动态规划习题讲解

合集下载

动态规划例题讲解精品PPT课件

动态规划例题讲解精品PPT课件
动态规划例题讲解
山东师大附中
Preview
本节课主要通过几道例题,总揽NOIp中较 常见的动态规划模型,不会过多涉及优化 内容。
Preview
最长上升子序列 内存碎片 背包问题 最长公共子序列 石子合并
括号序列 决斗 三取方格数 选课 贪吃的九头龙
最长上升子序列
给出一个数列{a1,a2,...,an},要求你选出尽量 多的元素,使这些元素按其相对位置单调
完全背包问题
共有N种物品,每种物品有一定的重量w[i] 和一定的价值v[i],每种物品有无限个。现 在我们有一个最大载重量limit的包,问放入 哪些物品能使得总价值最高?
w[i]和v[i]均为整数,N<=100,limit<=10000
完全背包问题
fillchar(f,sizeof(f),0); for i:=1 to n do for j:= w[i] to limit do f[j] = max(f[j], f[j-w[i]]+v[i]); writeln(f[limit]);
1400
共有3件物品 重量分别为30/80/10 价值分别为300/1200/200 背包最大载重量为100
0/1背包问题
令f[i,j]表示考虑完前i项物品,并且当前背包 承重不大于j的情况下能获得的最大价值
f[i,j]=max( f[i-1,j], //不选第i项物品 f[i-1,j–w[i]]+v[i]) //选择第i项物品
2
插入a6后 -inf
1
插入a7后 -inf
1
插入a8后 -inf
1
插入a9后 -inf
1
inf
inf
inf
8

动态规划习题精讲

动态规划习题精讲

信息学竞赛中的动态规划专题哈尔滨工业大学周谷越【关键字】动态规划动机状态典型题目辅助方法优化方法【摘要】本文针对信息学竞赛(面向中学生的Noi以及面向大学生的ACM/ICPC)中的动态规划算法,从动机入手,讨论了动态规划的基本思想和常见应用方法。

通过一些常见的经典题目来归纳动态规划的一般作法并从理论上加以分析和说明。

并介绍了一些解决动态规划问题时的一些辅助技巧和优化方法。

纵观全文可知,动态规划的关键在于把握本质思想的基础上灵活运用。

【目录】1.动态规划的动机和基本思想1.1.解决重复子问题1.2.解决复杂贪心问题2.动态规划状态的划分方法2.1.一维状态划分2.2.二维状态划分2.3.树型状态划分3.动态规划的辅助与优化方法3.1.常见辅助方法3.2.常见优化方法4.近年来Noi动态规划题目分析4.1 Noi2005瑰丽华尔兹4.2 Noi2005聪聪与可可4.3 Noi2006网络收费4.4 Noi2006千年虫附录参考书籍与相关材料1.动态规划的动机和基本思想首先声明,这里所说的动态规划的动机是从竞赛角度出发的动机。

1.1 解决重复子问题对于很多问题,我们利用分治的思想,可以把大问题分解成若干小问题,然后再把各个小问题的答案组合起来,得到大问题的解答。

这类问题的共同点是小问题和大问题的本质相同。

很多分治法可以解决的问题(如quick_sort,hanoi_tower等)都是把大问题化成2个以内的不相重复的小问题,解决的问题数量即为∑(log2n / k)。

而考虑下面这个问题:USACO 1.4.3 Number Triangleshttp://122.139.62.222/problem.php?id=1417【题目描述】考虑在下面被显示的数字金字塔。

写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。

每一步可以走到左下方的点也可以到达右下方的点。

73 88 1 02 7 4 44 5 2 6 1在上面的样例中,从7到3到8到7到5的路径产生了最大和:30。

动态规划例题

动态规划例题

动态规划例题动态规划是一种以最优化原理为基础的问题求解方法,通过拆分问题为若干阶段,每个阶段求解一个子问题,再逐步推导出整个问题的最优解。

例如,有一个背包能够承受一定的重量,现有一些物品,每个物品都有自己的重量和价值。

我们希望将物品放入背包中,使得背包的总价值最大。

这个问题可以用动态规划来解决。

首先,我们定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,容量为j的背包中所能放入的物品的最大价值。

