沉淀法制备纳米微粒

合集下载

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。

本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。

关键词:电化学纳米材料电沉积1 前言纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。

纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。

随着粒径减小,表面原子数迅速增加。

由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。

微观粒子具有贯穿势垒的能力称为隧道效应。

研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。

正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。

自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。

纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。

纳米材料的制备方法(液相法)

纳米材料的制备方法(液相法)

(2)雾化水解法
将一种盐的超微粒子,由惰性气体载入含有金属 醇盐的蒸气室,金属醇盐蒸气附着在超微粒的 表面,与水蒸气反应分解后形成氢氧化物微粒, 经焙烧后获得氧化物的超细微粒。
这种方法获得的微粒纯度高,分布窄,尺寸可控。 具体尺寸大小主要取决于盐的微粒大小。
例如高纯Al2O3微粒可采用此法制备: 具体过程是将载有氯化银超微粒(868一923K)的 氦气通过铝丁醇盐的蒸气,氦气流速为500— 2000 cm3/min,铝丁醇盐蒸气室的温度为395— 428K,醇盐蒸气压<=1133Pa。在蒸气室形成 以铝丁醇盐、氯化银和氦气组成饱和的混合气 体。经冷凝器冷却后获得了气态溶胶,在水分 解器中与水反应分解成勃母石或水铝石(亚微 米级的微粒)。经热处理可获得从Al2O3的超细 微粒。
• 金刚石粉末的合成
5ml CCl4 和过量的20g金属钠被放到50ml的高压釜中,质量比为Ni:Mn:Co = 70:25:5的Ni-Co合金作为催化剂。在700oC下反应48小时,然后的釜中冷却。 在还原反应开始时,高压釜中存在着高压,随着CCl4被Na还原,压强减少。 制得灰黑色粉末。
(A)TEM image (scale bar, 1 mm) (B) electron diffraction pattern (C) SEM image (scale bar, 60 mm)
§2.2 .1 沉淀法 precipitation method
沉淀法是指包含一种或多种离子的可溶性盐溶液, 当加入沉淀剂(如OH--,CO32-等)后,或在一定 温度下使溶液发生水解,形成不溶性的氢氧化 物、水合氧化物或盐类从溶液中析出,并将溶 剂和溶液中原有的阴离子除去,经热分解或脱 水即得到所需的化合物粉料。
ZrOCl2 2NH 4OH H 2O Zr(OH ) 4 2NH 4Cl

沉积-沉淀法及纳米材料的制备方法

沉积-沉淀法及纳米材料的制备方法

沉淀法的种类很多包括单组分沉淀法、共沉淀、均匀沉淀、浸渍沉淀法、导晶沉淀法、水热合成法。

好像没听过沉积沉淀法。

你说的沉积沉淀法可能和浸渍沉淀法很像,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成之后,加热升温使待沉积组分沉积在载体表面上。

deposition-precipitation DP方法
均相沉积法
控制溶液中沉淀剂的浓度,使之缓慢地增加,控制过饱和度在适当范围内,则可使溶液中的沉淀处于平衡状态,避免浓度不均匀现象,沉淀能在整个溶液中均匀地出现,从而获得纯度高、粒度均匀的纳米颗粒。

通常,通过溶液中的化学反应式沉淀剂满满的生成,可克服由外界向溶液中加沉淀剂而造成沉淀剂的局部不均匀,而不能在整个溶液中均匀反应的缺点。

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们
作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。


纳米材料制备方法如下:
(1)惰性气体下蒸发凝聚法。

通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。

国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。

我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。

(2)化学方法:1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳
米氧化物;2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离
法等。

