、若, 则, 矛盾、所以、若, 则由, 或都得到, 所以, 即、因此, 三个相等的式子只有两种可能:(1)、由后一等式得到, 或, 而是不可能的, 因为此时由第一个等式得到, 矛盾、当时, 由第一个等式得到, 即, 所以、(2)、由后一等式同样得到, 或, 同样, 是不可能的, 而当时, 由第一个等式得到, 所以、评分参考:1)(1)之前给2分;2)(1)和(2)各给4分、三、解答下列各题(每题15分,共30分,要求写出详细过程)13、答案:6,10,13,14,16,18,19,22,24,25、解答: 设所用的等边三角形的边长单位为1、任何满足条件的六边形的外接三角形一定是一个边长为l的大等边三角形、该六边形可以通过切去边长分别为的等国三角形的角而得到, 其中为正整数, 并且满足, 、又由于用边长为1的等边三角形拼成的一个边长为x (正整数)的等边三角形所需要的个数是、因此, , 其中, , 、(1)时, n可以为、(2)时, n可以为、、(3)时, 与上面不同的n可以为, 、, 、(4)时,与上面不同的n可以为, 、, 、, =36-3=33、(5)时, 与上面不同的n都比27大、(6)时, 可以证明满足要求的n都不小于26、由(1)到(6)可得,前10个满足要求的n为6,10,13,14,16,18,19,22,24,25评分参考:1)写出10个中的1个给1分;2)给出足够的理由,例如(1)之前的部分给5分、14、答案:或、解答: 因为方程左边的第 1、3项都是整数, 所以是整数、注意到,代入方程, 得到, 、所以是整数, 是10的倍数、令, k是整数, 代入得, 其中, 对于有理数x, =、所以有, 、当k取不同整数时, 的情况如下表:k=1=2=3==1==0K的可能值是和3, 相应的和y =10、代入验算得到或、评分参考:1)得到是整数给3分;2)得到关于k的不等式给5人;3)得到列表的结果给5分;3)每个答案各给1分、第四届全国“华罗庚金杯”少年数学邀请赛初赛试卷(初一组)(时间:全文结束》》年3 月14 日10:00~11:00 )总分一、选择题(每小题10 分,满分60分、以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在答卷纸相应的表格内)1、下面四个算式中,正确的是()、(A)(B)(C)(D)2、某班暑假野营沿公路步行从学校到基地,再由基地立即原路返回学校,如果行程每天增加1千米,去时用了4天,返回时用了3天,则学校到该基地的路程是()千米、(A)36 (B)38 (C)40 (D)423、设、是两个负数,,则下面四个数中一定大于而小于的数是()、(A)(B)(C)(D)316564424▲3164、将1。

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组)(1)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组)(1)