那么,对于每一个物品,可以选择放入背包或者不放入背包。

如果选择放入背包,最大价值为dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

如果选择不放入背包,最大价值为dp[i-1][j]。

因此,dp[i][j]的状态转移方程为:dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])。

基于这个状态转移方程,可以逐步求解从第1个物品到第n个物品的最大价值。

最终,dp[n][W]即为问题的最优解,其中W 表示背包的容量。

举个简单的例子,假设背包的容量为10,有3个物品,它们的重量分别为3、4、5,价值分别为4、5、6。

此时,可以得到如下的dp矩阵:0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 40 0 0 4 5 5 9 9 9 9 90 0 0 4 5 5 9 10 10 14 14我们可以看到,dp[3][10]的最大价值为14,表示在前3个物品中,容量为10的背包中所能放入的物品的最大价值为14。

通过动态规划,我们可以有效地求解背包问题,得到物品放入背包的最优解。

这个例子只是动态规划的一个简单应用,实际上,动态规划可以解决各种复杂的问题,如最长公共子序列、最大子数组和、最大字段和等。

因此,学习动态规划是非常有意义的。

动态规划典型案例解析及计算过程梳理

动态规划典型案例解析及计算过程梳理

动态规划典型案例解析及计算过程梳理动态规划(Dynamic Programming)是一种通过将问题分解为子问题来解决复杂问题的算法策略。

它通常用于优化问题,通过将问题的解决方案划分为相互重叠的子问题来降低计算复杂度。

下面将通过几个典型案例,详细解析动态规划的应用及其计算过程。

1. 斐波那契数列斐波那契数列是一种经典的动态规划问题。

它的定义是:F(n) =F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。

我们需要计算第n个斐波那契数。

通过动态规划的思想,可以将该问题划分为子问题,即计算第n-1和第n-2个斐波那契数。

可以使用一个数组来保存已经计算过的斐波那契数,避免重复计算。

具体的计算过程如下:1. 初始化一个长度为n+1的数组fib,将fib[0]设置为0,fib[1]设置为1。

2. 从i=2开始遍历到n,对于每个i,计算fib[i] = fib[i-1] + fib[i-2]。

3. 返回fib[n]作为结果。

通过上述过程,我们可以快速地得到第n个斐波那契数。

这个案例展示了动态规划的重要特性,即将问题分解为子问题进行求解,并利用已经计算过的结果来避免重复计算。

2. 背包问题背包问题是另一个常见的动态规划问题。

问题的定义是:有一组物品,每个物品有自己的重量和价值,在限定的背包容量下,如何选择物品使得背包中的总价值最大化。

通过动态规划的思想,背包问题可以被划分为子问题。

我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

具体的计算过程如下:1. 初始化一个大小为n+1行,m+1列的二维数组dp,其中n为物品数量,m为背包容量。

将所有元素初始化为0。

2. 从i=1开始遍历到n,对于每个i,从j=1开始遍历到m,对于每个j,进行如下判断:- 若当前物品的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择当前物品;- 若当前物品的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi),即选择当前物品或不选择当前物品所能获得的最大价值。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

