2017年上海市静安区中考数学一模试卷(解析版)
2017年上海市静安区中考数学一模试卷含答案解析
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC ﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日21。
2017年中考数学一模试卷及答案
2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2017年上海中学中考数学一模试卷(含解析)
2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D 不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS 定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E是边AD 上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n (x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n 为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB 上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,word格式-可编辑-感谢下载支持∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。
2017年上海市静安区中考数学一模试卷含答案解析
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC ﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日21。
上海市静安区初三数学一模卷含标准答案
静安区2017学年第一学期期末学习质量调研九年级数学2018.1一、选择题(本大题共6题,每题4分,满分24分) 1. 化简25()a a -⋅所得的结果是( )A. 7aB. 7a -C. 10aD. 10a -2. 下列方程中,有实数根的是( )A.110x -+= B. 11x x+=C. 4230x +=D.211x =-- 3. 如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3,3OA OC OB OD ==),然后张开两脚,使,A B 两个尖端分别在线段a 的两个端点上,当 1.8CD =cm 时,AB 的长是( )A. 7.2cmB. 5.4cmC. 3.6cmD. 0.6cm4. 下列判断错误的是( )A. 如果0k =或0a =r r ,那么0ka =r rB. 设m 为实数,则()m a b ma mb +=+r r r rC. 如果//a e r r ,那么a a e =r r rD. 在平行四边形ABCD 中,AD AB BD -=u u u r u u u r u u u r5. 在Rt ABC V 中,90C ∠=o ,如果1sin 3A =,那么sin B 的值是( )A.3B.C.4D. 36. 将抛物线2123y x x =--先向左平移1个单位,再向上平移4个单位后,与抛物线22y ax bx c =++重合,现有一直线323y x =+与抛物线22y ax bx c =++相交,当23y y ≤时,利用图像写出此时x 的取值范围是( ) A. 1x ≤-B. 3x ≥C. 13x -≤≤D. 0x ≥二、填空题(本大题共12题,每题4分,满分48分) 7. 已知13a c b d ==,那么a cb d++的值是____________. 8. 已知线段AB 长是2厘米,P 是线段AB 上的一点,且满足2AP AB BP =⋅,那么AP 长为____________厘米.9. 已知ABC V 、2,DEF V 的两边长分别是1,如果ABC V 与DEF V 相似,那么DEF V 的第三边长应该是____________.10. 如果一个反比例函数图像与正比例函数2y x =图像有一个公共点(1,)A a ,那么这个反比例函数的解析式是____________.11. 如果抛物线2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)在对称轴左侧的部分是上升的,那么a ____________0.(填“<”或“>”)12. 将抛物线2()y x m =+向右平移2个单位后,对称轴是y 轴,那么m 的值是____________. 13. 如图,斜坡AB 的坡度是1:4,如果从点B 测得离地面的铅垂高度BC 是6米,那么斜坡AB 的长度是____________米.14. 在等腰ABC V 中,已知5,8AB AC BC ===,点G 是重心,联结BG ,那么CBG ∠的余切值是____________.15. 如图,ABC V 中,点D 在边AC 上,,9,7ABD C AD DC ∠=∠==,那么AB =____________.16. 已知梯形ABCD ,//AD BC ,点E 和F 分别在两腰AB 和DC 上,且EF 是梯形的中位线,3,4AD BC ==.设AD a =u u u r r ,那么向量EF =u u u r ____________.(用向量a r表示)17. 如图,ABC V 中,,90,6AB AC A BC =∠==o,直线//MN BC ,且分别交边AB 、AC 于点M 、N ,已知直线MN 将ABC V 分为面积相等的两部分,如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =____________.18. 如图,矩形纸片,4,3ABCD AD AB ==.如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC V 是直角三角形时,那么BE 的长为____________.三、解答题(本大题共7题,满分78分)19. (本题满分10分)计算:3cot 451tan 60sin 60cos302cos 601+-⨯+o o o o o.20. (本题满分10分)解方程组:25()2()30x y x y x y +=⎧⎨----=⎩①②.21. (本题满分10分,第1小题4分,第2小题6分)已知:二次函数图像的顶点坐标是(3,5),且抛物线经过点(1,3)A .(1)求此抛物线的表达式;(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求ABC V 的面积.22. (本题满分10分,第1小题5分,第2小题5分)如图,在一条河的北岸有两个目标M 、N ,现在位于它的对岸设定两个观测点A 、B ,已知//AB MN ,在A 点测得60MAB ∠=o ,在B 点测得45MBA ∠=o ,600AB =米.(1)求点M 到AB 的距离;(结果保留根号)(2)在B 点又测得53NBA ∠=o ,求MN 的长.(结果精确到1米)1.732,sin 530.8,cos530.6,tan 53 1.33,cot 530.75≈≈≈≈≈o o o o)23. (本题满分12分,其中第1小题6分,第2小题6分)已知:如图,梯形ABCD 中,//,,DC AB AD BD AD DB =⊥,点E 是腰AD 上一点,作45EBC ∠=o ,联结CE ,交DB 于点F .(1)求证:ABE V ∽DBC V ;(2)如果56BC BD =,求BCE BDA S S V V 的值.24. (本题满分12分,第1小题4分,第2小题8分)在平面直角坐标系xOy 中(如图),已知抛物线253y ax bx =+-经过点(1,0)A -、(5,0)B . (1)求此抛物线顶点C 的坐标;(2)联结AC 交y 轴于点D ,联结BD 、BC ,过点C 作CH BD ⊥,垂足为点H,抛物线对称轴交x 轴于点G ,联结HG ,求HG 的长.25. (本题满分14分,第1小题4分,第2小题6分,第3小题4分)已知:如图,四边形ABCD 中,090,,,BAD AD DC AB BC AC <∠≤==oo平分BAD ∠.(1)求证:四边形ABCD 是菱形;(2)如果点E 在对角线AC 上,联结BE 并延长,交边DC 于点G ,交线段AD 的延长线于 点F (点F 可与点D 重合),AFB ACB ∠=∠,设AB 长度是a (a 实常数,且0a >),,AC x AF y ==,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题的条件下,当CGE V 是等腰三角形时,求AC 的长.(计算结果用含a 的代数式表示)参考答案一、选择题 1. B2. D3. B4. C5. A6. C二、填空题 7.138.19.10. 2y x=11. < 12. 213.14. 4 15. 1216. 76a r17. 318. 3或32三、解答题 19. 120. 121242,13x x y y ⎧==⎧⎪⎨⎨==⎪⎩⎩ 21. (1)21(3)52y x =--+; (2)5 22. (1)(900-m ; (2)95m23. (1)证明略; (2)2536 24. (1)(2,3)C -; (2)1325. (1)证明略; (2)22)x y a x a a=-≤<; (3。
2017年上海市中考数学试卷-含答案详解
2017年上海市中考数学试卷一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,无理数是( )A. 0B. √2C. −2D. 272. 下列方程中,没有实数根的是( )A. x2−2x=0B. x2−2x−1=0C. x2−2x+1=0D. x2−2x+2=03. 如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )A. k>0,且b>0B. k<0,且b>0C. k>0,且b<0D. k<0,且b<04. 数据2、5、6、0、6、1、8的中位数和众数分别是( )A. 0和6B. 0和8C. 5和6D. 5和85. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. 菱形B. 等边三角形C. 平行四边形D. 等腰梯形6. 已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB二、填空题(本大题共12小题,共48.0分)7. 计算:2a⋅a2=______.8. 不等式组{2x>6x−2>0的解集是______.9. 方程√2x−3=1的解是______.10. 如果反比例函数y=k(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在x的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”).11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是______ 微克/立方米.12. 不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.13. 已知一个二次函数的图象开口向上,顶点坐标为(0,−1 ),那么这个二次函数的解析式可以是______ .(只需写一个)14. 某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是________万元.15. 如图,已知AB//CD ,CD =2AB ,AD 、BC 相交于点E ,设AE ⃗⃗⃗⃗⃗ =a ⃗ ,CE ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量CD ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______ .16. 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF//AB ,那么n 的值是______.17. 如图,已知Rt △ABC ,∠C =90°,AC =3,BC =4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18. 我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=______.三、计算题(本大题共1小题,共10.0分)19. 计算:√18+(√2−1)2−√9+(12)−1.四、解答题(本大题共6小题,共68.0分。