2017 年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组)一、填空题(每小题10 分,共 80 分)1.( 10 分)在 2017 个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这 2017 个数中有个三位数.2.( 10 分)如图( 1)所示,一个棋子从 A 到 B 只能沿着横平竖直的路线在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方.如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中x 代表的数字为.3 .( 10分)用[x]表示不超过x的最大整数,例如[10.2]=10.则[]+[]+[]+[]+[]+[] 等于.4.( 10 分)盒子里有一些黑球和白球,如果将黑球数量变成原来的 5 倍,总球数将会变成原来的 2 倍.如果将白球数量变成原来的 5 倍,总球数将会变成原来的倍.5.( 10 分)能被自己的数字之和整除的两位数中,奇数共有个.6.( 10 分)如图,将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形,最后剩下一个长方形.正方形边长和三角形直角边长都是整数.若剪去部分的总面积为40 平方厘米,则长方形的面积是平方厘米.7.(10 分)小龙从家到学校的路上经过一个商店和一个游乐场.从家到商店距离是500 米,用了 7 分钟;从商店到游乐场以80 米 /分钟的速度要走8 分钟;从游乐场到学校的距离是 300 米,走的速度是60 米 / 分钟.那么小龙从家到学校的平均速度是米/分钟.8.( 10 分)亚瑟王在王宫中召见 6 名骑士,这些骑士中每个骑士恰好有 2 个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).二、简答题(每小题15 分,共 60 分)9.( 15 分)如图所示,两个边长为 6 的正方形ABFE 和 CDEF 拼成长方形ABCD .G 为 DE 的中点.连接BG 交 EF 于 H .求图中五边形CDGHF 的面积.10.( 15 分)乌龟和兔子进行1000 米赛跑,兔子速度是乌龟速度的 5 倍,当它们从起点同时出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它,兔子奋起直追,但乌龟到达终点时,兔子仍落后10 米.求兔子睡觉期间,乌龟跑了多少米?11.(15 分)如图,一个边长为 3 的正六边形被 3 组平行于其边的直线分割成边长为 1 的 54个小正三角形,那么以这些小正三角形的顶点为顶点的正六边形共有多少个?12.(15 分)将 1 至 9 填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,字的整数倍.已知左右格子已经填有数字 4 和 5,问:标有字母 x 的格子所填的数字最大是多少?2017 年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组)参考答案与试题解析一、填空题(每小题10 分,共 80 分)1.( 10 分)在 2017 个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这 2017 个数中有2016 个三位数.【分析】按题意, 2017 个自然数中至少有一个两位数,而任意两个数至少有一个三位数,则可知,两位数的个数不能大于2,若有 2 个或 2 个以上的两位数,则取出的两个有可能都是两位数,与题意不符,故只能有 1 个两位数,不难求得三位数的个数.【解答】解:根据分析, 2017个自然数中至少有一个两位数,而任意两个数至少有一个三位数,则可知,两位数的个数不能大于2,若有 2 个或 2 个以上的两位数,则取出的两个有可能都是两位数,与题意不符,故只能有 1 个两位数,而三位数的个数即为:2017﹣ 1= 2016 个.故答案是: 2016.2.( 10 分)如图( 1)所示,一个棋子从 A 到 B 只能沿着横平竖直的路线在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方.如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中 x 代表的数字为2.【分析】首先分析题意,然后枚举出一种符合题意的画法即可.【解答】解:依题意可知:路线如图所示:x= 2 满足条件.故答案为: 23 .( 10分)用[x]表示不超过x的最大整数,例如[10.2]=10.则[]+[]+[]+[]+[]+[] 等于6048.【分析】本题考察高斯取整.观察式子可知首位两项,[] 内的数相加等于2017,又因为当x 不是整数时, [x]+[2017 ﹣ x] = 2016,故两两相加,可以得到答案.【解答】解:因为2017 和11 是质数,所以[] 内的数据都不是整数,则 []+[]= 2017﹣ 1= 2016,同理可得 []+[] = 2016,[]+[]= 2016,所以原式= 2016+2016+2016 = 6048.故填: 60484.( 10 分)盒子里有一些黑球和白球,如果将黑球数量变成原来的 5 倍,总球数将会变成原来的 2 倍.如果将白球数量变成原来的 5 倍,总球数将会变成原来的 4 倍.【分析】将黑球数量变成原来的 5 倍,总球数将会变成原来的 2 倍,黑球数增加 4 倍,总球数增加 1 倍,也就是黑球个数的 4 倍就是总球数,那么白球的个数是黑球个数的4﹣ 1=3 倍;把黑球数看成 1 份,白球数就是 5 份,总球数就是 4 份;再根据白球数变成原来的 5 倍,也就是增加 4 倍,即增加3× 4= 12 份,这总球数就是12+4=16 份,用 16份除以原来的 4 份,即可求出总球数变成原来的几倍.【解答】解:把黑球看成 1 份,则白球是 3 份,总球数是 4 份;当白球变成原来的 5 倍,就是增加 4 倍,即增加 3× 4=12 份(12+4)÷ 4= 4可以画图如下:答:总球数将会变成原来的 4 倍.故答案为:4.5.( 10 分)能被自己的数字之和整除的两位数中,奇数共有 5 个.【分析】显然,奇数只能被奇数整除,故这个奇数的数字之和一定为奇数,因这个两位数个位上为奇数,故十位上只能是偶数,从而得知此奇数十位上只能是1、3、 5、 7、 9,而且此奇数不能是质数,故要排除掉质数,从而最后确定奇数的个数.【解答】解:根据分析,符合题意的奇数十位上只能是:2、4、6、8,再排除掉质数后,只剩下: 21、 25、 27、 45、 49、 63、65、 69、81、 85、 87,一一检验,排除掉25、49、65、 69、 85、 87,故符合题意的奇数为: 21、 27、 45、63、 81,共 5 个.故答案是:5.6.( 10 分)如图,将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形,最后剩下一个长方形.正方形边长和三角形直角边长都是整数.若剪去部分的总面积为40 平方厘米,则长方形的面积是24平方厘米.【分析】因剪去的两个大等腰直角三角形可组成一个正方形,两个小等腰直角三角形可组成一个小正方形,可设大等腰三角形的直角边为a,小等腰三角形的直角边为b,则根据题意可知22= 40,又因正方形边长和三角形直角边长都是整数,可根据22a+b 2 +6= 40知大等腰三角形的直角边和小等腰直角三角形的直角边是多少,进而可求出原正方形的边长,再用原正方形的面积减去40 可求出长方形的面积是多少,据此解答.【解答】解;设大等腰三角形的直角边为a,小等腰三角形的直角边为b22a +b = 40222 +6= 40可知大等腰直角三角形的直角边是 6 厘米,小等腰直角三角形的直角边是 2 厘米原正方形的面积:(6+2 )×( 6+2)=8×8= 64(平方厘米)64﹣ 40= 24(平方厘米)答:长方形的面积是24 平方厘米.故答案为: 24.7.(10 分)小龙从家到学校的路上经过一个商店和一个游乐场.从家到商店距离是500 米,用了 7 分钟;从商店到游乐场以80 米 /分钟的速度要走8 分钟;从游乐场到学校的距离是 300 米,走的速度是60 米 /分钟.那么小龙从家到学校的平均速度是72米/分钟.【分析】首先根据:路程=速度×时间,用从商店到游乐场的速度乘用的时间,求出从商店到游乐场的路程是多少,进而求出小龙从家到学校的路程是多少;然后根据:时间=路程÷速度,用从游乐场到学校的距离除以小龙走的速度,求出从游乐场到学校用的时间是多少;最后用小龙从家到学校的路程除以用的时间,求出小龙从家到学校的平均速度是多少即可.【解答】解:( 500+80 × 8+300)÷( 7+8+300 ÷ 60)=( 500+640+300 )÷( 7+8+5)=1440÷ 20=72(米 / 分钟)答:小龙从家到学校的平均速度是72 米 /分钟.故答案为: 72.8.( 10 分)亚瑟王在王宫中召见 6 名骑士,这些骑士中每个骑士恰好有 2 个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有6种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).【分析】首先根据题目要求旋转相同的算同一种方法,因此可只考虑其中一个人排在第一位的情况,然后根据题目条件进行后续排序即可.【解答】解:为方便起见,分别用数字1、 2、 3、 4、5、 6 代表 6 个人,则 1 的朋友为 2和 6,即和 1 相邻的只能是3, 4, 5.由于旋转相同的算同一种方法,可以只考虑以 1 开始的排序方法,由于是一个圆圈,则第二位和最后一位只能从3, 4, 5 中选,那么以 1 为基准可排的座位顺序为:( 1)若第二位选3,则第三位选5或 6,①若第三位选 5,则第四位只能选2,还剩下 4 和 6,由于最后一位只能是3, 4,5,则第五位选 6,第六位选 4,即 1, 3, 5, 2,6, 4;②若第三位选 6,还剩下2, 4,5,若第四位选 2,则剩下 4 和 5,相邻,不符合题意,且 6 和 5 相邻,因此第四位选 4,则第五位选2,第六位选5,即 1, 3,5, 2, 6, 4;( 2)若第二位选4,可同样推理,得到两种排序,即1,4,6,2,5,3 和 1,4,2,6,3, 5,( 3)若第二位选5,可同样推理,得到两种排序,即 1,5,2,4,6,3,和 1,5,3,6,2, 4.共计 6种.故答案为: 6.二、简答题(每小题15 分,共 60 分)9.( 15 分)如图所示,两个边长为 6 的正方形 ABFE 和 CDEF 拼成长方形 ABCD .G 为 DE 的中点.连接 BG 交 EF 于 H .求图中五边形CDGHF 的面积.【分析】 G 为 DE 的中点,所以EG= 6÷ 2= 3,因 EG:AG= EH: AB,可求出EH 的长度,再根据三角形的面积公式可求出三角形EHG 的面积,用正方形的面积减去它的面积,就是阴影部分的面积,据此解答.【解答】解: G 为 DE 的中点EG= 6÷ 2= 3EG: AG= EH :AB3:( 6+3)= EH : 63: 9= EH: 69EH=3× 6EH =26× 6﹣3× 2÷ 2=36﹣3=33答:图中五边形CDGHF 的面积是33.10.( 15 分)乌龟和兔子进行1000 米赛跑,兔子速度是乌龟速度的 5 倍,当它们从起点同时出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它,兔子奋起直追,但乌龟到达终点时,兔子仍落后10 米.求兔子睡觉期间,乌龟跑了多少米?【分析】首先把兔子全程先考虑不睡时跑的总路程为990 米,乌龟跑了多远,剩余的路程就是兔子睡觉时乌龟跑的路程.【解答】解:首先根据兔子的速度是乌龟的 5 倍可知,兔子跑的路程是乌龟的 5 倍.当他们都不休息时兔子跑全程的1000﹣ 10= 990(米);乌龟跑的路程是990÷ 5=198(米);兔子睡觉乌龟继续跑的路程为:1000﹣ 198= 802(米)答:兔子睡觉期间乌龟跑了802 米.个小正三角形,那么以这些小正三角形的顶点为顶点的正六边形共有多少个?【分析】观察图形,数出正六边形的个数,可以分类计数,分边长为 1 的正六边形、边长为 2 的正六边形、边长为 3 的正六边形,再加起来即可.【解答】解:根据分析,边长为 1 的正六边形个数有:19 个;边长为 2 的正六边形个数:7 个;边长为 3 的正六边形个数: 1 个,另外,如图,两种类型的正六边形的个数为:7+2=9 个正六边形的总个数为:19+7+1+9 =36 个.故答案是: 36.12.(15 分)将 1 至 9 填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字 4 和 5,问:标有字母 x 的格子所填的数字最大是多少?【分析】按题意, 1 至 9 的数字中,填入 4 和 5 之外,只剩下7 个数,可以先求出7 个数的和,即为36,中间的x 只可能是3, 6, 9,故一一检验,即可得知x 的值.【解答】解:根据分析,1+2+3+6+7+8+9 = 36,填入的 x 是其它五个数的因数,故x 只能是 3、 6、 9,若 x= 9,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x= 6 时,如图所示,易知x= 6 符合题意.故答案是: 6.第 11 页(共 11 页)。