(3)综合方法。

结合物理气相法和化学沉积法所形成的制备方法。

其他一般还有球磨粉加工、喷射加工等方法。

壳聚糖纳米微球的制备及其在药物输送中的应用研究

壳聚糖纳米微球的制备及其在药物输送中的应用研究

壳聚糖纳米微球的制备及其在药物输送中的应用研究引言壳聚糖纳米微球是一种重要的纳米材料,具有广泛的应用潜力。

本文将讨论壳聚糖纳米微球的制备方法及其在药物输送领域的应用研究。

一、壳聚糖纳米微球的制备方法1. 电沉积法电沉积法是一种常用的壳聚糖纳米微球制备方法。

它通过电化学方法在电极表面沉积壳聚糖材料,形成纳米级的球状微粒。

此方法具有简单、可控性强、成本低等特点。

2. 水相反应法水相反应法是制备壳聚糖纳米微球的另一种常用方法。

该方法通过水相反应使含有壳聚糖和交联剂的溶液在适当的pH值和温度下发生交联反应,形成纳米级的壳聚糖微球。

3. 反相沉淀法反相沉淀法是一种制备单分散壳聚糖纳米微球的有效方法。

在此方法中,壳聚糖和乙酸乙酯等有机溶剂通过超声处理形成乳化液,然后将其引入水相中,壳聚糖微球通过反相沉淀形成。

二、壳聚糖纳米微球在药物输送中的应用研究1. 利用壳聚糖纳米微球的载药性能壳聚糖纳米微球可以通过静电相互作用或共价结合等方法将药物载入微球内部。

其稳定性和生物相容性使其成为一种理想的药物载体。

通过调节壳聚糖微球的大小和表面性质,可以改变药物的释放速度和释放方式,实现药物的缓释和靶向输送。

2. 利用壳聚糖纳米微球的靶向性壳聚糖纳米微球可以通过改变其表面性质来实现靶向输送。

例如,通过修饰壳聚糖微球表面的靶向分子,可以实现对特定细胞或组织的精确靶向输送。

这种靶向性可以提高药物的局部治疗效果,降低副作用。

3. 利用壳聚糖纳米微球的响应性壳聚糖纳米微球可以通过调整其结构和组成来实现对外界刺激的敏感性。

例如,通过改变壳聚糖微球的pH响应性,可以实现在特定pH环境下的药物释放。

这种响应性能使得壳聚糖纳米微球在肿瘤治疗等需要对外界刺激做出响应的场景中具有潜在应用价值。

结论壳聚糖纳米微球作为一种重要的纳米材料,在药物输送中具有广泛的应用潜力。

其制备方法包括电沉积法、水相反应法和反相沉淀法等。

壳聚糖纳米微球可通过载药性能、靶向性和响应性等特点,实现药物的缓释、靶向输送和对外界刺激的响应。

中药 纳米结构产品 制造技术

中药 纳米结构产品 制造技术

中药纳米结构产品制造技术随着科学技术的进步,纳米技术在各个领域中得到广泛应用。

中药作为中华文化传统的瑰宝之一,自古以来就在中医药学中扮演着重要的角色。

近年来,人们开始将纳米技术引入中药领域,开发中药纳米结构产品,以期提高其药效和效能。

本文将介绍中药纳米结构产品的制造技术。

一、纳米颗粒技术纳米颗粒作为纳米技术应用的常见方式,其制备过程包括溶剂沉淀法、溶剂蒸发法、凝胶法、脉冲爆破法等多种方法。

其中,溶剂沉淀法是目前制备纳米颗粒的常用方法之一。

它通过溶剂溶解中药药材,并加入还原剂,使药材中的金属离子还原成金属纳米颗粒。

这种方法可以制备出尺寸均一的纳米颗粒,并保留中药的有效成分。