2017年上海中考数学试卷(含答案),推荐文档
2•下列方程中,没有实数根的是(b 应满足的条件是 6. 已知平行四边形 ABCD, AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四 边形为矩形的是( A. BAC DCA C. BAC ABD、填空题27.计算:2aga2x8.不等式组X6的解集是2 09. 方程 2x 3 1的根是 ____________k10. 如果反比例函数 y — (k 是常数,k 0)的图像经过点(2,3),那么在这个函数图像x所在的每个象限内,y 的值着x 的值增大而 _______________ .(填“增大”或“减小”) 11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了 10%,如果今年PM2.5 的年均浓度比去年也下降 10%,那么今年PM2.5的年均浓度将是 __________ 微克/立方米. 12. 不透明的布袋里有 2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布 袋中任意摸出一个球恰好为红球的概率是 _____________ 13. 已知一个二次函数的图像开口向上,顶点坐标为( 0,— 1),那么这个二次函数的解析式可以是 __________________ .(只需写一个)一、选择题(本大题共 1.下列实数中,无理数是( B 「2 ; A.O ; 2017年上海中考数学试卷6题,每题4分,满分24分))C.— 2; 2D.—;72A.x 2x 0 ; 2B. X2x2C. x 2x 10 2D. X 2x3.如果一次函数ykx(k 、b 是常数, k 0 )的图像经过第一、二、四象限,那么k 、A.k 0,且 bB.0,且 b 0 C. k 0,且bD. k 0,且b 04. 数据2、5、 A.0 和 6;5. 下列图形中,A.菱形 6、 6、 1、 8的中位数和众数分别是(B.0 和 8 ;C.5 和 6 ; 既是轴对称又是中心对称图形的是(B.等边三角形C.平行四边形) D.5 和 8 )D.等腰梯形B. BAC DACD. BACADB14. 某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是 72万元,那么该 企业第一季度月产值的平均数是 ____________________________ 万元. 15. 如图 2,已知 AB//CD , CD = 2AB , AD 、BC 相交于点 E.uuu r iuu r uuu r r设AE a , CE b ,那么向量CD 用向量ab 表示为16. 一副三角尺按图3的位置摆放(顶点 C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在 一条直线上)•将三角尺DEF 绕着点F 按顺时针方向旋转 n 后(0 n 180),如果EF//AB , 那么n 的值是 ______________________ .17. 如图4,已知Rt ABC , C 90 , AC = 3, BC = 4•分别以点A 、B 为圆心画圆,如果点 C 在e A 内,点 B 在e A 夕卜,且e B 与e A 内切,那么 e B 的半径长 r 的取值范围 是 . 18. 我们规定:一个正n 边形(n 为整数,n 4)最短对角线与最长对角线长度的比值叫做 这个正n 边形的“特征值”,记为n ,那么6 = ________________ .三、解答题丄 1119. (本题满分10分)计算:.18 C 、21)2 92-221. (本题满分10分,第(1)小题4分,第(2)小题6分) 如图5, —座钢结构桥梁的框架是 ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D是BC 的中点,且AD BC . (1 )求sin B 的值;(2)再需要加装支架 DE 、EF,其中点E 在AB 上, BE = 2AE,且EF BC ,垂足为点F 求 支架DE 的长.20.(本题满分10分)解方程:3 x 2 3xA图422. (本题满分10分,每小题各5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图6所示•乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元•(1)求图6所示的y与x的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少•23. (本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图7,四边形ABCD中,AD//BC, AD= CD, E是对角线BD上一点,且EA= EC.(1)求证:四边形ABCD是菱形;(2)如果BE= BC,且CBE : BCE 2:3,求证:四边形ABCD是正方形.图7224. 已知在平面直角坐标系xOy中(如图8),已知抛物线y x bx c上有一点A (2, 2),对称轴为X 1,顶点为B.(1 )求这条抛物线的解析式和顶点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上,原抛物线上有一点P 平移后的对应点Q,若OP= OQ,求点Q坐标.25. 如图9,已知e O的半径长为1, AB AC是e O的两条弦,且AB= AC, BO的延长线交边AC 于点D,联结OA、OC.(1)证明:ABD s OAD ;(2)若COD是直角三角形,求 B C两点的距离;(3)记AOB、AOD、COD的面积分别为S,、S2、S,,如果S2是S,和S3的比例中项,求OD的长.图9 备用图2017年上海中考数学试卷答案—选择颗;1答案;B (无理数为、2)Z答案:D (没有宝救根的是x3-2x+2^0)占答簾:B(满足条件为T O r b>0 }4答案:C〈中位数为5介数为6)5答案:A (既是轴对称又是中心对称的图像是菱形)6 答案;C(^AC = ^AB£) }二填空题:了答案为:卅8答案为:x>39答案为:Z10答案为!减小11答案为;40512苔案为:113答案为'洌如:(答実不唯一”可有多种写法)14答案为;8015答案为:苗祐出答案为,45〔答案写4盯是错误的,题目问的是2 17答案为:S<r <10 18答案为:旦2三解答题19答案为:2亠忑20答案为:x = -1 (主童X=3要舍去)21答案为:(1〉如“辔;(2)DE=522答案为,(1),= %+400:(2)乙公司服务费用更少23答案略(证明较为简单)24答案为:(1〉拋物线解析式为:八-八2“2;顶点坐标为(13); (Z>余切值为:m-2; <3)尿乎肩).Q(畔肩)25答案为:(1〉证明略,(2)心密⑻込导EC = ®2。
2017年上海市中考数学试卷及参考答案
2017年上海市中考一、选择题(本大题共6题,每题4分,满分24分) 1、下列实数中,无理数是( )A 、0B 、2、C 2-D 、722、下列方程中,没有实数根的是( )A 、022=-x xB 、0122=--x xC 、0122=+-x xD 、0222=+-x x3、如果一次函数b kx y +=(k 、b 是常数,0≠k )的图像经过第一、二、四象限,那么k 、b 应满足的条件是( )A 、0>k 且0>bB 、0<k 且0>bC 、0>k 且0<bD 、0<k 且0<b4、数据2、5、6、0、6、1、8的中位数和众数分别是( )A 、0和6B 、0和8C 、5和6D 、5和85、下列图形中,既是轴对称图形又是中心对称图形的是( )A 、菱形B 、等边三角形C 、平行四边形D 、等腰梯形6、已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A 、DCA BAC ∠=∠B 、DAC BAC ∠=∠ C 、ABD BAC ∠=∠ D 、ADB BAC ∠=∠二、填空题(本大题共12题,每题4分,满分48分) 7、计算:=⋅22a a8、不等式组⎩⎨⎧>->0262x x 的解集是9、方程132=-x 的根是10、如果反比例函数xky =(k 是常数,0≠k )的图像经过点)3,2(,那么这个函数图像所在的每个象限内,y 的值随x 的值增大而 (填“增大”或“减小")11、某市前年5.2PM 的年均浓度为50微克/立方米,去年比前年下降了%10,如果今年5.2PM 的年均浓度比去年也下降了%10,那么今年5.2PM 的年均浓度是 微克/立方米12、不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是13、已知一个二次函数的图像开口向上,顶点坐标为)1,0(-,那么这个二次函数的解析式可以是 (只需写一个)14、某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元第14题 第15题15、如图,已知CD AB ∥,AB CD 2=,AD 、BC 相交于点E 。
中考数学一模考试试题练习2017年(附答案)
中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。
以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。
上海市静安区高考数学一模试卷解析版
2017年上海市静安区高考数学一模试卷(解析版)2017年上海市静安区高考数学一模试卷一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.“x<0”是“x<a”的充分非必要条件,则a的取值范围是.2.函数的最小正周期为.3.若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a的值为.4.二项式展开式中x的系数为.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.已知α为锐角,且,则sinα=.7.根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过小时方可驾车.(精确到小时)8.已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为.9.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能12.在无穷等比数列{an }中,,则a1的取值范围是()A.B.C.(0,1)D.13.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.215.已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g (x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A.B.C.D.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.设双曲线C:,F1,F2为其左右两个焦点.