第九届“华罗庚金杯”少年数学邀请赛总决赛,初一组一试试题及解答

第九届“华罗庚金杯”少年数学邀请赛总决赛,初一组一试试题及解答

第九届“华罗庚金杯”少年数学邀请赛总决赛初一组一试试题及解答1. 下面的等式成立:1110110110010099433221=======x x x x x x x x x x x x ,求10110021 , , , ,x x x x 的值解:由已知:10199531x x x x x ===== ,10098642x x x x x ===== 。

又1001x x =,所以10110099321x x x x x x ====== 。

因此,110110099321=======x x x x x x或110110099321-=======x x x x x x2.滚柱轴承(如图),外圈大圆是外轴瓦,内圈小圆是内轴瓦,中间是滚柱。

内轴瓦固定,转动时没有相对滑动。

若外轴瓦的直径是内轴瓦的直径的1.5倍,当外轴瓦转动一周时,滚柱自转了几周?解。

滚柱的半径=2r R -,其中R 是外轴瓦的半径,r 是内轴瓦的半径。

外轴瓦转动一周,它上面的每一个点的运动路程为R π2,由于没有滑动,滚柱上的每一个点相对于小球求心的运动路程也是R π2,滚柱自转一周,它上面的点的路程是)(r R -π,所以,滚柱自转了65.0312)(2==-=-r r Rr R R ππ(周)。

3.已知z y x ,,满足:)3(3.1][}{)2(2.0}{][)1(9.0}{][=++=++-=++z y x z y x z y x 其中记号:对于数a ,][a 表示不大于a 的最大整数,][}{a a a -=。

求z y x ,,的值。

解:首先注意到,.0}{,][,≥≤a a a a 所以,对于任意有理数 (1)+(2)+(3)得到6.0222=++z y x 即 3.0=++z y x (4)(4)-(1)得到 2.1][}{=+z y 从而 1][,2.0}{==z y 。

(4)-(2)得到 1.0][}{=+y x从而 0][,1.0}{==y x ,(4)-(3)得到 1}{][-=+z x 因此, 0}{1][=-=z x故 9.0-=x ,2.0=y ,1=z 。