同时,溶剂蒸发法也常用于中药纳米颗粒的制备过程中。

在这种方法中,药材溶解于溶剂中,随着溶剂蒸发,药材成分逐渐聚集成纳米颗粒。

这种方法制备的纳米颗粒具有较高的稳定性和药效。

二、纳米载体技术纳米载体技术是一种将中药有效成分封装在纳米载体中的方法,以提高中药药效和稳定性。

常见的纳米载体包括纳米乳液、纳米胶束、纳米微粒等。

这些载体具有较小的颗粒尺寸和较大的比表面积,可以提高中药成分的溶解度和吸收性,延长药物在体内的滞留时间,增加疗效。

制备纳米载体的方法包括乳化法、微乳化法、共沉淀法等。

其中,乳化法是主要应用的方法之一。

在这种方法中,中药有效成分溶解在水相中,然后与油相通过机械剪切或高能超声波处理进行乳化,生成纳米乳液。

制备的纳米乳液具有较小的颗粒尺寸和较高的稳定性,可用于药物的靶向输送。

三、纳米薄膜技术纳米薄膜技术是将中药有效成分制备成纳米薄膜,以实现药物的渐进释放。

在制备纳米薄膜时,常用的方法有溶液法、溶胶冻干法、溶胶-凝胶法等。

其中,溶胶冻干法常被用于纳米薄膜的制备。

在这种方法中,中药有效成分溶解在溶胶中,然后通过冻干使溶胶转变为冻干物。

接着,通过热处理和气体处理等方法使冻干物形成纳米级别的薄膜。

这种制备方式可以使药物持续释放,达到缓解症状的效果。

沉淀法制备纳米微粒

沉淀法制备纳米微粒

为了获得沉淀的均匀性,通常是 将含多种阳离子的盐溶液慢慢加到过 量的沉淀剂中并进行搅拌,使所有沉 淀离子的浓度大大超过沉淀的平衡浓 度,尽量使各组份按比例同时沉淀出 来,从而得到较均匀的沉淀物。
(2)均相沉淀法
通过水解三价铁盐溶液,可以得 -Fe2O3纳米粒子。
定义: 一般的沉淀过程是不平衡的,但如果控制溶液中的沉淀剂浓度,使之缓慢地增加,那么使溶液中的沉淀处于平衡状态.且沉淀
例如,Zr,Y,Mg,Ca的氯化物溶入水形成溶液,随pH值的逐渐增大,各种金属离子发生沉淀的pH值范围不同.
氯离子与烃氧基(RO)完全置换生成醇化物.
由于水解条件不同,沉淀的类型亦不同。
定义:含多种阳离子的溶液中参加沉淀剂后,所有离子完全沉淀的方法称共沉淀法,它又可分成单相共沉淀和混合物的共沉淀。
多数金属氯化物与醇的反响,仅局部C1- 离子与烃氧基(RO)发生置换.那么必须参加NH3、吡啶、三烷基胺、醇钠等碱性基,使反响
(b)碱性基参加法.
通过水解三价铁盐溶液,可以得 -Fe2O3纳米粒子。
由Ba与醇直接反响得到Ba的醇盐,并放出氢气;
原理:在溶液状态下将不同化学成分的物质混合,在混合溶液中参加适当的沉淀剂(如OH-,C2O42-,CO32-等)制备纳米粒子的前驱
体沉淀物〔氢氧化物、水合氧化物或盐类〕,再将此沉淀物进行枯燥或煅烧,从而制得相应的纳米粒子。
定义:含多种阳离子的溶液中参加沉淀剂后,所有离子完全沉淀的方法称共沉淀法,它又可分成单相共沉淀和混合物的共沉淀。
通过水解三价铁盐溶液,可以得 -Fe2O3纳米粒子。
其中R为有机基团,如烷基,—C3H7,—C4H9等,M为金属.Li,Na,K,Ca,Sr,Ba等强正电性元素在惰性气氛下直接溶于醇而制