(1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求的取值范围;(2)若动点P 与双曲线C 的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为,求动点P 的轨迹方程.18.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向,300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A ,并说明理由;(2)城市A 受到该台风侵袭的持续时间为多久?19.设集合M a ={f (x )|存在正实数a ,使得定义域内任意x 都有f (x+a )>f (x )}.(1)若f (x )=2x ﹣x 2,试判断f (x )是否为M 1中的元素,并说明理由;(2)若,且g (x )∈M a ,求a 的取值范围;(3)若(k ∈R ),且h (x )∈M 2,求h (x )的最小值.20.由n (n ≥2)个不同的数构成的数列a 1,a 2,…a n 中,若1≤i <j ≤n 时,a j <a i (即后面的项a j 小于前面项a i ),则称a i 与a j 构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…an的逆序数为a,求an,an﹣1,…a1的逆序数.2017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义求出a的范围即可.【解答】解:若“x<0”是“x<a”的充分非必要条件,则a的取值范围是(0,+∞),故答案为:(0,+∞).2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x的最小正周期为=π,故答案为:π.3.若复数z为纯虚数,且满足(2﹣i)z=a+i(i为虚数单位),则实数a的值为.【考点】复数代数形式的乘除运算.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.则实数a的值为:.故答案为:.4.二项式展开式中x的系数为10 .【考点】二项式定理.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为Tr+1=x2(5﹣r)•x﹣r=•x10﹣3r,则Tr+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【考点】棱柱、棱锥、棱台的体积.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.已知α为锐角,且,则sinα=.【考点】两角和与差的余弦函数.【分析】由α为锐角求出α+的范围,利用同角三角函数间的基本关系求出sin(α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过8 小时方可驾车.(精确到小时)【考点】函数模型的选择与应用.【分析】先求出e r=,再利用89•e xr<20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr<20,∴x≥8,故答案为8.8.已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,满足f(x7)+f(x8)=0,则x2017的值为4019 .【考点】数列与函数的综合.【分析】设设x7=x,则x8=x+2,则f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f(x+1)=0=f(0),x7=﹣1.设数列{xn}通项xn=x7+2(n﹣7).得到通项xn =2n﹣15.由此能求出x2011的值.【解答】解:设x7=x,则x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{xn }通项xn=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:40199.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,则的最大值为12 .【考点】向量在几何中的应用.【分析】建立坐标系,设M (),则=(),,【解答】解:如图建立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),则=(),,,故答案为:12.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为 4 .【考点】基本不等式.【分析】根据对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当x=y=时取等号.故的最小值为4.故答案为:4.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.若空间三条直线a、b、c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能【考点】空间中直线与直线之间的位置关系.【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的定义即可得出,若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.【解答】解:如图所示:a⊥b,b⊥c,a与c可以相交,异面直线,也可能平行.从而若直线a、b、c满足a⊥b、b⊥c,则a∥c,或a与c相交,或a与c异面.故选D.12.在无穷等比数列{an }中,,则a1的取值范围是()A.B.C.(0,1)D.【考点】数列的极限.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{an}中,,可知|q|<1,则=,a1=∈(0,)∪(,1).故选:D.13.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【考点】排列、组合的实际应用.【分析】根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A.14.已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.2【考点】抛物线的简单性质;椭圆的简单性质.【分析】由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得焦点坐标,即可求得C1的左焦点到C2的准线之间的距离.【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左焦点(,0),C 1的左焦点到C2的准线之间的距离﹣1,故选B.15.已知y=g(x)与y=h(x)都是定义在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),若y=g (x)﹣h(x)恰有4个零点,则正实数k的取值范围是()A.B.C.D.【考点】根的存在性及根的个数判断.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象得到关于k的不等式组,解出即可.【解答】解:若y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,故选:C.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F分别是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)连接A1C1,由E,F分别是棱AD,CD的中点,可得EF∥AC,进一步得到EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F分别是棱AD,CD的中点,∴EF∥AC,则EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).17.设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【考点】直线与双曲线的位置关系.【分析】(1)设M(x,y),,左焦点,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF1|+|PF2|=2a,结合余弦定理,以及基本不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左焦点,=…=()对称轴,…(2)由椭圆定义得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…18.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?【考点】圆方程的综合应用.【分析】(1)建立直角坐标系,…,则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图建立直角坐标系,…则城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,此时台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…∴10小时后,该台风还没有开始侵袭城市A.…(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,若城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…解得12≤t≤24…∴该城市受台风侵袭的持续时间为12小时.…19.设集合M={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>fa(x)}.中的元素,并说明理由;(1)若f(x)=2x﹣x2,试判断f(x)是否为M1,求a的取值范围;(2)若,且g(x)∈Ma,求h(x)(3)若(k∈R),且h(x)∈M2的最小值.【考点】函数与方程的综合运用.【分析】(1)利用f(1)=f(0)=1,判断f(x)∉M.1(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,得到对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,分别求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M.…1(2)由…∴,…故 a>1.…(3)由,…即:∴对任意x ∈[1,+∞)都成立∴…当﹣1<k ≤0时,h (x )min =h (1)=log 3(1+k ); …当0<k <1时,h (x )min =h (1)=log 3(1+k ); …当1≤k <3时,.…综上:…20.由n (n ≥2)个不同的数构成的数列a 1,a 2,…a n 中,若1≤i <j ≤n 时,a j <a i (即后面的项a j 小于前面项a i ),则称a i 与a j 构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n ≤k ,n ∈N *)的逆序数;(3)已知数列a 1,a 2,…a n 的逆序数为a ,求a n ,a n ﹣1,…a 1的逆序数.【考点】数列的求和.【分析】(1)由{a n }为单调递减数列,可得逆序数为99+98+ (1)(2)当n 为奇数时,a 1>a 3>…>a 2n ﹣1>0.当n 为偶数时:0>a 2>a 4>…>a 2n .可得逆序数.(3)在数列a 1,a 2,…a n 中,若a 1与后面n ﹣1个数构成p 1个逆序对,则有(n ﹣1)﹣p 1不构成逆序对,可得在数列a n ,a n ﹣1,…a 1中,逆序数为(n ﹣1)﹣p 1+(n ﹣2)﹣p 2+…+(n ﹣n )﹣p n .【解答】解:(1)∵{a n }为单调递减数列,∴逆序数为.(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…an中,若a1与后面n﹣1个数构成p1个逆序对,则有(n﹣1)﹣p1不构成逆序对,所以在数列an,an﹣1,…a1中,逆序数为.。
