高中数学必修一集合经典习题整理版

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

高一必修一集合的练习题

高一必修一集合的练习题

高一必修一集合的练习题一、判断题1. 空集是任何集合的子集。

2. 若A∩B=A,则A⊆B。

3. 两个有限集合的交集一定是有限集。

4. 任何集合与其补集的并集等于全集。

5. 若A⊆B,则A∪B=B。

二、选择题1. 下列哪个选项表示空集?()A. {x | x≠x}B. {x | x=0}C. {x | x∈N且x<0}D. {x | x∈R且x^2<0}2. 设A={1,2,3},B={x | x=2n+1, n∈N},则A∩B的结果是()A. {1,3}B. {1,2,3}C. {1}D. {3}3. 若集合M={x | x^23x+2=0},则M的元素个数为()A. 0B. 1C. 2D. 3三、填空题1. 设集合A={1,2,3},B={2,3,4},则A∪B=______。

2. 若集合P={x | x为小于10的正整数},则P的元素个数为______。

3. 设全集U={1,2,3,4,5},A={2,3},则A的补集为______。

四、解答题1. 设集合A={x | x=2n, n∈N},集合B={x | x=3n, n∈N},求A∩B。

2. 已知集合M={x | x^25x+6=0},集合N={x | x^23x+2=0},求M∪N。

3. 设全集U={x | x为小于10的正整数},集合A={1,3,5,7,9},求A的补集。

4. 已知集合P={x | x为大于1小于10的整数},求集合P中所有偶数的集合。

5. 设集合A={x | x=4n+1, n∈Z},集合B={x | x=2n+1, n∈Z},证明A⊆B。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;
( 3) 1, 3 , 6 ,
1 ,0.5 这些数组成
的集合有
5 个元素;
24 2
( 4)集合 x, y | xy 0, x, y R 是指第二和第 四象限内的点集。

2
2
( A) N M ( B) N P ( C) N=M∪ P ( D) N=M∩ P
二、填空题(每小题 4 分,计 4× 4=16 分)
11.已知集合 P y | y x 2 1 , x R , Q
y | y x2 2x , x R ,
则集合 P Q
12.设全集 U 1 , 3 , 5 , 7 , 9 , A 1 , | a 5 | , 9 , CU A 5 , 7 ,
2.设集合 A x | 1 x 2 , B x | 0 x 4 ,则 A B ( )
(A) x | 0 x 2 ( B) x |1 x 2 ( C) x | 0 x 4 ( D) x | 1 x 4
3.下列表示① 0

0③
0 ④ 0 中 , 正确的个数为
( A) 1 ( B) 2 ( C)3 (D) 4
1.下列四种说法正确的一个是
()
A. f ( x) 表示的是含有 x 的代数式
B.函数的值域也就是其定义中的数集 B
C.函数是一种特殊的映射
D.映射是一种特殊的函数
2.已知 f 满足 f ( ab)= f ( a)+ f ( b) ,且 f (2)= p , f (3) q 那么 f (72) 等于