动态规划 例题众多 详细讲解

动态规划 例题众多 详细讲解

最优秀的投资者可以购买最多4次股票,可行方案中的一种是:
日期 2 5 6 10
价格 69 68 64 62
输入
第1行: N (1 <= N <= 5000),股票发行天数
第2行: N个数,是每天的股票价格。
输出
输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231)
当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方
步骤2
最优子结构性质:
设序列Xm={x1,x2,…,xm}和Yn={y1,y2,…,yn}的一个最长公共子 序列为Zk={z1,z2,…,zk},则
1.若xm=yn,则zk=xm=yn,且Zk-1是Xm-1和Yn-1的最长公共子序 列。
2.若xm≠yn,且zk≠xm,则Zk是Xm-1和Yn的最长公共子序列。 3.若xm≠yn,且zk≠ yn ,则Zk是Xm和Yn-1的最长公共子序列。
• 重叠子问题:在用递归算法自顶向下解问 题时,每次产生的子问题并不总是新问题 ,有些问题被反复计算多次。对每个子问 题只解一次,然后将其解保存起来,以后 再遇到同样的问题时就可以直接引用,不 必重新求解。
2020/3/5
6
动态规划 解决问题的基本特征
1. 动态规划一般解决最值(最优,最 大,最小,最长……)问题;
2020/3/5
15
拓展2:低价购买
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟
大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买
一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标
是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内

05-动态规划解析

05-动态规划解析

6sk
f
* K 1
(0.96sk
0.21xk )},k
4,3,2,1
最少费用运输问题

2
发 城
Q4
市3
城市A A1 7 4 6
3 A2 2
4
41 A3 5 3个转运点
城市B B1 1 4
6 B2 3
3 B3 3 3个转运点
城市C 3 C1 3
4 4
C2
海 T港
2个转运点 动态规划求解表
最少费用运输问题
动态规划
>>
最少费用运输问题
将货物从城市Q运到海港T,途中经过城市A、B、C,
三个城市各有3、3、2个转运点,各点运费如图,
求从Q到T的最优路线,使总运费最少。
城市A
城市B
城市C
出2
发 城
Q
4
市3
A1 7 64
3 A2 2
4
41 A3 5
3个转运点
B1 4
1
B2
6 3
3 B3 3
3个转运点
C1 3
C2 4
2个转运点

T港
动态规划
动态规划是解决多阶段决策过程最优化问题的 一种方法。由美国数学家贝尔曼(Ballman) 等人在20世纪50年代提出。他们针对多阶段决 策问题的特点,提出了解决这类问题的“最优 化原理”,并成功地解决了生产管理 、 工程 技术等方面的许多实际问题。
动态规划
动态规划是现代企业管理中的一种重要决策 方法,可用于最优路径问题、资源分配问题、 生产计划和库存问题、投资问题、装载问题、 排序问题及生产过程的最优控制等。
动态规划的基本概念
阶段 状态 决策和策略 状态转移 指标函数

精讲动态规划

精讲动态规划
2

最长单增子序列LIS——续
时间复杂度
枚举i 枚举x,找到最大的满足条件的x O(n2)
空间复杂度
存储每个f(i) O(n)
如何得到解?
记录决策:对每个f(i)记录得到它的决策x
3

精选例题2:旅行商问题TSP
TSP (Traveling Salesman Problem) n个城市, 仸意两个城市之间有一定距离,从一个城市 出发经历所有的城市一次并且仅仅一次,最 终回到起点,使得所有距离最短? (最小代 价圈) 确定状态
本行结果只与“上一行”相关14Fra bibliotek推荐读物
算法导论 算法设计 (Cornell algorithm design) 算法设计与分析 ……
15

5

旅行商问题TSP——续II
费用表示: f(s,x) = min {f(s – x, y) + distance(y,x) }其中s-x表 示从集合s中去掉城市x之后的集合, y在集合s-x中 注意点: 最后回到起点的状态有点特殊,因为起点已经在 集合里 复杂度 集合数2n 状态数 2n * n 时间
顺序?假设已经经历了ABCDE这5个城市,最终 在城市E,那么A,B,C,D的顺序重要么? f(s,x)表示状态
s表示经历过的城市集合。 4