(完整版)纳米颗粒制备方法

(完整版)纳米颗粒制备方法

优 点: 制备的纳米粉纯度高、粒度分布 窄、结晶性好、表面清洁、粒度易于控 制、原则上适用于任何被蒸发的元素以 及化合物 。
• 蒸发法所得产品的粒径一般5~100nm, 但如果将物质在真空中连续的蒸发到流 动着的油面上,然后把含有纳米粒子的 油会受到储存器内,再经过真空蒸馏、 浓缩,可以在短时间内制得平均粒径为 3nm的Ag、Au、Cu、Pb等粒子。 这就是 流动油面蒸发凝聚法。
• 我们在这里无意对如何进行纳米粒子 制备方法的科学分类进行评价,而着重 针对纳米粒子生成机理与制备过程非常 粗略的将制备方法分成 :
• 物 理 方 法;
• 化学 方 法;
• 物 理 化 学 方 法。
二、制备纳米粒子的物理方法
• 机械粉碎法 • 蒸发凝聚法
机械粉碎法
• 纳米机械粉碎法是在传统的机械粉碎 技术技术中发展起来的,以粉碎与研磨 为主体来实现粉末的纳米化,可以制备 纳米纯金属粉和合金粉 。
纳米粒子采用的方法是蒸发法。如20 世纪30年
代日本为了军事需要而开展了“沉烟试验”,
用蒸发冷凝法制成了世界上第一批超微铅粉;
• 1963年,Uyeda用气体蒸发冷凝法制得金 属纳米微粒,对其形貌和晶体结构进行 了电镜和电子衍射研究。1984年,德国 的H. Gleiter等人将气体蒸发冷凝获得的 纳米铁粒子[1],在真空下原位压制成纳 米固体材料,使纳米材料研究成为材料 科学中的热点。
化学制备方法
• 1 化学沉淀法 • 2 化学还原法 • 3 溶胶凝胶法 • 4 水热法 • 5 溶剂热合成法 • 6 热分解法 • 7 微乳液法 • 8 高温燃烧合成法 • 9 模板合成法 • 10 电解法
化学沉淀法
• 在溶液状态下将不同成分的物质 混合,在混合溶液中加入适当的沉 淀剂制备纳米粒子的前驱体沉淀物, 再将此沉淀物进行干燥或煅烧,从 而制得相应的纳米粒子。

纳米粒子的制备方法综述

纳米粒子的制备方法综述

纳⽶粒⼦的制备⽅法综述纳⽶粒⼦的制备⽅法综述摘要:纳⽶材料是近期发展起来的⼀种多功能材料。

在纳⽶材料的当前研究中,其制备⽅法占有极其重要的地位,新的制备⼯艺过程的研究与控制对纳⽶材料的微观结构和性能具有重要的影响。

本⽂主要概述了纳⽶材料传统的及最新的制备⽅法。

纳⽶材料制备的关键是如何控制颗粒的⼤⼩和获得较窄且均匀的粒度分布。

[1]Abstract :Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution .关键词:纳⽶材料制备⽅法Key words :Nanometer material produce-methods正⽂:纳⽶材料的制备⽅法主要包括物理法,化学法和物理化学法等三⼤类。

下⾯分别从三个⽅⾯介绍纳⽶材料的制备⽅法。

物理制备⽅法早期的物理制备⽅法是将较粗的物质粉碎,其最常见的物理制备⽅法有以下三种:1.真空冷凝法⽤真空蒸发、加热、⾼频感应等⽅法使原料⽓化或形成等离⼦体,然后骤冷。

化学共沉淀法制备纳米四氧化三铁粒子.

化学共沉淀法制备纳米四氧化三铁粒子.