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.73.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.64.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.1355.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.106.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是千米/小时和千米/小时.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是或.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【分析】因为平角是180°,拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,所以两个角的和必须等于平角,据此解答即可.【解答】解:因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为90°+90°=180°,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;故选:A.【点评】本题考查了图形的拼组,难点是把所求问题转化为哪两种角能拼成平角.2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.7【分析】10个自然数有:1、2、3、4、5、6、7、8、9、10;和是10的有(1,9)、(2、8);(3、7);(4、6);这四组数据中的两个数相加的和是10,根据抽屉原理,考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,据此即可解答.【解答】解:从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即6+1=7(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.【点评】完成本题首先要确定在前10个自然数中,相加为10的两个数有几组.3.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.6【分析】三位数□□□,三个位置,考虑两种情况:(1)有1个5,2个8,则5的位置有3种;(2)有2个5,1个8,则8的位置有3种,所以共有3+3=6种,据此解答即可.【解答】解:根据分析可得3+3=6(次)答:他最少要试6次,才能确保打开箱子.故选:D.【点评】本题考查了排列组合知识,首先分类清楚然后根据加法原理解答即可.4.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.135【分析】猎豹跑2步的时间狐狸跑3步,即猎豹跑2×2=4米的时间狐狸跑1×3=3米.因为时间一定,速度比等于时间的反比,所以设这段时间为1秒,则猎豹的速度为4米/秒,狐狸的速度为3米/秒,然后用追及距离30米除以速度和就是追及时间,然后再乘猎豹的速度4米/秒即为所求.【解答】解:设猎豹的速度为:2×2=4(米/秒),狐狸的速度为:1×3=3(米/秒),30÷(4﹣3)=30÷1=30(秒)4×30=120(米)答:猎豹跑动120米可追上狐狸.故选:C.【点评】本题考查了复杂的追及问题,关键是得到猎豹和狐狸的速度.5.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.10【分析】把线段①平移到②的位置可以组成一个大长方形,这样就可以确定计算出这个八边形的周长需要知道几条线段的长度.【解答】解:如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.【点评】本题考查了巧算图形的周长,关键是通过线段的平移,使图形变成易于解答的规则图形.6.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4【分析】根据题意可知219的数字和为2+1+9=12,那么下一个数字是结果的个位就是2,变成2192.接下来就按照枚举法找数字规律即可.【解答】解:枚举法219的数字和是12,接下来就是2192数字和是12,接下来就是2922的数字和是13,接下来就是3223的数字和为7,接下来就是7237的数字和为12,接下来的数2以此类推数字为:2192237221584790651281102…规律总结数字和的尾数呈现两奇数两个偶数的周期规律.故选:C.【点评】本题的关键是用枚举法找到数字规两奇数两偶数周期循环.枚举法应用于情况比较少的特殊情况.简单明了直接易懂问题解决.二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=600.【分析】根据减法的性质简算即可,a﹣b﹣c=a﹣(b+c).【解答】解:1000﹣257﹣84﹣43﹣16=1000﹣(257+43)﹣(84+16 )=1000﹣300﹣100=700﹣100=600故答案为:600.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是250千米/小时和100千米/小时.【分析】设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,根据等量关系:高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,即高铁与普快的平均时速比动车与普快的平均时速快25千米/小时,列出方程求解即可.【解答】解:设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,则﹣=15+10,1.75x﹣1.5x=250.25x=250.25x÷0.25=25÷0.25x=1002.5x=2.5×100=250答:高铁和普快列车的时速分别是250千米/小时和100千米/小时.故答案为:250,100.【点评】考查了百分数的实际应用,本难度较大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,再求解.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?【分析】首先根据没有土豆的时候能够生存多少天,然后根据水的存储量计算出共能够有多少土豆,除以每天的吃的土豆就是天数.【解答】解:6人的食物储备一个人可以生活5×6=30天.非饮用水储存50×6=300千克.共可以收获的土豆300÷4×2.5=187.5(千克).共可以生存187.5÷1.875=100(天)100+30=130(天)答:可以供马克生活130天.【点评】本题的关键是不要忘记把原来的30天,土豆能够生活100天,原来的食物可以生存30天.突破口就是非饮用水的量.问题解决.10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是3或4.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可解决问题.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,根据这点可知,和“杯”在一条线段上的“华”可能是3或4,(2与1的和不在新的和内,5必须与3组合).答:“华”代表的数字是3或4.故答案为:3;4.【点评】此题考查了数字分析推理能力,难点是确定新的5个连续自然数比原来5个连续自然数多多少.。