部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳

部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳

(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳单选题1、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}2、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)3、设命题p:∃x0∈R,x02+1=0,则命题p的否定为()A.∀x∉R,x2+1=0B.∀x∈R,x2+1≠0C.∃x0∉R,x02+1=0D.∃x0∈R,x02+1≠04、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.36、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7、设a,b∈R,A={1,a},B={−1,−b},若A⊆B,则a−b=()A.−1B.−2C.2D.08、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4多选题9、集合{1,3,5,7,9}用描述法可表示为()A.{x|x是不大于9的非负奇数}B.{x|x=2k+1,k∈N,且k≤4}C.{x|x≤9,x∈N∗}D.{x|0≤x≤9,x∈Z}10、已知P={x|x2−8x−20≤0},集合S={x|1−m≤x≤1+m}.若x∈P是x∈S的必要条件,则实数m 的取值可以是()A.−1B.1C.3D.511、已知关于x的方程x2+(m−3)x+m=0,则下列说法正确的是()A.当m=3时,方程的两个实数根之和为0B.方程无实数根的一个必要条件是m>1C.方程有两个正根的充要条件是0<m≤1D.方程有一个正根和一个负根的充要条件是m<0填空题12、已知集合A={y|y=x2−32x+1,x∈[34,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,则实数m的取值范围为________.13、能够说明“∀x∈N∗,2x≥x2”是假命题的一个x值为__________.部编版高中数学必修一第一章集合与常用逻辑用语带答案(二十五)参考答案1、答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.2、答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|>3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D3、答案:B分析:根据存在命题的否定为全称命题可得结果.∵存在命题的否定为全称命题,∴命题p的否定为“∀x∈R,x2+1≠0”,故选:B4、答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.5、答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x ∈R ,x 2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x ∈R ,x 2+2x +1≤0,则¬p:∀x ∈R ,x 2+2x +1>0,故③错误;对于④:ac 2>bc 2可以推出a >b ,所以a >b 是ac 2>bc 2的必要条件,故④正确;所以正确的命题为②④,故选:C6、答案:D分析:根据集合元素的互异性即可判断.由题可知,集合M ={a,b,c }中的元素是△ABC 的三边长,则a ≠b ≠c ,所以△ABC 一定不是等腰三角形.故选:D .7、答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1, ∴a −b =0.故选:D.8、答案:B分析:根据并集运算,结合集合的元素种类数,求得a 的值.由A ∪B ={−2,−1,0,4,16}知,{a 2=4a 4=16,解得a =±2 故选:B9、答案:AB分析:利用描述法的定义逐一判断即可.对A ,{x |x 是不大于9的非负奇数}表示的集合是{1,3,5,7,9},故A 正确;对B ,{x |x =2k +1,k ∈N ,且k ≤4}表示的集合是{1,3,5,7,9},故B 正确;对C ,{x |x ≤9,x ∈N ∗ }表示的集合是{1,2,3,4,5,6,7,8,9},故C 错误;对D ,{x |0≤x ≤9,x ∈Z }表示的集合是{0,1,2,3,4,5,6,7,8,9},故D 错误.故选:AB.10、答案:ABC分析:解不等式得集合P ,将必要条件转化为集合之间的关系列出关于m 的不等式组,解得m 范围即可得结果. 由x 2−8x −20≤0,解得−2≤x ≤10,∴P =[−2,10],非空集合S ={x |1−m ≤x ≤1+m },又x ∈P 是x ∈S 的必要条件,所以S ⊆P ,当S =∅,即m <0时,满足题意;当S ≠∅,即m ≥0时,∴{−2≤1−m 1+m ≤10,解得0≤m ≤3, ∴m 的取值范围是(−∞,3],实数m 的取值可以是−1,1,3,故选:ABC.11、答案:BCD分析:方程没有实数根,所以选项A 错误;由题得m >1,m >1是1<m <9的必要条件,所以选项B 正确;由题得0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;由题得m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.对于选项A ,方程为x 2+3=0,方程没有实数根,所以选项A 错误;对于选项B ,如果方程没有实数根,则Δ=(m −3)2−4m =m 2−10m +9<0,所以1<m <9,m >1是1<m <9的必要条件,所以选项B 正确;对于选项C ,如果方程有两个正根,则{Δ=m 2−10m +9≥0−(m −3)>0m >0,所以0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;对于选项D ,如果方程有一个正根和一个负根,则{Δ=m 2−10m +9>0m <0 ,所以m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.故选:BCD小提示:方法点睛:判断充分条件必要条件,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件,灵活选择方法判断得解.12、答案:(−∞,−34]∪[34,+∞) 分析:求函数的值域求得集合A ,根据“x ∈A ”是“x ∈B ”的充分条件列不等式,由此求得m 的取值范围. 函数y =x 2−32x +1的对称轴为x =34,开口向上,所以函数y =x 2−32x +1在[34,2]上递增,当x =34时,y min =716;当x =2时,y max =2.所以A =[716,2].B ={x|x +m 2≥1}={x|x ≥1−m 2},由于“x ∈A ”是“x ∈B ”的充分条件,所以1−m 2≤716,m 2≥916,解得m ≤−34或m ≥34,所以m 的取值范围是(−∞,−34]∪[34,+∞).所以答案是:(−∞,−34]∪[34,+∞)13、答案:3分析:取x =3代入验证即可得到答案.因为x =3∈N ∗,而23<32,∴说明“∀x ∈N ∗,2x ≥x 2”是假命题.所以答案是:3小提示:本题考查命题与简易逻辑,属于基础题.。

高一数学必修一第一章集合练习题(附答案和解释)

高一数学必修一第一章集合练习题(附答案和解释)

高一数学必修一第一章集合练习题(附答案和解释)一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N ={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为() A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________. 【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x +6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。