2017上海初三数学一模25题(教师版)
上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。
解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。
题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。
其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。
题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。
与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。
解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。
2017年上海市中考数学试卷及答案解析
2017年上海市中考数学试卷及答案解析一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( ) A .0B .√2C .﹣2D .27解:0,﹣2,27是有理数, √2是无理数, 故选:B .2.下列方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2﹣2x ﹣1=0C .x 2﹣2x +1=0D .x 2﹣2x +2=0解:A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误; B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B 选项错误;C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C 选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选:D .3.如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <0解:∵一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限, ∴k <0,b >0, 故选:B .4.数据2、5、6、0、6、1、8的中位数和众数分别是( ) A .0和6B .0和8C .5和6D .5和8解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选:C.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选:A.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2a•a2=2a3.解:2a•a2=2×1a•a2=2a3.故答案为:2a3.8.不等式组{2x>6x−2>0的解集是x>3.解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.9.方程√2x−3=1的解是x=2.解:√2x−3=1,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.10.如果反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)解:∵反比例函数y=kx(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是310.解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:32+3+5=310.故答案为:310.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y =2x 2﹣1, 故答案为:y =2x 2﹣1.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元), 则该企业第一季度月产值的平均值是13×240=80(万元).故答案是:80.15.如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE →=a →,CE →=b →,那么向量CD →用向量a →、b →表示为 b →+2a →.解:∵AB ∥CD , ∴AB CD=AE ED=12,∴ED =2AE , ∵AE →=a →, ∴ED →=2a →,∴CD →=CE →+ED →=b →+2a →.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360﹣135=225,∵0<n<180,∴此种情形不合题意,故答案为4517.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=3,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=√32.解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE 是正六边形最长的对角线,EC 是正六边形的最短的对角线, ∵△OBC 是等边三角形,∴∠OBC =∠OCB =∠BOC =60°, ∵OE =OC , ∴∠OEC =∠OCE , ∵∠BOC =∠OEC +∠OCE , ∴∠OEC =∠OCE =30°, ∴∠BCE =90°, ∴△BEC 是直角三角形, ∴EC BE=cos30°=√32,∴λ6=√32,故答案为√32. 三、解答题(本大题共7小题,共78分) 19.(10分)计算:√18+(√2−1)2−912+(12)﹣1.解:原式=3√2+2﹣2√2+1﹣3+2 =√2+2. 20.(10分)解方程:3x 2−3x−1x−3=1.解:两边乘x (x ﹣3)得到3﹣x =x 2﹣3x , ∴x 2﹣2x ﹣3=0, ∴(x ﹣3)(x +1)=0, ∴x =3或﹣1,经检验x =3是原方程的增根, ∴原方程的解为x =﹣1.21.(10分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC . (1)求sin B 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)在Rt △ABD 中,∵BD =DC =9m ,AD =6m , ∴AB =√BD 2+AD 2=√92+62=3√13m , ∴sin B =AD AB =313=2√1313.(2)∵EF ∥AD ,BE =2AE , ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23,∴EF =4m ,BF =6m , ∴DF =3m ,在Rt △DEF 中,DE =√EF 2+DF 2=√42+32=5m .22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.解:(1)设y =kx +b ,则有{b =400100k +b =900,解得{k =5b =400,∴y =5x +400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE :∠BCE =2:3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中, {AD =CD DE =DE EA =EC, ∴△ADE ≌△CDE , ∴∠ADE =∠CDE , ∵AD ∥BC , ∴∠ADE =∠CBD ,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×22+3+3=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.解:(1)∵抛物线的对称轴为x=1,∴x=−b2a=1,即−b2×(−1)=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AG⊥BM,垂足为G,则AG=1,G(1,2).∵M(1,m),G(1,2),∴MG=m﹣2.∴cot∠AMB=GMAG=m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为−32.将y =−32代入y =﹣x 2+2x ﹣1得:﹣x 2+2x ﹣1=−32,解得:x =2+√62或x =2−√62. ∴点Q 的坐标为(2+√62,−32)或(2−√62,−32). 25.(14分)如图,已知⊙O 的半径长为1,AB 、AC 是⊙O 的两条弦,且AB =AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:△OAD ∽△ABD ;(2)当△OCD 是直角三角形时,求B 、C 两点的距离;(3)记△AOB 、△AOD 、△COD 的面积分别为S 1、S 2、S 3,如果S 2是S 1和S 3的比例中项,求OD 的长.(1)证明:如图1中,在△AOB 和△AOC 中,{OA =OA AB =AC OB =OC,∴△AOB ≌△AOC ,∴∠C =∠B ,∵OA =OC ,∴∠OAC =∠C =∠B ,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=12OA=12,∴AD=2−OD2=√32,∴BC=AC=2AD=√3.②∠COD=90°,∠BOC=90°,BC=√12+12=√2,③∠OCD显然≠90°,不需要讨论.综上所述,BC=√3或√2.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴AD DB =OD AD =OA AB , ∴AD x+1=x AD =1AB ,∴AD =√x(x +1),AB =√x(x+1)x ,∵S 2是S 1和S 3的比例中项,∴S 22=S 1•S 3,∵S 2=12AD •OH ,S 1=S △OAC =12•AC •OH ,S 3=12•CD •OH ,∴(12AD •OH )2=12•AC •OH •12•CD •OH , ∴AD 2=AC •CD ,∵AC =AB .CD =AC ﹣AD =√x(x+1)x −√x(x +1), ∴(√x(x +1))2=√x(x+1)x •(√x(x+1)x−√), 整理得x 2+x ﹣1=0,解得x =√5−12或−√5−12, 经检验:x =√5−12是分式方程的根,且符合题意, ∴OD =√5−12.(也可以利用角平分线的性质定理:AD AC =AD AB =DO OB ,黄金分割点的性质解决这个问题)方法2、设OD =x ,设△AOB 的边上的高为h ,则△AOD 的边OD 边上的高也为h , ∴S △AOBS △AOD =12BO×ℎ12DO×ℎ=BO DO =1x , 设S △AOB =a ,∴S △AOD =ax ,∵△AOB ≌△AOC ,∴S △AOC =S △AOB =a∴S △AOC =S △AOD +S △COD ,∴S △COD =a ﹣ax =a (1﹣x ),∵S 2是S 1和S 3的比例中项,∴S22=S1•S3,∴(ax)2=a×a(1﹣x),∴x=−1±√52,∵OD>0,∴OD=√5−1 2.。
2017年上海静安区初三一模数学试卷答案
2 y = a(x − 1) + h
得(−1, 与 4) (m, 4)关于对称轴x = 1对称,
, m − 1 = 1 − (−1)
解得m = 3 .