华罗庚金杯数学邀请赛决赛初一组练习题含答案

华罗庚金杯数学邀请赛决赛初一组练习题含答案

第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组) 总分第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组·练习用)一、填空题(每小题10 分, 共 80 分)1. 点O为线段AB 上一点, AOC 10 , COD 50 ,A O B则 BOD 或.2018 12k2.已知m>0 ,且对任意整数k,均为整数,则m 的最大值为.3m3. [x]表示不超过x 的最大整数,如[ 1.3] 2 ,[1.3] 1.1 2 9[a ] [a ] K [a ] =4已知,则a 的取值范围是.10 10 104. 使 2n 1和 11n 121 都是平方数的最小正整数n 为.5. 在3 3 的“九宫格”中填数,使每行每列及每条对角线上的三数之和都相等.如图,有 3 个方格已经填的数分别为 3,10,2018,则“九宫格”中其余 6 个方格所填数之和等于.6. 已知某三角形的三条高线长a,b,c 为互不相等的整数,则a b c 的最小值为.7. 16 张卡片上分别写着 1~16 这 16 个自然数,把这 16 张卡片分成 4 组,使得每组卡片张数一样,每组卡片上所写数的和相等,且每组有两张卡片上的数的和为 17,共有种分法.(说明:不考虑组的顺序,也不考虑组内数字的顺序.例如将 1~16 分为四组后,保持各组内数字不变,只改变组的顺序或组内数字的顺序,视为相同的分法.)abc8. a ,b ,c 是三个不同的非零整数,则的最小值为.4ab 2bc 3ca第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组)二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年年初交 10 万元,第 6 年年初返 6 万元,以后每年处返 1.5 万元;方案二:购买一款年利率5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 1.053 1.052 =3.47563125)10. 如图,考古发现一块正多边形的瓷砖残片(如图),瓷砖上已不能找到完整的一个“角”,考古专家判定D ,E 两点是该正多边形相邻的两个顶点,C ,D 两个顶点之间隔有一个顶点.经过测量 CDE 135 ,DE 13厘米.原正多边形的周长是多少厘米?11. 一筐苹果,若分给全班同学每人 3 个,则还剩下 25 个;若全班同学一起吃,其中 5 个同学每人每天吃 1 个,其他同学每人每天吃 2 个,则恰好用若干天吃完.问筐里最多共有多少个苹果?12. 给定一个 5×5 方格网,规定如下操作:每次可以把某行(或列)中的连续 3 个小方格改变颜色(把白格变黑格,把黑格变白格).如果开始时所有25 个小方格均为白色,请问:能否经过8 次这样的操作,使得5×5 方格网恰好变为黑白相间(如图所示),且任何一个小方格在前 4 次操作中至多变色 1 次?如果能,请给出一种操作方案(直接画出第 4,5,6,7 次操作后的方格网颜色);如果不能,请给出证明.三、解答下列各题(每小题15 分, 共 30 分, 要求写出详细过程)13. 求证:不存在 3 个有理数的平方和等于 15.14. 如图,一个由 41 个小方格组成的棋盘.先将其中的任意 8 个方格染黑,然后按照以下规则继续染色:如果某个方格至少与 2 个黑格都有恰好 1 个公共顶点,那么就将这个方格染黑.这样操作下去能否将整个棋盘都染成黑色?第二十三届华罗庚金杯少年数学邀请赛决赛试题·练习用参考答案(初中一年级组)一、填空题(每小题10 分, 共 80 分)题号 1 2 3 4 5 6 7 80.5≤a< 0.41202答案或或者264 11040 9 10531400.4≤a<0.5二、解答下列各题(每小题10 分, 共 40 分, 要求写出简要过程)9. 【答案】:方案二更划算.解:方案二,第 4,5 年年初将之前的本息全部续存,到第 6 年年初时,共有本息10 (1 5%)5 10 (1 5%)4 10 (1 5%)3 ≈10.5 3.4756≈36.5(万元),提取 6 万元后仍有约36.5 6 30.5(万元)可不断续存,以后每年可提取利息约30.5 5% 1.525 (万元).在前期投入及回报一致的情况下,显然比方案一以后每年返1.5万元划算.而且方案二还可以随时提取或部分提取30.5万元储蓄用于应急或者选择其它更理想的理财方式,而方案一无此选择权.综上所述,方案二更划算.10. 【答案】156 厘米【解答】如图,设原图是正n 边形,其中C ,D 间的顶点为 F ,连接CF ,DF ,则(n 2 )CFD FDE 180 ,n因为 C F F D,1 8 0 C F D 1 8所以 C D F F C D ,2 n- 1 -n 3C D E F D E F D C 1 80 1 3,所以n解得n 12 .所以原本多边形是正 12 边形,周长为13 12=156(厘米).11. 【答案】130.【解答】解答1:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整n n30 1 2 5 65 1 65又 1∵,2 5 2 2 5 2 2 5n n n65∴是奇数,2n 5∴ 2n 5最大为 65,n 最大为 35,∴筐里最多共有3 35 25 130个苹果.解答2:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整记n 302n 5k ,k 为正整数,则n 30 k(2n 5) ,两边同乘2,得到2n 60 2k(2n 5) ,2n 60 2n 5 65, 2n 5 65 2k(2n 5) ,(2k 1)(2n 5) 65 5 13.2k 1 1时,2n 5 65,n 35,2k 1 5时,2n 5 13,n 9 ,2k 1 13时,2n 5 5,n 5,2k 1 65时,2n 5 1,n 3,n 为 35 时,苹果数最多,此时筐里的苹果数为35 3 25 130.12. 【答案】可以【解答】操作如下:(1)经过 4 次操作可染成如下:- 2 -第二十三届华罗庚金杯少年数学邀请赛决赛试题参考答案(初中一年级组),(2)继续操作第 5次 第 6次 第 7次 第 8次三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13. 证明:注意到( x )2 x 2 ,只需考虑非负有理数的平方和.假设存在 3 个有理数n m , q p , t k ,其中 m ,n ,p ,q ,k ,t 是自然数, 且(m ,n ) 1,( p ,q ) 1,(k ,t ) 1,使得15 ( n )2 ( q )2 ( t )2,m p k那么15m 2n 2 p 2 (npk )2 (mqk )2 (mpt )2 ,即15d 2 a 2 b 2 c 2 ,其中 a ,b ,c ,d 是自然数.(1)如果 d 为偶数,那么经过有限次如下步骤,可使得 d 为奇数.假设 d 2d ,若 a ,b ,c 两奇一偶,则 a 2 b 2 c 2 被 4 除余 2,而15d 2 被 41整除,矛盾!所以 a ,b ,c 都是偶数,故令 a 2a ,b 2b ,c 2c (11 1 a ,b ,c1 1 1 都是自然数),所以15d2 a 2 b 2 c 2(其中 1 1 1 1a b c ab c ).如果 d 还 1 1 1 1是偶数,类似上述讨论,经过有限次后可得到奇数.(2)如果 d 为奇数,即 d 2r 1( r 是自然数),那么15d 2 15(2r 1)215 4r (r 1) 1 ,即15d 2 被 8 除余 7. 另一方面,若 a ,b ,c 为三个奇数,那么 a 2 b 2 c 2 被 8 除余 3;若a ,b ,c 为两偶一奇,那么 a 2 b 2 c 2 被 8 除余 1 或 5;- 3 -。