旅行商问题TSP——续I
X表示最后一个城市,在集合s里 f(s,x)表示经过s集合里那些城市,最终在城市x 时所经过的最小距离。 初始状态: f({1},1) = 0,假设从城市1开始 终止状态:f({1,2,3,..n},1)=? 决策: 在状态(s, x)找到一个不在集合s里的城市y, 若从x走到y,则f(s,x) + distance(x,y)是一个经过集合 sUy城市的路径。 无后效性:收益只取决于状态(s,x)和决策y

动态规划入门

动态规划入门
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入数据 输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出
序列中的N个整数,这些整数的取值范围都在0到10000。 输出要求
最长上升子序列的长度。 输入样例 7 1735948 输出样例 4
解题思路
1.找子问题
“求序列的前n个元素的最长上升子序列的长度”是个 子问题,但这样分解子问题,不具有“无后效性”
数字三角形的记忆递归型动归程序:
#include <iostream> #include <algorithm> using namespace std;
#define MAX 101
int D[MAX][MAX];
int n;
int maxSum[MAX][MAX];
int MaxSum(int i, int j){ if( maxSum[i][j] != -1 ) return maxSum[i][j]; if(i==n) maxSum[i][j] = D[i][j]; else { int x = MaxSum(i+1,j); int y = MaxSum(i+1,j+1); maxSum[i][j] = max(x,y)+ D[i][j]; } return maxSum[i][j];
数字三角形的状态转移方程:
能用动规解决的问题的特点
1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。
2) 无后效性。当前的若干个状态值一旦确定,则此后过程 的演变就只和这若干个状态的值有关,和之前是采取哪 种手段或经过哪条路径演变到当前的这若干个状态,没 有关系。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。

动态规划解析

动态规划解析

第一题导弹拦截本题第一问实际上是给出数列a1..a n,求最长非递增序列的长度,{容易想到以n来划分子问题,即分别求a1..a n-1, a1..a n-2, …, a1,中最长非递增序列长度,但各级子问题之间不易建立转化关系}将子问题具体一些,我们可以用f[k]表示数列a1..a k中以a k结尾的最长非递增序列的长度,题目所求即为max{f[1..n]}。

转移方程为f[n]=max{f[k]}+1;(0<=k<n,a[n]<=a[k] )设a[0]= -maxint,f[0]=0;第二问可以用贪心做,设拦截前k个导弹用o2个系统,其最后拦截的高度分别为l[1]..l[o2],则拦截第k+1个导弹时,找能够拦截这枚导弹的系统中最后拦截高度最小的,若没有这样的系统则新增一个系统。

附源程序:const max = 10000;type arr = array[0..max]of integer;var d,l : arr;i,j,k,m,n,o1,o2,t : longint;procedure input;beginfillchar(d,sizeof(d),0);fillchar(l,sizeof(l),0);writeln('input:');i:=0;repeati:=i+1;read(d[i]);until eoln;t:=i;o1:=0; o2:=0;end;procedure output;beginwriteln('Output:');writeln(o1);writeln(o2);end;procedure main1;beginl[t]:=1;for i:=t-1 downto 1 do begink:=0;for j:=i+1 to t doif (l[j]>k)and(d[i]>=d[j]) then k:=l[j];l[i]:=k+1;end;for i:=1 to t doif l[i]>o1 then o1:=l[i];end;procedure main2;beginfor i:=0 to t do l[i]:=maxint;o2:=1;for i:=1 to t do begink:=0;for j:=1 to o2 doif (l[j]>=d[i])and(l[j]<=l[k]) then k:=j;if k=0 then begino2:=o2+1;k:=o2;end;l[k]:=d[i];end;end;begininput;main1;main2;output;end.第二题 石子合并设f[i,j](i<=j)表示将第i 堆到第j 堆石子合并为一堆所得的最大分数(最小时类似)。