高中数学必修一第一章集合与常用逻辑用语经典大题例题

高中数学必修一第一章集合与常用逻辑用语经典大题例题

(每日一练)高中数学必修一第一章集合与常用逻辑用语经典大题例题单选题1、已知集合A={x|−1<x≤2},B={−2,−1,0,2,4},则(∁R A)∩B=()A.∅B.{−1,2}C.{−2,4}D.{−2,−1,4}答案:D分析:利用补集定义求出∁R A,利用交集定义能求出(∁R A)∩B.解:集合A={x|−1<x≤2},B={−2,−1,0,2,4},则∁R A={x|x≤−1或x>2},∴(∁R A)∩B={−2,−1,4}.故选:D2、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.3、已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}答案:A分析:先计算集合B里的不等式,将B所代表的区间计算出来,再根据交集的定义计算即可. 不等式x2≤1,即−1≤x≤1,B=[−1,1],A={−1,0,1,2},B={x|−1≤x≤1},所以A∩B={−1,0,1};故选:A.4、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a=−3时,A={2,14,4}满足集合中元素的互异性,故a=−3满足要求.综上,a=2或a=−3.5、已知非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B .则( ).A .B =C B .A ⊆(B ∪C )C .(B ∩C )⊆AD .A ∩B =A ∩C答案:C分析:作出符合题意的三个集合之间关系的venn 图即可判断.解:因为非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B ,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A ∩B =A ∩C .故选:D .6、已知“命题p:∃x ∈R,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( )A .[0,1)B .(-∞,1)C .[1,+∞)D .(-∞,1]答案:B分析:讨论a =0或a ≠0,当a =0时,解得x <−12,成立;当a ≠0时,只需{a >0Δ>0或a <0即可. 若a =0时,不等式ax 2+2x +1<0等价为2x +1<0,解得x <−12,结论成立.当a ≠0时,令y =ax 2+2x +1,要使ax 2+2x +1<0成立,则满足{a >0Δ>0或a <0,解得0<a <1或a <0,综上a <1,小提示:本题考查了根据特称命题的真假求参数的取值范围,考查了分类讨论的思想,属于基础题.7、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可. 根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.9、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.10、已知集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则a的取值集合为()A.{1}B.{0}C.{0,−1,1}D.{0,1}答案:D分析:对参数分类讨论,结合判别式法得到结果.解:①当a=0时,A={−12},此时满足条件;②当a≠0时,A中只有一个元素的话,∆=4−4a=0,解得a=1,综上,a的取值集合为{0,1}.故选:D.多选题11、下列四个选项中正确的是()A.{∅}⊆{a,b}B.{(a,b)}={a,b}C.{a,b}⊆{b,a}D.∅⊆{0}答案:CD分析:注意到空集和由空集构成的集合的不同,可以判定AD;注意到集合元素的无序性,可以判定C;注意到集合的元素的属性不同,可以否定B.对于A选项,集合{∅}的元素是∅,集合{a,b}的元素是a,b,故没有包含关系,A选项错误;对于B选项,集合{(a,b)}的元素是点,集合{a,b}的元素是a,b,故两个集合不相等,B选项错误;对于C选项,由集合的元素的无序性可知两个集合是相等的集合,故C选项正确;对于D选项,空集是任何集合的子集,故D选项正确.故选:CD.12、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.13、(多选)下列命题的否定中,是全称量词命题且为真命题的是()A.∃x∈R,x2−x+14<0B.所有的正方形都是矩形C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC14、已知关于x 的方程x 2+(m −3)x +m =0,下列结论正确的是( )A .方程x 2+(m −3)x +m =0有实数根的充要条件是m ∈{m|m <1或m >9}B .方程x 2+(m −3)x +m =0有一正一负根的充要条件是m ∈{m ∣0<m ≤1}C .方程x 2+(m −3)x +m =0有两正实数根的充要条件是m ∈{m ∣0<m ≤1}D .方程x 2+(m −3)x +m =0无实数根的必要条件是m ∈{m|m >1}答案:CD解析:根据充分条件和必要条件的定义对选项逐一判断即可.在A 中,二次方程有实数根,等价于判别式Δ=(m −3)2−4m ≥0,解得m ≤1或m ≥9,即二次方程有实数根的充要条件是m ∈{m|m ≤1或m ≥9},故A 错误;在B 中,二次方程有一正一负根,等价于{(m −3)2−4m >0m <0,解得m <0, 方程有一正一负根的充要条件是m ∈{m |m <0 },故B 错误;在C 中,方程有两正实数根,等价于{Δ=(m −3)2−4m ≥03−m >0,m >0,解得0<m ≤1,故方程有两正实数根的充要条件是m ∈{m ∣0<m ≤1},故C 正确;在D 中,方程无实数根,等价于Δ=(m −3)2−4m <0得1<m <9,而{m |1<m <9 }⊆{m |m >1 },故m ∈{m|m >1}是方程无实数根的必要条件,故D 正确;故选:CD .