13. 如果△ABC ∽ △DEF ,且△ABC 与△DEF相似比为1 : 4,那么△ABC 与△DEF的面积比为
.
答 案 1 : 16
解析
∵ , △ABC ∽ △DEF
式子表示)
.(用a,⃗ b的⃗
答案
1 b⃗ −
2 a⃗
3
3
目录
选择题(本大题共6题,每题4分,满分2… 填空题(本大题共12题,每题4分,满分… 解答题(本大题共7题,满分78分)
解析
学生版
∵四边形ABC D是平行四边形,点E是边BC 的中点,
教师版
答案版
∴ , , BC //AD BC = AD = 2EC
y3 = −2
y4 = 0
解 析 由(1)得x = 或 0 x − y + 2 = 0 ,
由( )得 或 , 2
x − 3y = 2 x − 3y = −2
原方程组可化为{ x = 0
, x=0 {
,
x − 3y = 2
x − 3y = −2
2018/12/04 , , x − y + 2 = 0
{
11.
二次函数y
=
2 x
−
8x
+
10的图像的顶点坐标是
.
答案
(4, −6)
解析
∵ , 2
2
y = 2x − 8x + 10 = 2(x − 4) − 6
∴顶点坐标为(4, . −6)
2017年上海市中考数学试卷(有答案和解释)
2017年上海市中考数学试卷(有答案和解释)2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是() A.0 B. C.�2 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,�2,是有理数,数无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式. 2.下列方程中,没有实数根的是() A.x2�2x=0 B.x2�2x�1=0 C.x2�2x+1=0 D.x2�2x+2=0 【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(�2)2�4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误; B、△=(�2)2�4×1×(�1)=8>0,方程有两个不相等的实数根,所以B选项错误; C、△=(�2)2�4×1×1=0,方程有两个相等的实数根,所以C选项错误; D、△=(�2)2�4×1×2=�4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2�4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是() A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0 【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b (k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b >0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键. 4.数据2、5、6、0、6、1、8的中位数和众数分别是() A.0和6 B.0和8 C.5和6 D.5和8 【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数. 5.下列图形中,既是轴对称又是中心对称图形的是() A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确; B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是() A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形; B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形; C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形; D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:2aa2= 2a3 .【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2aa2=2×1aa2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键. 8.不等式组的解集是x>3 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x�2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.方程 =1的解是x=2 .【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:,两边平方得,2x�3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根. 10.如果反比例函数y= (k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y= (k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5 微克/立方米.【分析】根据增长率问题的关系式得到算式50×(1�10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1�10%)2 =50×0.92 =50×0.81 =40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式. 12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是: = .故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比. 13.已知一个二次函数的图象开口向上,顶点坐标为(0,�1 ),那么这个二次函数的解析式可以是y=2x2�1 .,∴该抛武线的解析式为y=ax2�1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2�1,故答案为:y=2x2�1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键. 14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120 万元.【分析】利用一月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1�45%�25%)=360(万元),则该企业第一季度月产值的平均值是×360=120(万元).故答案是:120.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数. 15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设 = , = ,那么向量用向量、表示为+2 .【分析】根据 = + ,只要求出即可解决问题.【解答】解:∵AB∥CD,∴ = = ,∴ED=2AE,∵ = ,∴ =2 ,∴ = + = +2 .【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题. 16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45 .【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135° ∴旋转角n=360°�135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45 【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A 内切,那么⊙B的半径长r的取值范围是8<r<10 .【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A 内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r <10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外. 18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .【分析】如图,正六边形ABCDEF 中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC 的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴ =cos30°= ,∴λ6= ,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分) 19.计算:+(�1)2�9 +()�1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3 +2�2 +1�3+2 = +2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 20.解方程:� =1.【分析】两边乘x(x�3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x�3)得到3�x=x2�3x,∴x2�2x�3=0,∴(x�3)(x+1)=0,∴x=3或�1,经检验x=3是原方程的增根,∴原方程的解为x=�1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验. 21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD 高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB= 计算即可;(2)由EF∥AD,BE=2AE,可得 = = = ,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB= = =3 ,∴sinB= = = .