动态规划例题众多详细讲解

动态规划例题众多详细讲解
重叠子问题:在用递归算法自顶向下解问 题时,每次产生的子问题并不总是新问题, 有些问题被反复计算多次。对每个子问题 只解一次,然后将其解保存起来,以后再 遇到同样的问题时就可以直接引用,不必 重新求解。
6
动态规划 解决问题的基本特征
1. 动态规划一般解决最值(最优,最 大,最小,最长……)问题;
4
动态规划算法
算法思想 将待求解的问题分解成若干个子问题,并 存储子问题的解而避免计算重复的子问题, 并由子问题的解得到原问题的解。
动态规划算法通常用于求解具有某种最优 性质的问题。
动态规划算法的基本要素: 最优子结构性质和重叠子问题。
5
最优子结构性质:问题的最优解包含着它 的子问题的最优解。即不管前面的策略如 何,此后的决策必须是基于当前状态(由 上一次决策产生)的最优决策。
步骤1:用F(i)表示第i项到最后一项最长不下降序列的长度的值;
步骤2:状态转移方程;
d[i]表示数列中第i项的值;
步骤3:以自底向上的 方法来计算最优解
14
拓展1: 拦截导弹 (vijos1303)
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系 统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都 不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用 阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
15
拓展2:低价购买
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟
大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买
一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题动态规划什么是动态规划?动态规划的⼤致思路是把⼀个复杂的问题转化成⼀个分阶段逐步递推的过程,从简单的初始状态⼀步⼀步递推,最终得到复杂问题的最优解。

基本思想与策略编辑:由于动态规划解决的问题多数有重叠⼦问题这个特点,为减少重复计算,对每⼀个⼦问题只解⼀次,将其不同阶段的不同状态保存在⼀个⼆维数组中。

1. 拆分问题:根据问题的可能性把问题划分成通过递推或者递归⼀步⼀步实现。

关键就是这个步骤,动态规划有⼀类问题就是从后往前推到,有时候我们很容易知道 : 如果只有⼀种情况时,最佳的选择应该怎么做.然后根据这个最佳选择往前⼀步推导,得到前⼀步的最佳选择 2. 定义问题状态和状态之间的关系:⽤⼀种量化的形式表现出来,类似于⾼中学的推导公式,因为这种式⼦很容易⽤程序写出来,也可以说对程序⽐较亲和(也就是最后所说的状态转移⽅程式) 3. 动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若⼲个⼦问题(阶段),按顺序求解⼦阶段,前⼀⼦问题的解,为后⼀⼦问题的求解提供了有⽤的信息。

在求解任⼀⼦问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。

依次解决各⼦问题,最后⼀个⼦问题就是初始问题的解。

我的理解是:⽐如我们找到最优解,我们应该讲最优解保存下来,为了往前推导时能够使⽤前⼀步的最优解,在这个过程中难免有⼀些相⽐于最优解差的解,此时我们应该放弃,只保存最优解,这样我们每⼀次都把最优解保存了下来,⼤⼤降低了时间复杂度。

动态规划解决问题的过程分为两步:1.寻找状态转移⽅程式2.利⽤状态转移⽅程式⾃底向上求解问题动态规划原理使⽤条件:可分为多个相关⼦问题,⼦问题的解被重复使⽤使⽤条件:可分为多个相关⼦问题,⼦问题的解被重复使⽤Optimal substructure(优化⼦结构):⼀个问题的优化解包含了⼦问题的优化解缩⼩⼦问题集合,只需那些优化问题中包含的⼦问题,降低实现复杂性我们可以⾃下⽽上的Subteties(重叠⼦问题):在问题的求解过程中,很多⼦问题的解将被多次使⽤。

常见动态规划题目详解

常见动态规划题目详解

常见动态规划题⽬详解1.爬楼梯题⽬描述:假设你正在爬楼梯。

需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。

你有多少种不同的⽅法可以爬到楼顶呢?注意:给定 n 是⼀个正整数。

⽰例 1:输⼊: 2输出: 2解释:有两种⽅法可以爬到楼顶。

1. 1 阶 + 1 阶2. 2 阶⽰例 2:输⼊: 3输出: 3解释:有三种⽅法可以爬到楼顶。

1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶实现代码:class Solution {public:int climbStairs(int n) {vector<int> a(n);a[0] = 1;a[1] = 2;if(n == 1){return 1;}if(n == 2){return 2;}for(int i = 2; i < n;i++){a[i] = a[i - 1] + a[i - 2];}return a[n - 1];}};2.变态跳台阶题⽬描述:⼀只青蛙⼀次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。