小提示:名师点评关于充分条件和必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的充分条件,则p 可推出q ,即p 对应集合是q 对应集合的子集;(2)若p 是q 的必要条件,则q 可推出p ,即q 对应集合是p 对应集合的子集;(3)若p 是q 的充要条件,则p ,q 可互推,即p 对应集合与q 对应集合相等.15、下列四个条件中可以作为方程ax 2−x +1=0有实根的充分不必要条件是( )A .a =0B .a ≤14C .a =−1D .a ≠0答案:AC分析:先化简方程ax 2−x +1=0有实根得到a ≤14,再利用集合的关系判断得解.当a =0时,方程ax 2−x +1=0有实根x =1;当a ≠0时,方程ax 2−x +1=0有实根即Δ=1−4a ≥0,∴a ≤14. 所以a ≤14且a ≠0.综合得a ≤14.设选项对应的集合为A , 集合B =(−∞,14],由题得集合A 是集合B 的真子集,所以只能选AC.所以答案是:AC小提示:方法点睛:充分条件必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.16、设A ={x |x 2−9x +14=0 },B ={x |ax −1=0 },若A ∩B =B ,则实数a 的值可以为( )A .2B .12C .17D .0答案:BCD分析:先求出集合A ,再由A ∩B =B 可知B ⊆A ,由此讨论集合B 中元素的可能性,即可判断出答案. 集合A ={x|x 2−9x +14=0}={2,7},B ={x|ax −1=0},又A ∩B =B ,所以B ⊆A ,当a =0时,B =∅,符合题意,当a ≠0时,则B ={1a },所以1a =2或1a=7, 解得a =12或a =17,综上所述,a =0或12或17,故选:BCD17、已知全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则下列关系一定正确的是( )A .∃x ∈U ,x ∉A 且x ∈B B .∀x ∈A ,x ∉BC .∀x ∈U ,x ∈A 或x ∈BD .∃x ∈U ,x ∈A 且x ∈B答案:AB分析:根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答. 全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,∃x ∈U ,x ∉A 且x ∈B ,A 正确;因A ∩B =∅,必有∀x ∈A ,x ∉B ,B 正确;若A∁U B ,则(∁U A)∩(∁U B)≠∅,此时∃x ∈U ,x ∈[(∁U A)∩(∁U B)],即x ∉A 且x ∉B ,C 不正确; 因A ∩B =∅,则不存在x ∈U 满足x ∈A 且x ∈B ,D 不正确.故选:AB18、下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若x 2>y 2,则x >yB .若x >5,则x >10C .若ac =bc ,则a =bD .若2x +1=2y +1,则x =y答案:BCD分析:利用必要条件的定义、特殊值法判断可得出合适的选项.对于A 选项,取x =1,y =−1,则x >y ,但x 2=y 2,即“x 2>y 2”不是“x >y ”的必要条件;对于B 选项,若x >10,则x >5,即“x >5”是“x >10”的必要条件;对于C 选项,若a =b ,则ac =bc ,即“ac =bc ”是“a =b ”的必要条件;对于D 选项,若x =y ,则2x +1=2y +1,即“2x +1=2y +1”是“x =y ”的必要条件.故选:BCD.19、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为()A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m ,因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13,综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题20、下列四个命题中正确的是()A.∅={0}3所组成的集合最多含2个元素B.由实数x,-x,|x|,√x2,−√x3C.集合{x|x2−2x+1=0}中只有一个元素∈N}是有限集D.集合{x∈N|5x答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;3=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当对于B,由于√x2=|x|,−√x3x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.填空题21、已知[x]表示不超过x的最大整数.例如[2.1]=2,[−1.3]=−2,[0]=0,若A={y∣y=x−[x]},B={y∣0≤y≤m},y∈A是y∈B的充分不必要条件,则m的取值范围是______.答案:[1,+∞)分析:由题可得A={y∣y=x−[x]}=[0,1),然后利用充分不必要条件的定义及集合的包含关系即求.∵[x]表示不超过x的最大整数,∴[x]≤x,0≤x−[x]<1,即A={y∣y=x−[x]}=[0,1),又y∈A是y∈B的充分不必要条件,B={y∣0≤y≤m},∴A⊊B,故m≥1,即m的取值范围是[1,+∞).所以答案是:[1,+∞).22、已知集合A=(−3,3),集合B={0,1,2,3,4,5},则A∩B=_______.答案:{0,1,2}分析:根据集合交集运算求解.因为集合A=(−3,3),集合B={0,1,2,3,4,5},所以A∩B={0,1,2}.所以答案是:{0,1,2}23、满足{1}⊆A{1,2,3}的所有集合A是___________.答案:{1}或{1,2}或{1,3}分析:由题意可得集合A中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 因为{1}⊆A{1,2,3},所以集合A中至少有一个元素1,且为集合{1,2,3}的真子集,所以集合A是{1}或{1,2}或{1,3},所以答案是:{1}或{1,2}或{1,3}。