华杯赛初一试题及答案

华杯赛初一试题及答案

华杯赛初一试题及答案华罗庚金杯少年数学邀请赛(简称“华杯赛”)是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。

以下是一份为初一学生设计的华杯赛试题及答案。

# 华杯赛初一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,那么这个数加1后除以3的余数是多少?- A. 0- B. 1- C. 2- D. 3答案:B3. 哪个数学公式可以用来计算一个长方形的面积?- A. 周长- B. 长 + 宽- C. 长× 宽- D. 长× 长答案:C4. 下列哪个选项不是质数?- A. 2- B. 3- C. 4- D. 5答案:C5. 一个数的60%加上它的40%等于这个数的多少?- A. 100%- B. 80%- C. 120%- D. 160%答案:A6. 一个长方体的长、宽、高分别是8cm、6cm和5cm,它的体积是多少立方厘米?- A. 240- B. 180- C. 120- D. 100答案:A7. 一个数的1/4加上它的1/2等于这个数的多少?- A. 3/4- B. 5/6- C. 9/12- D. 1答案:D8. 下列哪个选项是2的倍数?- A. 17- B. 23- C. 38- D. 47答案:C9. 一个数的3/4比它的1/2多1,这个数是多少?- A. 4- B. 8- C. 12- D. 16答案:A10. 一个班级有40名学生,其中1/5是女生,那么这个班级有多少名女生?- A. 8- B. 10- C. 15- D. 20答案:A二、填空题(每题4分,共20分)11. 一个数的75%是150,那么这个数是______。