求该青蛙跳上⼀个n级的台阶总共有多少种跳法。

实现代码:class Solution {public:int jumpFloorII(int number) {if(number == 0){return 0;}int total = 1;for(int i = 1; i < number; i++){total *= 2;}return total;}};3.n年后⽜的数量题⽬描述:假设农场中的母⽜每年会产⽣⼀头⼩母⽜,并且永远不会死。

第⼀年农场中只有⼀头成熟的母⽜,第⼆年开始,母⽜开始⽣⼩母⽜,每只⼩母⽜三年之后成熟⼜可以⽣⼩母⽜,给定整数N,求N年后母⽜的数量。

实现代码:class solution{ public: int f(int n){ if(n < 1){ return 0; } if(n == 1|| n== 2||n == 3){ return n; } int res = 3; int pre = 2; int prepre = 1; int tmp1=0; int tmp2 = 0; for(int i = 4;i < n;i++){ tmp1 = res; tmp2 = pre; res = pre + prepre; pre = tmp1; prepre = tmp2; } return res; }};4.矩形覆盖题⽬描述:我们可以⽤2*1的⼩矩形横着或者竖着去覆盖更⼤的矩形。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
动态规划算法的应用
一、动态规划的概念
近年来,涉及动态规划的各种竞赛题越来越多,每一年的 NOI 几乎都至少有一道题目需要用动态 规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推 和建模上了。
要了解动态规划的概念,首先要知道什么是多阶段决策问题。 1. 多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一 个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则 称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而 就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略 不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在 预定的标准下达到最好的效果. 2.动态规划问题中的术语 阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段 数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用 k 表示。此外, 也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许 有无穷多个决策时,阶段变量就是连续的。
解决方法:
我们尝试从正面的思路去分析问题,如上例,不难得出一个非常简单的递归过程 : f1:=f(i-1,j+1); f2:=f(i-1,j); if f1>f2 then f:=f1+a[i,j] else f:=f2+a[i,j]; 显而易见,这个算法就是最简单的搜索算法。时间复杂度为 2n,明显是会超时的。分析一下搜索 的过程,实际上,很多调用都是不必要的,也就是把产生过的最优状态,又产生了一次。为了避免浪 费,很显然,我们存放一个 opt 数组:Opt[i, j] - 每产生一个 f(i, j),将 f(i, j)的值放入 opt 中,以 后再次调用到 f(i, j)的时候,直接从 opt[i, j]来取就可以了。于是动态规划的状态转移方程被直观地 表示出来了,这样节省了思维的难度,减少了编程的技巧,而运行时间只是相差常数的复杂度,避免 了动态规划状态转移先后的问题,而且在相当多的情况下,递归算法能更好地避免浪费,在比赛中是 非常实用的.

动态规划基础讲解及经典案例分析解答

动态规划基础讲解及经典案例分析解答

3、参考程序 I
#include <stdio.h> #define MAX_NUM 100 int D[MAX_NUM + 10][MAX_NUM + 10]; int N; int MaxSum( int r, int j) { if( r == N ) return D[r][j]; int nSum1 = MaxSum(r+1, j); int nSum2 = MaxSum(r+1, j+1); if( nSum1 > nSum2 ) return nSum1+D[r][j]; return nSum2+D[r][j]; }
5、参考程序 III
动态规划解题的一般思路