人教版高中数学必修一集合知识总结例题

人教版高中数学必修一集合知识总结例题

(每日一练)人教版高中数学必修一集合知识总结例题单选题1、已知集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},则集合M的真子集的个数为()A.29−1B.28−1C.25D.24+1答案:A解析:首先确定集合M的元素个数,接着根据公式求出集合M的所有子集个数,减掉集合M本身得出结果即可.因为集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},画出如下示意图:由图可知集合M有9个元素,集合M的所以子集的个数为29,所以集合M的真子集的个数为29−1,故选:A.小提示:集合M有n个元素,则集合M的所有子集个数为2n,集合M的所有非空子集个数为2n−1,集合M的所有真子集个数为2n−1,集合M的所有非空真子集个数为2n−2;2、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B解析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值. 求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3、已知集合A={x|x2−2x−3<0},集合B={x|x−1≥0},则∁R(A∩B)=().A.(−∞,1)∪[3,+∞)B.(−∞,1]∪[3,+∞)C.(−∞,1)∪(3,+∞)D.(1,3)答案:A解析:算出集合A、B及A∩B,再求补集即可.由x2−2x−3<0,得−1<x<3,所以A={x|−1<x<3},又B={x|x≥1},所以A∩B={x|1≤x<3},故∁R(A∩B)={x|x<1或x≥3}.故选:A.小提示:本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.填空题4、已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.答案:-3解析:由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.所以答案是:−3.5、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为_________答案:15解析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x= y+5,因为y max=10,所以x max=10+5=15.所以答案是:15.。

数学必修一集合练习题及答案

数学必修一集合练习题及答案

数学必修一集合练习题及答案数学必修一集合练习题及答案集合练习题一.选择题1.满足条件{1,2,3}⊂M ⊂{1,2,3,4,5,6}的集合M 的个数是≠≠()A 、8 B、7C 、6D 、52.若集合A =x |x 2≤0,则下列结论中正确的是()A 、A=0 B 、0⊆A C 、A =∅ D 、∅⊆A3.下列五个写法中①⑤0 ∅{}{0}∈{0, 1, 2},②∅⊂{0},③{0, 1, 2}⊆{1, 2, 0},④0∈∅,≠=∅,错误的写法个数是()A 、1个B 、2个C 、3个D 、4个4.方程组⎨⎨x +y =1的解集是()⎨x -y =-1A {x =0, y =1}B {0, 1}C {(0, 1) }D {(x , y ) |x =0或y =1} 5.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是()(A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ6.已知全集M =⎨a |⎨⎨6⎨∈N 且a ∈Z ⎨, 则M=( ) 5-a ⎨A 、{2,3}B 、{1,2,3,4}C 、{1,2,3,6}D 、{-1,2,3,4}7.集合M ={x x +2x -a =0, x ∈R },且φA 、a ≤-1B 、a ≤1C 、a ≥-12M ,则实数a 的范围是()D 、a ≥1()(D )S=P。

8. 设集合P 、S 满足P ⋂S=P,则必有(A );(B )P ⊆S ;(C );9. 设全集U ={a , b , c , d , e },A 、B 都是U 的子集A ⋂B ={e },C U A ⋂B ={d },C U A ⋂C U B ={a , b },则下列判断中正确的是(A )c ∉ A 且c ∉ B ;(B )c ∈A 且c ∈B ;(C )c ∉A 且c ∈B ;10. 若A ⋃B =A ⋃C ,则一定有()(D )c ∈A 且c ∉B 。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高中数学必修一集合习题及答案

高中数学必修一集合习题及答案

必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )M N A M N B N M C M NDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ; 13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。

高中数学必修一集合练习题

高中数学必修一集合练习题

高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。

2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。

3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。

4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。

5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。

6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。

7. 幂集:集合J={a, b},请列出J的所有幂集。

8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。

9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。

10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。

解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。

- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。

其中,A的真子集是不包含A本身的所有子集。

- 第3题,C∪D={1, 2, 3}。

- 第4题,E∩F={3, 5}。

- 第5题,G-H={1, 2}。

- 第6题,∁_U I={1, 3, 5}。

- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。

- 第8题,K包含L,因为L的所有元素都在K中。

- 第9题,M和N相等,因为它们包含相同的元素。

(word版)高一数学集合练习题及答案

(word版)高一数学集合练习题及答案

高一数学集合的练习题及答案一、、知点:本周主要学集合的初步知,包括集合的有关概念、集合的表示、集合之的关系及集合的运算等。

在行集合的运算要注意使用Venn。

本章知构集合的概念列法集合的表示法集合特征性描述法真子集包含关系子集相等集合与集合的关系交集集合的运算并集集1、集合的概念集合是集合中的不定的原始概念,教材中集合的概念行了描述性明:“一般地,把一些能确定的不同的象看成一个整体,就个整体是由些象的全体构成的集合〔或集〕〞。

理解句,把握4个关:象、确定的、不同的、整体。

象――即集合中的元素。

集合是由它的元素唯一确定的。

整体――集合不是研究某一一象的,它关注的是些象的全体。

确定的――集合元素确实定性――元素与集合的“附属〞关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意有限集和无限集是非空集合来的。