(2)∵EF∥AD,BE=2AE,∴ = = = ,∴ = = ,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE= = =5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400 ∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键. 23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E 是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD 是菱形;(2)∵BE=BC ∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180× =45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键. 24.已知在平面直角坐标系xOy中(如图),已知抛物线y=�x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=�x2+2x+c可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m�2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=� =1,即 =1,解得b=2.∴y=�x2+2x+c.将A(2,2)代入得:�4+4+c=2,解得:c=2.∴抛物线的解析式为y=�x2+2x+2.配方得:y=�(x�1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m�2.∴cot∠AMB= =m�2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=�x2+2x�1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为�.将y=�代入y=�x2+2x�1得:�x2+2x�1=�,解得:x= 或x= .∴点Q的坐标为(,�)或(,�).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键. 25.如图,已知⊙O的半径长为1,AB、AC是⊙O 的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=ACCD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC 是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD= OA= ,∴AD= = ,∴BC=AC=2AD= .(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴ == ,∴ = = ,∴AD= ,AB= ,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2= ADOH,S1=S△OAC= ACOH,S3= CDOH,∴( ADOH)2= ACOH CDOH,∴AD2=ACCD,∵AC=AB.CD=AC�AD= �,∴()2= (�),整理得x2+x�1=0,解得x= 或,经检验:x= 是分式方程的根,且符合题意,∴OD= .【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
2017年上海市静安区中考数学一模试卷
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)丄1. (4 分)a (a>0)等于()A. 匚B.-匚C.丄D.-土a a2. (4分)下列多项式中,在实数范围不能分解因式的是()22 22 22 22A. x +y +2x+2yB. x +y +2xy- 2C. x - y +4x+4yD. x - y +4y - 43. (4分)在厶ABC中,点D, E分别在边AB, AC上,* =,要使DE// BC,还BD 2需满足下列条件中的()DE_1 B DE=1 C坐4 D坐_1A.!?;. !?=•.「「= .- 一4. (4 分)在Rt A ABC中,/ C=90°,如果AB=m, / A=a,那么AC的长为()A. m?sin aB. m?cos aC. m?tan aD. m?cot a5. (4分)如果锐角a的正弦值为…,那么下列结论中正确的是()A. a =30°B. a =45°C. 30°V aV45°D. 45°V aV60°6. (4分)将抛物线y=ax^- 1平移后与抛物线y=a (x- 1)2重合,抛物线y=a£-1上的点A (2, 3)同时平移到A',那么点A的坐标为()A. (3, 4)B. (1, 2)C. (3, 2)D. (1, 4)二. 填空题(每个小题4分,共48分)7. __________________________ (4分)16的平方根是 .8. _____________________________________________________ (4分)如果代数式「•-有意义,那么x的取值范围为________________________ .Vx+29. (4分)方程」’+…=1的根为_________ .10. (4分)如果一次函数y= (m - 3)x+m - 2的图象一定经过第三、第四象限,那么常数m的取值范围为_______ .11 . (4分)二次函数y=x2- 8x+10的图象的顶点坐标是______ .12 . (4分)如果点A (- 1, 4)、B (m, 4)在抛物线y=a (x- 1)2+h上,那么m的值为_______ .13. (4分)如果△ AB3A DEF,且厶ABC与厶DEF相似比为1: 4,那么△ ABC 与厶DEF的面积比为________ .14. (4分)在厶ABC中,如果AB=AC=10 cosB主,那么△ ABC的重心到底边的5距离为_______15. (4分)已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点16. (4分)在厶ABC中,点D,E分别在边AB,AC上, △ ADE^A ABC,如果AB=4, BC=5 AC=6, AD=3,那么△ ADE的周长为_________17. (4 分)如图,在△ ABC中,点D, E分别在边AB, AC上, DE// BC,Z BDC= / CED 女口果DE=4, CD=6 那么AD: AE 等于______ .18. (4分)一张直角三角形纸片ABC, / C=90°° AB=24, tanB=「(如图),将它'J折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为_________.、解答题(共78 分)在y轴上,BC// x轴,点A的坐标为(2, 4),且cot/ ACB=求:(1)反比例函数的解析式;(2)点C的坐标;:■ = '■,那么1= ___(用■!,〔的式子表示)19. (10分)计算:tan60° -cot45Q20. (10分)解方程组:(22 0x -6xy+9y -421. (10分)已知:如图,第一象限内的点A, B在反比例函数的图象上,点C F,设,822. (10分)将笔记本电脑放置在水平桌面上,显示屏0B与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O AC 后,电脑转到AO 的位置(如图3),侧面示意图为图4,已知OA=0B=20cm B' O 丄0A,垂足为C.(1)求点0'的高度0;(精确到0.1cm)(2)显示屏的顶部B'比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O与原来的位置OB平行,显示屏O B应绕点0'按顺时针方向旋转多少度?参考数据:(sin65 =0.906, cos65 =0.423,tan65°=2.146. cot65 =0.446)23. (12 分)已知:女口图,在厶ABC中,点D,E分别在边AB, BC上,BA?BD=BC?BE(1)求证:DE?AB=AC?B;(2)如果A&=AD?AB,求证:AE=AC24. (12分)如图,在平面直角坐标系xOy中, 抛物线y=a«+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD 丄x轴,且/ DCB=/ DAB, AB与CD相交于点E.(1)求证:△ BD0A CAE妙3(2)已知0C=2 tan/ DAC=3求此抛物线的表达式.25. (14分)如图,在梯形ABCD中,AD// BC, AC与BD相交于点O, AC=BC 点E在DC的延长线上,/ BEC/ ACB已知BC=9, cos/ ABC=.(1)求证:B E=CD?BE(2)设AD=x, CE=y求y与x之间的函数解析式,并写出定义域;(3) 如果△ DB3A DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)_丄1. (4分)(2017?静安区一模)a (a>0)等于()A. :B.- :C.丄D.-土a a【分析】根据负整数指数幕与正整数指数幕互为倒数,分数指数幕,可得答案.【解答】解:a 「亠,a故选:C.【点评】本题考查了负整数指数幕,利用负整数指数幕、分数指数幕是解题关键.2. (4分)(2017?静安区一模)下列多项式中,在实数范围不能分解因式的是 ( ) A 、 x 2+y 2+2x+2y B. x 2+y 2+2xy - 2 C . x 2 - y 2+4x+4yD . x 2- y 2+4y - 4 【分析】各项利用平方差公式及完全平方公式判断即可. 【解答】解:A 、原式不能分解;B 、 原式=(x+y ) 2- 2= (x+y+ .:) (x+y -:);C 、 原式=(x+y ) (x - y ) +4 (x+y ) = (x+y ) (x - y+4);D 、 原式=x -(y - 2) 2= (x+y - 2) (x - y+2), 故选A【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的 关键.3. (4分)(2017?静安区一模)在厶ABC 中,点D , E 分别在边AB, AC 上,=, 要使DE// BC,还需满足下列条件中的( ) 、匹丄 B 理丄 C 坐4 D 坐=1 '.•「= .叽1 .「「=.「「=【分析】先求出比例式,再根据相似三角形的判定得出△ 似推出/ ADE=/ B ,根据平行线的判定得出即可只有选项D 正确,理由是:•.