答案:20012. 一本书的价格是35元,打8折后的价格是______元。

13. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是______厘米。

2017年第二十三届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十三届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十三届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)一、选择题(共6小题,每小题10分,满分60分)1.(10分)A、B均为小于1的小数,算式A×B+0.1的结果()A.大于1B.小于1C.等于1D.无法确定和1的大小2.(10分)小明把6个数分别写在三张卡片的正面和反面,每个面上写一个数,每张卡片上的2个数的和相等,然后他将卡片放在桌子上,发现正面上写着28,40,49,反面上的数都只能被1和它自己整除.那么,反面上的三个数的平均数是()A.11B.12C.39D.403.(10分)连接正方形ABCD的对角线,并将四个顶点分别染成红色或黄色,将顶点颜色全相同的三角形称为同色三角形,则图中有同色三角形的染色方法共有()A.12B.17C.22D.104.(10分)在6×6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6×6网格中共有()枚黑色围棋子.A.18B.14C.12D.105.(10分)数字和等于218的最小自然数是个n位数,则n=()A.22B.23C.24D.256.(10分)Ⅰ型和Ⅱ型电子玩具车各一辆,沿相同的两个圆形轨道跑动,Ⅰ型每5分钟跑一圈,Ⅱ型每3分钟跑一圈.某一时刻,Ⅰ型和Ⅱ型恰好都开始跑第19圈,则Ⅰ型比Ⅱ型提前()分钟开始跑动.A.32B.36C.38D.54二、填空题(共4小题,每小题10分,满分40分)7.(10分)如图是某市未来10日的空气质量指数趋势图,空气质量指数小于100为优良.从图上看,连续两天优良的是、号.8.(10分)如图所示,一个正方形纸片ABCD沿对角线BD剪成两个三角形.第一步操作,将三角形ABD竖直向下平移3厘米至三角形EFG;第二步操作,将三角形EFG竖直向下再平移5厘米至三角形HIJ.第一步操作后两张纸片重叠的面积与第二步操作后两张纸片重叠的面积相等,那么这个正方形纸片ABCD的面积是平方厘米.9.(10分)有11个正方形方阵,每个都有相同数量的士兵组成,如果加上1名将军,就可以组成一个大的正方形方阵.原来的一个正方形方阵里最少要有名士兵.10.(10分)从四边形4个内角取2个求和,共有6个和数,则大于180°的和最多有个.2017年第二十三届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)参考答案与试题解析一、选择题(共6小题,每小题10分,满分60分)1.(10分)A、B均为小于1的小数,算式A×B+0.1的结果()A.大于1B.小于1C.等于1D.无法确定和1的大小【分析】根据题意与小数乘法的法则,可知A×B积应是大于0而小于1的数,则A×B+0.1的和就应是大于0.1而小于1.1的数,即0.1<A×B+0.1<1.1,这样答案就很出来了.【解答】解:∵A、B均为小于1的小数∴0<A×B<10+0.1<A×B+0.1<1+0.10.1<A×B+0.1<1.1A×B+0.1的和可能大于1、小于1或等于1,即无法确定和1的大小.故选:D.【点评】解此题主要是利用了小数乘法法则与不等式的性质来求解.2.(10分)小明把6个数分别写在三张卡片的正面和反面,每个面上写一个数,每张卡片上的2个数的和相等,然后他将卡片放在桌子上,发现正面上写着28,40,49,反面上的数都只能被1和它自己整除.那么,反面上的三个数的平均数是()A.11B.12C.39D.40【分析】本题考察数的整除特征.【解答】解:因为28、40、49奇偶性不一样,根据卡片正反面上两个数字和相等,所以49的背面是2,和为49+2=51,从而反面上的平均数是(51×3﹣28﹣40﹣49)÷3=12.【点评】本题关键在于2是唯一的偶质数,其他质数都是奇数.3.(10分)连接正方形ABCD的对角线,并将四个顶点分别染成红色或黄色,将顶点颜色全相同的三角形称为同色三角形,则图中有同色三角形的染色方法共有()A.12B.17C.22D.10【分析】本题考察染色问题.【解答】解:全部为红色或全部为黄色,2种;三红一黄或者三黄一红,4×2=8种,所以有同色三角形的染色方法有2+8=10(种),故选:D.【点评】本题只需简单分类进行枚举即可.4.(10分)在6×6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6×6网格中共有()枚黑色围棋子.A.18B.14C.12D.10【分析】根据题意可知,每行的数目可以为0、1、2、3、4、5、6个,又由于每列都相等,所以总和一定是6的倍数,然后从这7个数中去掉一个数,是剩下的6个数的和是6的倍数即可解决问题,如下图(剩下的位置放黑色围棋子).【解答】解:每行的数目可以为0~6个,每列都相等,所以一定是6的倍数,0+1+2+3+4+5+6=21,如果去掉3,那么剩下的数:21﹣3=18正好是6的倍数,所以,白棋子有18个,则,黑色围棋子有:6×6﹣18=18(个)故选:A.【点评】本题解答的难点是确定,每列都相等,且总和一定是6的倍数.5.(10分)数字和等于218的最小自然数是个n位数,则n=()A.22B.23C.24D.25【分析】要使这个数最小,数的位数就要尽可能的少,每一个数位上的数尽量取数字9;据此解答即可.【解答】解:要使这个数最小,数的位数就要尽可能的少,所以,每一个数位上的数尽量取数字9,218=9×24+2所以,这个数最小是2,所以,数字和等于218的最小自然数是个n位数,则n=24+1=25;故选:D.【点评】解答本题关键是明确:要使这个数最小,每一个数位上的数尽量取数字9.6.(10分)Ⅰ型和Ⅱ型电子玩具车各一辆,沿相同的两个圆形轨道跑动,Ⅰ型每5分钟跑一圈,Ⅱ型每3分钟跑一圈.某一时刻,Ⅰ型和Ⅱ型恰好都开始跑第19圈,则Ⅰ型比Ⅱ型提前()分钟开始跑动.A.32B.36C.38D.54【分析】由题意知:两类型的玩具车都刚跑完了18圈,我们又知道I型车比II型车每圈多用5﹣3=2分钟,那可求18圈多用的时间是18×2=36分钟,这里多用的时间就是I型比II型提前的时间,即36分钟.【解答】解:5﹣3=2(分钟)18×2=36(分钟)故选:B.【点评】做此题,主要是要明白I型比II型跑相同圈数多用时间就是应该提前的时间.二、填空题(共4小题,每小题10分,满分40分)7.(10分)如图是某市未来10日的空气质量指数趋势图,空气质量指数小于100为优良.从图上看,连续两天优良的是1﹣2、5﹣6号.【分析】根据空气质量指数小于100为优良,利用图形,即可得出结论.【解答】解:由图形可知,连续两天优良的是1﹣2,5﹣6,故答案为1﹣2,5﹣6【点评】本题是简单应用题,考查数形结合的数学思想,正确运用图形是关键.8.(10分)如图所示,一个正方形纸片ABCD沿对角线BD剪成两个三角形.第一步操作,将三角形ABD竖直向下平移3厘米至三角形EFG;第二步操作,将三角形EFG竖直向下再平移5厘米至三角形HIJ.第一步操作后两张纸片重叠的面积与第二步操作后两张纸片重叠的面积相等,那么这个正方形纸片ABCD的面积是121平方厘米.【分析】第一次重合的部分是平行四边形KBNG,第二次重合部分是平行四边形BOJL,这两部分面积相等,同时减去平行四边形BNML,得到平行四边形KLMG 和平行四边形MNOJ面积相等.【解答】解:平行四边形KLMG=5×3=15(平方厘米)因为图中的三角形都是等腰直角三角形,所以BI=BO=3+5,BF=BN=3,所以NO=5厘米JC=15÷5=3(厘米)正方形边长3+5+3=11(厘米)正方形面积11×11=121(平方厘米)故填121.【点评】此题主要考查平行四边形的面积计算.9.(10分)有11个正方形方阵,每个都有相同数量的士兵组成,如果加上1名将军,就可以组成一个大的正方形方阵.原来的一个正方形方阵里最少要有9名士兵.【分析】本题考察方阵问题.【解答】解:由题,设原来的一个正方形方阵有a名士兵,则a和11a+1是一个完全平方数,当a=1时,11a+1=12,不符合题意;当a=4时,11a+1=45,不符合题意;当a=9时,11a+1=100,符合题意,所以原来的一个正方形方阵里最少要有9名士兵.【点评】本题关键在于列出代数式,然后枚举、检验.10.(10分)从四边形4个内角取2个求和,共有6个和数,则大于180°的和最多有3个.【分析】设四个角分别是ABCD,则A+B+C+D=360°,6个和为:A+C,A+B,A+D,B+C,B+D,C+D,共分三组讨论即可.【解答】解:设四个角分别是ABCD,则A+B+C+D=360°,6个和为:A+C,A+B,A+D,B+C,B+D,C+D,共分三组:A+B→C+D,A+B>180°⇒C+D<180°,A+C→B+D,A+C>180°⇒B+D<180°,A+D→C+B,A+D>180°⇒C+B<180°,所以,大于180°的和最多有3个.故答案为:3.【点评】解答本题关键是明确四边形的内角和是180°,然后分类讨论.。