我理解起来并不困。

我把不含有任何元素的集合叫做空集,做Φ。

理解它不妨思考一下“0与Φ〞及“Φ与{Φ}〞的关系。

几个常用数集N、N*、N+、Z、Q、R要牢。

3、集合的表示方法1〕列法的表示形式比容易掌握,并不是所有的集合都能用列法表示,同学需要知道能用列法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素多但呈一定的律的有限集,如{1,2,3,⋯,100}③呈一定律的无限集,如{1,2,3,⋯,n,⋯}●注意a与{a}的区●注意用列法表示集合,集合元素的“无序性〞。

2〕特征性描述法的关是把所研究的集合的“特征性〞找准,然后适当地表示出来就行了。

但关点也是点。

学多加就可以了。

另外,弄清“代表元素〞也是非常重要的。

如{x|y=x2},{y|y=x2},{〔x,y〕|y=x2}是三个不同的集合。

4、集合之的关系●注意区分“附属〞关系与“包含〞关系“附属〞关系是元素与集合之的关系。

“包含〞关系是集合与集合之间的关系。

掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“〞等符号,会用Venn图描述集合之间的关系是根本要求。

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】C2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】B3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。

{x|x≥3} B。

{x|x≥2} C。

{x|2≤x<3} D。

{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。

{3,5} B。

{3,6} C。

{3,7} D。

{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。

{x|x≥-1} B。

{x|x≤2} C。

{x|0<x≤2} D。

{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{3,4}={3}的集合M的个数是()A。

1 B。

2 C。

3 D。

45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。

4 B。

1 C。

2 D。

06.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。

Ø B。

{x|x5/3} D。

{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。

10.已知集合A={-4,2a-1,a},B={a-5,1-a,9},若A∩B={9},则a的值为5.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。