• AD=2, BD=4, 「JAC 3 .AD 二••一 一 , •••/ DAE=/ BAC , •••△ ADE^A ABC, •••/ ADE=/ B , ••• DE / BC,根据选项A 、B 、C 的条件都不能推出DE// BC, 故选D .【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用, 能ADE^A ABC ,根据相【解答】解:灵活运用定理进行推理是解此题的关键.4. (4 分)(2017?静安区一模)在Rt A ABC中,/ C=90°,如果AB=m,/ A=a,那么AC的长为()A. m?sin aB. m?cos aC. m?tan aD. m?cot a【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=A AB,AC=AB?cosA=m?cos,故选:B.【点评】本题考查了锐角三角函数的定义,利用余角函数的定义是解题关键.5. (4分)(2017?静安区一模)如果锐角a的正弦值为* ,那么下列结论中正确的是()A. a =30°B. a =45°C. 30°V aV45°D. 45°V aV60°【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由I V匕V •,得2 3 230O V aV45°,故选:C.【点评】本题考查了锐角三角形的增减性,当角度在0°〜90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小)•也考查了互余两角的三角函数之间的关系.6. (4分)(2017?静安区一模)将抛物线y=a(- 1平移后与抛物线y=a (x- 1) 2 重合,抛物线y=a£- 1上的点A(2, 3)同时平移到A',那么点A的坐标为()A. (3, 4)B. (1, 2)C. (3, 2)D. (1, 4)【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A的坐标.【解答】解:•••抛物线y=ax - 1的顶点坐标是(0,- 1),抛物线y=a (x- 1)的顶点坐标是(1, 0),•••将抛物线y=a«- 1向右平移1个单位,再向上平移1个单位得到抛物线y=a (x-1)2,•将点A(2, 3)向右平移1个单位,再向上平移1个单位得到点A的坐标为(3, 4),故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减•并用规律求函数解析式.二•填空题(每个小题4分,共48分)7. (4分)(2017?恩施州)16的平方根是土4 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a, 则x就是a的平方根,由此即可解决问题.【解答】解::(土4)2=16,• 16的平方根是土4.故答案为:土4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8. (4分)(2017?静安区一模)如果代数式亠二一有意义,那么x的取值范围为Vx+2x>- 2 .【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2> 0,解得,x>- 2,故答案为:x>- 2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.9. (4分)(2017?静安区一模)方程亠一+ ' =1的根为x=2 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:X- 5+2x+2=x2- 1 ,整理得:X2-3x+2=0,即(x- 2) (x- 1) =0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10. (4分)(2017?静安区一模)如果一次函数y= (m - 3) x+m- 2的图象一定经过第三、第四象限,那么常数m 的取值范围为m v2 .【分析】根据一次函数的性质,一次函数y= (m-3) x+m- 2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:•一次函数y=(m - 3) x+m - 2的图象一定经过第三、第四象限,•••图象一定与y轴的负半轴有交点,二m - 2v0,• m v 2,故答案为:m v 2.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b (k 工0)中,当k>0, b v0时,函数的图象经过一、三、四象限是解答此题的关键.11. (4分)(2017?静安区一模)二次函数y=x2- 8x+10的图象的顶点坐标是 _(4,-6) .【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:•••y=2x2-8x+10=2 (x-4) 2-6,•顶点坐标为(4,- 6), 故答案为:(4,- 6).【点评】此题考查二次函数的性质,将解析式化为顶点式y=a(x-h) 2+k,顶点坐标是(h, k),对称轴是x=h.12. (4分)(2017?静安区一模)如果点A (- 1, 4 )、B ( m , 4)在抛物线y=a(x- 1) 2+h上,那么m的值为3 .【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A (- 1, 4)、B (m, 4)在抛物线y=a (x- 1) 2+h上,得(-1, 4)与(m, 4)关于对称轴x=1对称,m - 1=1 -( - 1),解得m=3,故答案为:3.【点评】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m - 1=1-( - 1)是解题关键.13. (4分)(2017?静安区一模)如果△ ABSA DEF且厶ABC与厶DEF相似比为1: 4,那么△ ABC与厶DEF的面积比为1: 16 .【分析】直接根据相似三角形的性质即可得出结论.【解答】解:•••△ AB3A DEF,且厶ABC与厶DEF相似比为1: 4,•••△ ABC与△ DEF的面积比=C )2=1: 16.4故答案为:1: 16.【点评】本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.14. (4 分)(2017?静安区一模)在厶ABC中,如果AB=AC=10 cosB=,那么△5ABC的重心到底边的距离为 2 .【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解::AB=AC=10•••△ ABC是等腰三角形•••三角形的重心G在BC边的高I cosB~5•••在BC边的高=6,根据三角形的重心性质• G到BC的距离是2.故答案为:2【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.15. (4分)(2017?静安区一模)已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设= i,宁二【,那么]=1「Y I (用.,【的式子—3一一3 一—【分析】根据平行四边形的性质及中点的定义得BC// AD、BC=AD=2EC再证△AD2A CEF得二,根据1匸左-口=汕-2二=汕—::(左亠匸)可得答案.AC 3 3 3【解答】解:•••四边形ABCD是平行四边形,点E是边BC的中点,••• BC// AD,BC=AD=2EC•••△ ADF^^ CEF BC=AD = b,一'=2CF T CAF=2•••—* 9 —*八I- ■-■3=- (左*「)T Q —* f='—(+ ■)3lr 2一=■ ■—3 3 '故答案为:丄一…i.3 3【点评】本题主要考查平行四边形的性质、相似三角形的判定与性质及向量的基本运算,熟练掌握向量的运算法则是解题的关键.16. (4分)(2017?静安区一模)在厶ABC中,点D,E分别在边AB, AC上, △4RADE^AABC,如果AB=4, BC=5 AC=6 AD=3,那么△ ADE的周长为—拧■_.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图AD3AABC,' = - ,即二-=「,解得DE=「, AE="AB BC AC 4 5 6 4 2•••△ ADE的周长=AD+AE+DE=3^ ■ + = 一 ;2 4 4【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.17. (4分)(2017?静安区一模)如图,在△ ABC中,点D, E分别在边AB, AC 上, DE// BC, / BDCh CED 女口果DE=4, CD=6,那么AD: AE等于3: 2 .【分析】由DE// BC,推出/ EDCK BCD,'=-,由△ BDC^^ CED,推出AE EC【解答】解::DE// BC,vZ BDC2 DEC.△BD3A CED型二DC=$=3• 一 _:;故答案为3: 2.BD 二DC」3由此即可解决问题.•••/ EDC W BCD,=hii故答案为::.4【点评】本题考查相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用相似三角形的性质,属于中考常考题型.18. (4 分)(2017?静安区一模)一张直角三角形纸片ABC,/ C=90°,AB=24, tanB=|(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13 .B【分析】根据直角三角形的性质求出CD,得到/ DCB=Z B,根据垂直的定义、等量代换得到/ OEC/ B,根据正切的定义、勾股定理计算即可.【解答】解::CD是斜边AB上的中线,DC=DB= AB=12 •••/ DCB=/ B,由题意得,EF是CD的垂直平分线, /•/ OE(+/OCE=90,又/ DCB F/OCE=90, •••/ OEC/ B,设CF=2x 则CE=3x由勾股定理得,EF=hx,1 x2x X 3x= - x「X X 6,2 2解得,x= ' ■;,••• EF=〒X「=13,故答案为:13.【点评】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(共78分)19. (10分)(2017?静安区一模)计算:t an6 0 -cot45【分析】根据特殊角三角函数值,可得答案.V3+V2【解答】解:原式=--V3-1=■ 1 . : ' 1=..