许多求最优解的问题可以用动态规划来解决。
首先要把原问题分解为若干个子问题。注意单纯的递归往往会导 致子问题被重复计算,用动态规划的方法,子问题的解一旦求出就 要被保存,所以每个子问题只需求解一次。 子问题经常和原问题形式相似,有时甚至完全一样,只不过规模 从原来的n 变成了n-1,或从原来的n×m 变成了n×(m-1) ……等 等。

4、参考程序 II
#include <stdio.h> #include <memory.h> #define MAX_NUM 100 int D[MAX_NUM + 10][MAX_NUM + 10]; int N; int aMaxSum[MAX_NUM + 10][MAX_NUM + 10]; int MaxSum( int r, int j) { if( r == N ) return D[r][j]; if( aMaxSum[r+1][j] == -1 ) //如果MaxSum(r+1, j)没有计算过 aMaxSum[r+1][j] = MaxSum(r+1, j); if( aMaxSum[r+1][j+1] == -1) aMaxSum[r+1][j+1] = MaxSum(r+1, j+1); if( aMaxSum[r+1][j] > aMaxSum[r+1][j+1] ) return aMaxSum[r+1][j] +D[r][j]; return aMaxSum[r+1][j+1] + D[r][j]; }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章动态规划规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。

在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。

所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。

将各个阶段的决策综合起来构成一个决策序列,称为一个策略。

显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。

当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。

多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。

动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。

动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。

当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。

在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。

动态规划的主要创始人是美国数学家贝尔曼(Bellman)。

20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。

1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。

该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。

1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。

在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。

爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。

梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。

动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。

在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。

许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。

特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。

动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。

本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。

§7.1 动态规划的基本理论1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。

任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。

其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

由于每一阶段都有一个决策,所以每一阶段都应存在一个衡量决策效益大小的指标函数,这一指标函数称为阶段指标函数,用g n 表示。

显然g n 是状态变量S n 和决策变量d n 的函数,即g n = r (S n ,d n ),如图7-1(b )所示。

显然,输出是输入和决策的函数,即:),(1n n n d S f S =+ (7-1)式(7-1)即为状态转移律。

在由N 个阶段构成的过程里,前一个阶段的输出即为后一个阶段的输入。

1.2 动态规划的基本概念动态规划的数学描述离不开它的一些基本概念与符号,因此有必要在介绍多阶段决策过程的数学描述的基础上,系统地介绍动态规划的一些基本概念。

1. 阶段(stage )阶段是过程中需要做出决策的决策点。

描述阶段的变量称为阶段变量,常用k 来表示。

阶段的划分一般是根据时间和空间的自然特征来进行的,但要便于将问题的过程转化为多阶段决策的过程。

对于具有N 个阶段的决策过程,其阶段变量k =1,2,…,N 。

2. 状态(state )状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。

状态既反映前面各阶段系列决策的结局,又是本阶段决策的一个出发点和依据;它是各阶段信息的传递点和结合点。

各阶段的状态通常用状态变量S k 来加以描述。

作为状态应具有这样的性质:如果某阶段状态给定后,则该阶段以后过程的发展不受此阶段以前各阶段状态的影响。

换句话说,过程的历史只能通过当前的状态来影响未来,当前的状态是以往历史的一个总结。

这个性质称为无后效性(the future is independent of the past )或健忘性(the process is forgetful )。

3. 决策(decision )决策是指决策者在所面临的若干个方案中做出的选择。

决策变量d k 表示第k 阶段的决策。

决策变量d k 的取值会受到状态S k 的某种限制,用D k (S k )表示第k 阶段状态为S k 时决策变量允许的取值范围,称为允许决策集合,因而有d k (S k )∈D k (S k )。

4. 状态转移律(transformation function )状态转移律是确定由一个状态到另一状态演变过程的方程,这种演变的对应关系记为S k+1 = T k (S k , d k )。

5. 策略(policy )与子策略(sub-policy )由所有阶段决策所组成的一个决策序列称为一个策略,具有N 个阶段的动态规划问题的策略可表示为:)}(,),(),({2211N N S d S d S d从某一阶段开始到过程终点为止的一个决策子序列,称为过程子策略或子策略。