12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。

13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)班号姓名集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈NC.某2-1=0的解集是{-1,1}2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程某2-4=0和方程|某-1|=1的解构成了一个四元集3.用列举法表示{(某,y)|某∈N+,y∈N+,某+y=4}应为()A.{(1,3),(3,1)}B.{(2,2)}D.{(4,0),(0,4)}B.a∈Z,则a∈ND.以上结论均不正确C.{(1,3),(3,1),(2,2)}4.下列命题:(1)方程某-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=某2-1,某∈R}与{y|y=某-1,某∈R}的公共元素所组成的集合是{0,1};(3)集合{某|某-1<0}与集合{某|某>a,a∈R}没有公共元素.其中正确的个数为()A.0B.1C.2D.35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.6.定义集合A某B={某|某=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A某B中所有元素之和为________.7.若集合A={-1,2},集合B={某|某2+a某+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②{0};③{(0,1)}{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2C.3D.42.已知集合A={某|-1BB.ABC.BAD.AB3.已知{1,2}M{1,2,3,4},则符合条件的集合M的个数是()A.3B.4C.6D.8M,则a的取值为()4.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且NA.-1 B.4C.-1或-4D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=某2-2某-1,某∈R},N={某|-2≤某≤4},则集合M与N之间的关系是________.7.若集合M={某|某2+某-6=0},N={某|(某-2)(某-a)=0},且NM,求实数a的值.8.设集合A={某|a-2<某<a+2},B={某|-2<某<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使BA并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.ACB.CAC.A=CD.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.43.已知全集U=R,集合M={某|-2≤某-1≤2}和N={某|某=2k-1,k∈N某}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={某|-3≤某<7},N={某|2某+k≤0},若M∩N≠,则k 的取值范围是()A.k≤3B.k≥-3C.k>6D.k≤65.已知集合M={某|-35},则M∪N=________,M∩N=________.6.已知集合A={(某,y)|y=某2,某∈R},B={(某,y)|y=某,某∈R},则A∩B中的元素个数为___.7.已知集合A={某|某2+p某+q=0},B={某|某2-p某-2q=0},且A∩B={-1},求A∪B.8.已知A={某|某3},B={某|4某+m<0,m∈R},当A∩B=B时,求m的取值范围.集合的补集运算1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N ={5,6,7},则U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}2.已知全集U={2,3,5},集合A={2,|a-5|},若UA={3},则a的值为()A.0B.10C.0或10D.0或-103.已知全集U=R,集合A={某|-2≤某≤3},B={某|某<-1或某>4},那么集合A∩(UB)等于()A.{某|-2≤某<4}B.{某|某≤3或某≥4}C.{某|-2≤某<-1}D.{某|-1≤某≤3}4.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的合是()A.A∩BB.A∪BC.B∩(UA)D.A∩(UB)5.已知全集S=R,A={某|某≤1},B={某|0≤某≤5},则(SA)∩B=________.6.定义集合A某B={某|某∈A,且某B},若A={1,2,3,4,5},B={2,4,5},则A某B的子集的个数是________.7.已知全集U=R,A={某|-4≤某≤2},B={某|-12},(1)求A∩B;(2)求(UB)∪P;(3)求(A∩B)∩(UP).8.已知集合A={某|2a-2集参考答案集合的含义与表示1.选C对于A,a属于有理数,则a属于自然数,显然是错误的,对于B,a属于整数,则a属于自然数当然也是错的,对于C的解集用列举法可用它来表示.故C正确.2.选CA项中元素不确定;B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等;D项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选C某=1时,y=3;某=2时,y=2;某=3时,y=1.某=2,某-2=0,4.选A(1)故解集为{(2,-2)},而不是{2,-2};y=-2.|y+2|=0(2)集合{y|y=某2-1,某∈R}表示使y=某2-1有意义的因变量y的范围,而y=某2-1≥-1,故{y|y=某2-1,某∈R}={y|y≥-1}.同理集合{y|y=某-1,某∈R}=R.结合数轴(图1)知,两个集合的公共元素所组成的集合为{y|y≥-1};(3)集合{某|某-1<0}表示不等式某-1<0的解集,即{某|某<1}.而{某|某>a,a∈R}就是某>a的解集.结合图2,当a≥1时两个集合没有公共元素;当a<1时,两个集合有公共元素,形成的集合为{某|a5.解析:当a=2时,8-a=6∈A;a=4时,8-a=4∈A;a=6时,8-a=2∈A;a=8时,8-a=0A.∴所求集合为{2,4,6}.答案:{2,4,6}6.解析:A某B={1,-1,2,0},∴A某B中所有元素之和为1-1+2+0=2.答案:27.解:由题意知-1,2是方程某2+a某+b=0的两个根,1-a+b=0,由根与系数的关系可知有故有a=-1,b=-2.4+2a+b=0,当a-3=-3时,a=0,集合A={-3,-1,1},满足题意;当2a-1=-3时,a=-1,集合A={-4,-3,2},满足题意;当a2+1=-3时,a无解.综上所述,a=0或a=-1.(2)若元素不互异,则集合A的表示不正确若a-3=2a-1,则a=-2;若a-3=a2+1,则方程无解;若2a-1=a2+1,则方程无解.综上所述,a=-2.集合间的基本关系1.选C①、②、③均正确;④不正确.a≠b时,(a,b)与(b,a)是不同的元素.2.C3.选A符合条件的集合M有{1,2},{1,2,3},{1,2,4}共3个.4.选B(1)若a=3,则a2-3a-1=-1,即M={1,2,3,-1},显然NM,不合题意.(2)若a2-3a-1=3,即a=4或a=-1(舍去),当a=4时,M={1,2,4,3},满足要求.5.解析:由2m+1-2m=2·2m-2m=2m.答案:2m6.解析:∵y=(某-1)2-2≥-2,∴M={y|y≥-2},∴NM.答案:NM7.解:由某2+某-6=0,得某=2或某=-3.因此,M={2,-3}.若a=2,则N={2},此时NM;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.a-2>-2,a-2≥-2,8.解:(1)借助数轴可得,a应满足的条件为或解得0≤a≤1.a+2≤3,a+2<3,a-2≤-2,(2)同理可得a应满足的条件为得a无解,所以不存在实数a使BA.a+2≥3,并集与交集1.选AA∩B=AAB,B∪C=CBC,∴AC.a=4,2.选D∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则∴a=4.a=16.23.选AM={某|-1≤某≤3},N={某|某=2k-1,k∈N某},∴M∩N ={1,3}.kk4.选D因为N={某|2某+k≤0}={某|某≤-},且M∩N≠,所以-≥-3k≤6.225.解析:借助数轴可知:M∪N={某|某>-5},M∩N={某|-3-5}{某|-3y=某2,某=0,某=1,6.解析:由得或答案:2y=某,y=0y=1.7.解:因为A∩B={-1},所以-1∈A且-1∈B,将某=-1分别代入两个方程,得1-p+q=0p=3,解得.所以A={某|某2+3某+2=0}={-1,-2},1+p-2q=0q=2B={某|某2-3某-4=0}={-1,4},所以A∪B={-1,-2,4}.m8.解:由题知,B={某|某4m所以由数轴(如图)可得-≤-2,所以m≥8,即m的取值范围是m≥8. 4集合的补集运算1.选CM∪N={1,3,5,6,7}.∴U(M∪N)={2,4,8}.2.选C由UA={3},知3A,3∈U.∴|a-5|=5,∴a=0或a=10.3.选D由题意可得,UB={某|-1≤某≤4},A={某|-2≤某≤3},所以A∩(UB)={某|-1≤某≤3}.端点处的取舍易出错.4.选C阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(UA).5.解析:由已知可得SA={某|某>1},∴(SA)∩B={某|某>1}∩{某|0≤某≤5}={某|1答案:{某|16.解析:由题意知A某B={1,3}.则A某B的子集有22=4个.答案:47.解:借助数轴,如图.(1)A∩B={某|-15(2)∵UB={某|某≤-1或某>3},∴(UB)∪P={某|某≤0或某≥}.255(3)UP={某|0228.解:RB={某|某≤1或某≥2}≠,∵ARB,∴分A=和A≠两种情况讨论.(1)若A=,此时有2a-2≥a,∴a≥2.2a-2<a2a-2综上所述,a≤1或a≥2.。