匚= 一 .【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 20. (10分)(2017?静安区一模)解方程组:出方程组的解即可.【解答】解:由②得:(x- 3y)2=4,x=0, x- y+2=0,^2=0'x2=0十4 ’2,”yr 2,“解得,原方程组的解为:疋q 二-2y4=o i2-Ky+2y=0o oX -6?y+9y -4【分析】由②得出x-3y=±2,由①得出x(x- y+2)=0,组成四个方程组,求x-3y=± 2,由①得:x (x- y+2) =0,原方程组可以化为:x=0主-3y=2,ii上-升-2’\-y+2=0\-y+2=0x-3y=-2 ,E DB【点评】本题考查了解高次方程组,能把高次方程组转化二元一次方程组是解此题的关键.21. (10分)(2017?静安区一模)已知:如图,第一象限内的点A, B在反比例函数的图象上,点C在y轴上,BC// x轴,点A的坐标为(2,4),且cot/ ACB=3 求:(1)反比例函数的解析式;(2)点C的坐标;【分析】(1)待定系数法求解可得;(2)作AE丄x轴于点E, AE与BC交于点F,贝U CF=2根据cot/ACB===得3 AF AF=3即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y」,x将点A (2, 4)代入,得:k=8,•••反比例函数的解析式y」;x(2)过点A作AE丄x轴于点E, AE与BC交于点F,贝U CF=2••• EF=1•••点C的坐标为(0, 1);(3)当y=1时,由仁乂可得x=8,x•点B的坐标为(1, 8),•BF=BG CF=6•AB= : . j r=3 ■',•cos/ ABC= = - =_AB玷5【点评】本题主要考查反比例函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.22. (10分)(2017?可南模拟)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O' A后,电脑转到AO的位置(如图3),侧面示意图为图4,已知OA=OB=2Ocm B' OLOA,垂足为C.(1)求点O'的高度O C (精确到0.1cm)(2)显示屏的顶部B'比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O'与原来的位置OB平行,显示屏O' BL绕点O'按顺时针方向旋转多少度?【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD丄AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O'作EF// OB交AC于E,根据平行线的性质得到/ FEANBOA=115,于是得到结论.【解答】解:(1)v B' d OA,垂足为C,Z AO B=115•••/ AO C=65••• cos/ CO A= ,••• O C=O A?cO£O A=20?cos65 =8.4615 (cm);(2)如图2,过B作BD丄AO交AO的延长线于D,v/ AOB=115,•••/ BOD=65,v sin/ BOD二,OB••• BD=OB?si/ BOD=20X sin65 =18.12,••• O' +O‘ G- BD=2O8.46- 18.12=10.34" 10.3 (cm),•••显示屏的顶部B'比原来升高了10.3cm;(3)如图4,过O'作EF// OB交AC于E,• / FEA=/ BOA=115,/ FO B/=O C/ FEA- / O CA=11-90°25°,•显示屏O 应绕点O'按顺时针方向旋转25度.甲F/ 3B【点评】本题考查了解直角三角形的应用,平行线的性质,正确的作出辅助线是解题的关键.23. (12分)(2017?静安区一模)已知:如图,在△ ABC中,点D, E分别在边AB, BC上, BA?BD=BC?BE(1)求证:DE?AB=AC?B;(2)如果A&=AD?AB,求证:AE=AC【分析】(1)由 BA?BD=BC?BE> ; 「,结合/ B=Z B ,证△ ABS A EBD 得BC BD兰一仝!,即可得证; BE ED(2)先根据 A&=AD?AB 证厶AD3A ACB 得/ ACD=Z B ,再由… 证厶BAE BC BD BCD 得/ BAE=Z BCD 根据/ AEC W B+Z BAE / ACE=/ ACD^Z BCD 可得/ AEC 玄ACE 即可得证.【解答】 证明:(1)v BA?BD=BC?BE• iJ : ■ ■ i二=5BC BD又•••/ B=Z B ,• △ AB3A EBD,• DE?AB=AC?B ; (2)v A&=AD?AB•叮•••/ DAC=/ CAB • △ ADS A ACB • Z ACD=/ B ,• △ BAE^A BCD• Z BAE=/ BCDvZ AEC Z B+Z BAE Z ACE Z ACC+Z BCD • Z AEC Z ACE• AE=AC【点评】本题主要考查相似三角形的判定与性质,熟练掌握两边对应成比例且夹 角相等的两三角形相似是解题的关键.24. (12分)(2017?静安区一模)如图,在平面直角坐标系 xOy 中,抛物线 y=ax ?+bx+4与x 轴的正半轴相交于点A ,与y 轴相交于点B ,点C 在线段OA 上, 点D 在此抛物线上,CD 丄x 轴,且/ DCBN DAB, AB 与CD 相交于点EiJ ;'—门Z B=Z B ,DCE(1)求证:△ BD0A CAE(2)已知OC=2 tan/ DAC=3求此抛物线的表达式.【分析】(1)根据相似三角形的判定定理得到△ BE3A DEA根据相似三角形的性质定理得到"=,根据相似三角形的判定定理证明即可;EC EA(2)设AC=m根据正切的定义得到DC=3m,根据相似三角形的性质得到/ DBA= / DCA=90,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:I / DCB=/ DAB, / BEC/ DEA•••△ BE3A DEA•••:=,又/ BED/ CEAEC EA' n•••△ BDE^^ CAE(2)解:•••抛物线y=ax +bx+4与y轴相交于点B,•••点B的坐标为(0, 4),即OB=4,■/ tan / DAC=3•二=3,AC设AC=m 贝U DC=3m OA=m+2,则点A的坐标为(m+2 , 0),点D的坐标为(2 , 3m),•••△ BD0A CAE• / DBA=/ DCA=90 ,••• BD2 3+BA2=AD2, 即卩22+ (3m—4) 2+ (m+2) 2+42=m2+ (3m) 2,解得,m=2,则点A的坐标为(4, 0),点D的坐标为(2, 6),•16时4b+4二0••耳,4a+2b+4=6解得,严1,lb=3•抛物线的表达式为y= - X2+3X+4.【点评】本题考查的是二次函数的应用,掌握二次函数的性质、待定系数法求函数解析式的一般步骤、掌握相似三角形的判定定理和性质定理是解题的关键.25. (14分)(2017?静安区一模)如图,在梯形ABCD中,AD// BC, AC与BD相交于点O,AC=BC点E在DC的延长线上,/ BEC W ACB,已知BC=9, cos Z ABC=.3(1)求证:B6=CD?BE(2) 设AD=x, CE=y求y与X之间的函数解析式,并写出定义域;(3) 如果△ DB3A DEB,求CE的长.2 过点C作CF丄AB于F , AG丄BC于G , DH丄BC于巴由厶CEB^A DAC,得,由此即可解决问题.AD CD3 首先证明四边形ABCD是等腰梯形,再证明△ ABG^A DCH,推出CH=BG=2 推出X=GH=BC— BG- CH=9- 2 —2=5 ,再利用(2)中即可即可解决问题.【解答】解: (1)vZ DCB=/ ACD F Z ACB, Z DCB=/ EBG Z BEC Z ACB=Z BEC • Z ACD=/ EBC ••• AD// BC,,再根据题意AC=BC即可证明.•••/ DAC2 ACBN CEB•••△ DA3A CEB•:厂..__ _ ~~ _CB BE '• BC?AC=CD?BE••• AC=BC• BC 2=CD?BE(2)过点C 作CF 丄AB 于F , AG 丄BC 于G , DH 丄BC 于H . 在 Rt A CBF 中,BF 二BC?co g ABC=9X 「=3,••• AD// BC, DH=AG• DH 2=A G 2=A B 2 - BG F =62 - 22=32,••• AG// DH,• GH=AD=x• CH=BC - BG- GH=7- x ,• CD =「F ='—厶:「= :「|:「| ,•••△ CEB^A DAC ,• II J :•〒=;〕〕,• 「一・・ =x y 4x+Sl9x• y= ,Vz -14x+81 x -14i+81(3)v^ DBC^A DEB / CDB=/ BDE, / CBC XZ DBC ,• / DBC=/ DEB=Z ACB(x >0 且 X M 9).•AB=6,••• AD// BC,• ,OC 0B••• AC=BD•••四边形ABCD是等腰梯形,••• AB=CD / ABC=/ DCB,vZ AGB=/ DHC=90,•••△ ABG^^ DCH,••• CH=BG=2••• x=GH=BC- BG- CH=9- 2 - 2=5.••• CE=y=圧.2A D【点评】本题考查相似三角形综合题、锐角三角函数、勾股定理、等腰梯形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF 的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE (1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC 的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a (x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF 的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE (1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE ∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC 的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日。