第23届华罗庚金杯数学邀请赛决赛初一组练习题

第23届华罗庚金杯数学邀请赛决赛初一组练习题

第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组) 总分第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组·练习用)一、填空题(每小题 10 分, 共80 分)1. 点O 为线段A B 上一点,∠AOC =10︒,∠COD = 50︒,A OB 则∠BOD =或.2.已知m>0 ,且对任意整数,2018123km+均为整数,则m的最大值为.3. []表示不超过的最大整数,如[-1.3] =-2 ,[1.3] =1.已知129[][][]=4101010a a a++++++K,则a的取值范围是.4. 使 2n +1 和11n +121都是平方数的最小正整数 n 为 .5. 在3⨯ 3 的“九宫格”中填数,使每行每列及每条对角线上的 三数之和都相等.如图,有 3 个方格已经填的数分别为 3,10,2018,则“九宫格”中其余 6 个方格所填数之和等 于 .6. 已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .7. 16 张卡片上分别写着 1~16 这 16 个自然数,把这 16 张卡片分成 4 组,使得 每组卡片张数一样,每组卡片上所写数的和相等,且每组有两张卡片上的数 的和为 17,共有 种分法.(说明:不考虑组的顺序,也不考虑组内数字的 顺序.例如将 1~16 分为四组后,保持各组内数字不变,只改变组的顺序或组内数字的顺序,视为相同的分法.)8. a ,b ,c 是三个不同的非零整数,则423abc ab bc ca -+的最小值为 .第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组)二、解答下列各题(每题10 分, 共40 分, 要求写出简要过程)9. 现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年年初交10 万元,第6 年年初返 6 万元,以后每年处返1.5万元;方案二:购买一款年利率5%,满一年计息的储蓄产品,第一年初存款10 万元,接下两年每年年初追加本金10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 +1.053 +1.052 =3.47563125)10. 如图,考古发现一块正多边形的瓷砖残片(如图),瓷砖上已不能找到完整的一个“角”,考古专家判定D,E 两点是该正多边形相邻的两个顶点,C ,D 两个顶点之间隔有一个顶点.经过测量∠CDE =135︒,D E =13厘米.原正多边形的周长是多少厘米?11. 一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?12. 给定一个5×5 方格网,规定如下操作:每次可以把某行(或列)中的连续 3 个小方格改变颜色(把白格变黑格,把黑格变白格).如果开始时所有25 个小方格均为白色,请问:能否经过 8 次这样的操作,使得 5×5 方格网恰好变为黑白相间(如图所示),且任何一个小方格在前4次操作中至多变色1次?如果能,请给出一种操作方案(直接画出第4,5,6,7 次操作后的方格网颜色);如果不能,请给出证明.三、解答下列各题(每小题 15 分, 共30 分, 要求写出详细过程)13. 求证:不存在3个有理数的平方和等于15.14. 如图,一个由41 个小方格组成的棋盘.先将其中的任意8个方格染黑,然后按照以下规则继续染色:如果某个方格至少与2个黑格都有恰好1个公共顶点,那么就将这个方格染黑.这样操作下去能否将整个棋盘都染成黑色?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二届华罗庚金杯少年数学邀请赛
决赛试题(初中一年级组)
一、填空题(每小题 10 分,共80 分)
1. 数轴上10个点所表示的数分别为1210,,...,a a a ,且当i 为奇数时,12i i a a +-=,当i 为偶数时,11i i a a +-=,那么106a a -= .
2. 如右图,△ABC ,△AEF 和△BDF 均为正三角形,且△ABC ,
△AEF 的边长分别为3和4,则线段DF 长度的最大值等于
3. 如下的代数和
1201622015...(1)(20161) (10101007)
m m -⨯+⨯-+-⨯-+++⨯ 的个位数字是 ,其中m 是正整数.
4. 已知20152016x <<. 设[]x 表示不大于x 的最大整数,定义{}[]x x x =-.如果{}[]x x ⨯是整数,则满足条件的所有x 的和等于 .
5. 设x ,y ,z 是自然数,则满足22236x y z xy +++=的x ,y ,z 有 组.
6. 设311,,,p q p q q p
--都是正整数,则22p q +的最大值等于 . 7. 右图是A ,B ,C ,D ,E 五个防区和连接这些防区的10条
公路的示意图. 已知每一个防区驻有一支部队. 现在这五
支部队都要换防,且换防时,每一支部队只能经过一条公路,
换防后每一个防区仍然只驻有一支部队,则共有 种
不同的换防方式.
8. 下面两串单项式各有个单项式:
(1) 2457832316046604760496050,,,...,,...,,n n xy x y x y x y x y x y -- ;
(2) 23781213535210077100781008210083,,,...,,...,,m m x y x y x y x y x y x y --,
其中n ,m 为正整数,则这两串单项式中共有 对同类项.
二、解答下列各题(每题10 分,共40 分,要求写出简要过程)
9. 是否存在长方体,其十二条棱的长度之和、体积、表面积的数值均相等?如 果存在,请给出一个例子; 如果不存在,请说明理由.
10. 如右图,已知正方形ABDF 的边长为6 厘米,△EBC 的面积
为6 平方厘米,点C 在线段FD 的延长线上,点E 为线段BD 和
线段AC 的交点. 求线段DC 的长度.
11. 如右图,先将一个菱形纸片沿对角线AC 折叠,使顶点B 和D 重合. 再沿过A ,B
(D ) 和C 其中一点的直线剪开折叠后的纸片,然后将纸片展开.
这些纸片中菱形最多有几个? 请说明理由.
12. 证明: 任意个整数中,至少有两个整数的平方差是的倍数.
三、解答下列各题(每小题 15 分,共30 分,要求写出详细过程)
13. 直线a 平行于直线b ,a 上有个点1210,,...A A A ,b 上有
个点1211,,...,B B B ,用线段连接i A 和j B ( i =,,,j =,,),所得到的图形中一条边在a 上或者在b 上的三角形有多少个?
14. 已知关于x ,y 的方程222017
x y k ++=有且只有六组正整数解,且x y ,
求k 的最大值.。

相关文档
最新文档