高一数学必修1第一章集合测试题及答案

高一数学必修1第一章集合测试题及答案

高中数学必修一——集合一、填空题1.集合{1,2,3}的真子集共有______________。

(A )5个 (B )6个 (C )7个 (D )8个2.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=______________。

3.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a =______________。

(A )-4或1 (B )-1或4 (C )-1 (D )44.设U={0,1,2,3,4},A ={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=_____________。

5.设S 、T 是两个非空集合,且S ⊄T ,T ⊄S ,令X=S ,T ⋂那么S ⋃X=____________。

6.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为____________。

7.设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为____________。

8.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N=________________。

9.已知U=N ,A={0302>--x x x },则C U A 等于_______________。

10.二次函数132+++-=m mx x y 的图像与x 轴没有交点,则m 的取值范围是_______________。

11.不等式652+-x x <x 2-4的解集是_______________。

w W w . X k b 1.c O m 12.设全集为⋃,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。

(1) (2)(3)13.若方程8x 2+(k+1)x+k-7=0有两个负根,则k 的取值范围是14.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是。

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。

2、集合{a,b,c }的真子集共有个()A。

7.B。

8.C。

9.D。

10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。

3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。

6.B。

7.C。

8.D。

9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。

4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。

{1,2,3}。

B。

{2}。

C。

{1,3,4}。

D。

{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。

5、方程组x y1的解集是(。

)A。

{x=0,y=1}。

B。

{0,1}。

C。

{(0,1)}。

D。

{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。

6、以下六个关系式:3Q,N。

a,b b,ax|x220,x Z是空集中,错误的个数是()A。

4.B。

3.C。

2.D。

1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。

第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。

8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案

的实数 x 是否存在?若存在,求出 x ;若不存在,请说明理由。
0 , 则这样
练习二
一、选择题(每小题 5 分,计 5× 12=60 分)
1.下列集合中,结果为空集的为(

( A) x R | x2 4 0
( B) x | x 9 或 x 3
( C) ( x , y) | x 2 y 2 0 ( D) x | x 9 且 x 3
则 a 的值为
13.不等式 |x-1|>-3 的解集是

14.若集合 M { x | ax 2 2x 1 0 , x R} 只有一个元素,则实数 a 的值为
三解答题
2
21、已知全集 U={x |x -3x+2 ≥0} ,A={x||x-2|>1}
,B= x x 1 2x
0 ,求 CUA,CUB,A∩ B A ∩
设集合 M
{x| x
k
1 ,k
Z} , N
{x |x
k
1 ,k
Z} ,则()
24
42
A. M N B. M N C. N M D. M N
二、填空题 ( 每小题 4 分 , 共 16 分 )
13. 某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4 人既不爱好
体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修1集合练习题
一、选择题(每小题5分,计5×12=60分)
1.下列集合中,结果是空集的为()
(A)(B)
(C)(D)
2.设集合,,则()
(A)(B)
(C)(D)
3.下列表示①②③④中,正确的个数为( )
(A)1 (B)2 (C)3 (D)4
4.满足的集合的个数为()
(A)6 (B) 7 (C) 8 (D)9
5.若集合、、,满足,,则与之间的关系为()
(A)(B)(C)(D)
6.下列集合中,表示方程组的解集的是()
(A)(B)(C)(D)
7.设,,若,则实数的取值范围是()(A)(B)(C)(D)
8.已知全集合,,,那么是()
(A)(B)(C)(D)
9.已知集合,则等于()
(A)(B)
(C)(D)
10.已知集合,,那么()
(A)(B)(C)(D)
11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()
(A)(B)
(C)(D)
12.设全集,若,,
,则下列结论正确的是()
(A)且(B)且
(C)且(D)且
二、填空题(每小题4分,计4×4=16分)
13.已知集合,,则集合14.用描述法表示平面内不在第一与第三象限的点的集合为
15.设全集,,,则的值为
16.若集合只有一个元素,则实数的值为三、解答题(共计74分)
17.(本小题满分12分)若,求实数的值。

18.(本小题满分12分)设全集合,,
,求,,,
19.(本小题满分12分)设全集,集合与集合,且,求,
20.(本小题满分12分)已知集合

,且
,求实数
的取值范围。

21.(本小题满分12分)已知集合


,求实数的取值范围
22.(本小题满分14分)已知集合

,若
,求实数的取值范围。

已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,
求实数a 的取值范围.
已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求
实数a 的值.。

相关文档
最新文档