从第k 个阶段起的一个子策略可表示为:)}(,),(),({11N N k k k k S d S d S d ++6. 指标函数指标函数有阶段指标函数和过程指标函数之分。

阶段指标函数是对应某一阶段决策的效率度量,用g k = r (S k ,d k )来表示;过程指标函数是用来衡量所实现过程优劣的数量指标,是定义在全过程(策略)或后续子过程(子策略)上的一个数量函数,从第k 个阶段起的一个子策略所对应的过程指标函数常用G k,N 来表示,即:),,,,,,(11,N N k k k k N k d S d S d S R G ++=构成动态规划的过程指标函数,应具有可分性并满足递推关系;即:N k k N k G g G ,1,+⊕=这里的⊕表示某种运算,最常见的运算关系有如下二种:(1) 过程指标函数是其所包含的各阶段指标函数的“和”,即:∑==Nkj j N k g G ,于是N k k N k G g G ,1,++=(2) 过程指标函数是其所包含的各阶段指标函数的“积”,即:∏==Nkj j N k g G ,于是N k k N k G g G ,1,+⨯=7. 最优指标函数从第k 个阶段起的最优子策略所对应的过程指标函数称为最优指标函数,可以用式(7-2)加以表示:}{)(1~N k k d k k g g g opt S f Nk ⊕⊕⊕=+ (7-2)其中“opt ”是最优化“optimization ”的缩写,可根据题意取最大“max ”或最小“min ”。

在不同的问题中,指标函数的含义可能是不同的,它可能是距离、利润、成本、产量或资源量等。

1.3 动态规划的数学模型动态规划的数学模型除包括式(7-2)外,还包括阶段的划分、各阶段的状态变量和决策变量的选取、允许决策集合和状态转移律的确定等。

如何获得最优指标函数呢?一个N 阶段的决策过程,具有如下一些特性: (1) 刚好有N 个决策点;(2) 对阶段k 而言,除了其所处的状态k S 和所选择的决策k d 外,再没有任何其它因素影响决策的最优性了;(3) 阶段k 仅影响阶段1+k 的决策,这一影响是通过1+k S 来实现的;(4) 贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。

根据贝尔曼(Bellman )最优化原理,可以将式(7-2)表示为递推最优指标函数关系式(7-3)或式(7-4):)}({}{)(111~++++=⊕⊕⊕=k k k d N k k d k k S f g opt g g g opt S f kNk (7-3))}({}{)(111~+++⨯=⊕⊕⊕=k k k d N k k d k k S f g opt g g g opt S f kNk (7-4)利用式(7-3)和式(7-4)可表示出最后一个阶段(第N 个阶段,即k=N )的最优指标函数:)}({)(11+++=N N N d N N S f g opt S f N(7-5))}({)(11++⨯=N N N d N N S f g opt S f N(7-6)其中)(11++N N S f 称为边界条件。

一般情况下,第N 阶段的输出状态1+N S 已经不再影响本过程的策略,即式(7-5)中的边界条件0)(11=++N N S f ,式(7-6)中的边界条件1)(11=++N N S f ;但当问题第N 阶段的输出状态1+N S 对本过程的策略产生某种影响时,边界条件)(11++N N S f 就要根据问题的具体情况取适当的值,这一情况将在后续例题中加以反映。

已知边界条件)(11++N N S f ,利用式(7-3)或式(7-4)即可求得最后一个阶段的最优指标函数)(N N S f ;有了)(N N S f ,继续利用式(7-3)或式(7-4)即可求得最后两个阶段的最优指标函数)(11--N N S f ;有了)(11--N N S f ,进一步又可以求得最后三个阶段的最优指标函数)(22--N N S f ;反复递推下去,最终即可求得全过程N 个阶段的最优指标函数)(11S f ,从而使问题得到解决。

相关文档
最新文档