第29卷第1期2007年3月湖北大学学报(自然科学版Journal of Hubei University (Natural ScienceVol.29No.1Mar.,2007收稿日期:20060622作者简介:黄菁菁(1981,女,硕士生文章编号:10002375(200701005003化学共沉淀法制备纳米四氧化三铁粒子黄菁菁,徐祖顺,易昌凤(湖北大学材料科学与工程学院,湖北武汉430062摘要:用化学共沉淀法制备纳米四氧化三铁粒子,应用X 射线衍射,透射电子显微镜对磁性粒子的结构、粒径、形貌进行了表征,并讨论铁盐溶液浓度、沉淀剂浓度及超声波对粒子粒径的影响.关键词:化学共沉淀法;四氧化三铁;超声波中图分类号:TM227,O611.4文献标志码:A随着纳米技术的发展,有关磁性纳米粒子的制备方法及性质受到极大的重视.四氧化三铁纳米粒子在作为磁记录材料、磁流体的基本材料、特殊催化剂原料、功能材料和磁性颜料等方面显示出许多特殊的功能[1~5].目前,制备纳米四氧化三铁的方法有很多,如水热反应法[6],中和沉淀法[7],化学共沉淀法[8],沉淀氧化法[9],r -ray 辐照法[10],微波辐射法[11]等,其中以共沉淀法最为简便.本实验采用化学共沉淀法制备纳米Fe 3O 4粒子,并讨论了铁盐浓度、沉淀剂浓度以及超声波对微粒粒径的影响.1实验部分1.1试剂及仪器FeCl 3・6H 2O (AR ;FeSO 4・7H 2O (AR ;N H 3・H 2O (AR ;S K2200H 型超声波发生器,频率20k Hz ,功率90W ;D/MAX 2ⅢC 型X 射线扫描仪(XRD ;TEX 2100SX 型透射电子显微镜(TEM .1.2实验原理将二价铁盐(FeSO 4・7H 2O 和三价铁盐(FeCl 3・6H 2O 按一定比例混合,加入沉淀剂(N H 3・H 2O ,搅拌,反应一段时间即得到纳米Fe 3O 4粒子,反应式为:Fe 2++2Fe 3++8N H 3・H 2O =Fe 3O 4↓+8N H +4+4H 2O由反应式可看出,反应的理论摩尔比为Fe 2+∶Fe 3+=1∶2,但由于二价铁离子容易氧化成三价铁离子,所以实际反应中二价铁离子应适当过量.1.3四氧化三铁的制备将一定量的二价铁盐(FeSO 4・7H 2O 和三价铁盐(FeCl 3・6H 2O 混合溶液加入到三口烧瓶中,滴液漏斗中加入一定浓度的沉淀剂N H 3・H 2O ,在氮气氛下将氨水溶液加到反应体系中,使体系的p H ≥10,剧烈搅拌,水浴恒温.搅拌30min 后结束反应,用蒸馏水反复洗涤直至中性,倾去上层清液,在60℃下真空干燥后,研磨即得纳米Fe 3O 4粒子.2纳米Fe 3O 4粒子的表征2.1XR D 分析图1为纳米Fe 3O 4粒子的衍射图,图中的衍射峰出现在2θ=30°,35°,42°,62.5°处,分别对应立方相Fe 3O 4的(220,(311,(400,(440晶面.由Scherrer 公式:D =κλ/βco s θ.式中λ为射线波长,κ为峰形因子,D 为晶体的平均粒径,θ为衍射角,β为校正后的半峰宽.κ值取决于几个因素,其值一般取0.89.取2θ为35°时的半峰宽算出纳米Fe 3O 4粒子的平均粒径为8.8nm.2.2TEM 分析图2为纳米Fe 3O 4粒子的透射电镜图片.图中磁性Fe 3O 4粒子大小较均一,形状为球形,粒子粒径为10~20nm.TEM 得到粒子的平均粒径比XRD 的大,这是由于Scherrer 公式算出的第1期黄菁菁等:化学共沉淀法制备纳米四氧化三铁粒子51粒径为Fe3O4晶体的平均粒径,而TEM看到的粒子可能是多个Fe3O4晶体的团聚体.图1FeO4纳米粒子的XRD的照片图2Fe3O4纳米粒子的TEM谱图3结果与讨论3.1Fe2+、Fe3+溶液浓度对产物粒径的影响在反应体系温度为40℃,二价铁盐和三价铁盐的物质的量比为1∶1,C Fe2+=C Fe3+,N H3・H2O浓度为1mol/L,搅拌速度恒定的条件下,考察了铁盐溶液浓度对Fe3O4粒子粒径的影响,结果如表1所示.表1Fe2+和Fe3+浓度对F e3O4平均粒径的影响试样铁盐浓度/(mol・L-1平均粒径/nm产物颜色a0.2522.1黑b0.1515.5黑c0.1258.8黑褐由表1可知,当铁盐浓度很小时,产物颜色呈现出黑褐色,其原因为Fe2+离子在低浓度时更易被氧化成Fe3+离子,从而使实际参加反应离子的比例发生变化,而生成其他的杂质[8].在铁盐浓度很低时,晶核成长速率较小及成长过程较短,所以产物粒径降低.随着铁盐浓度增加,晶核粒径逐渐增大,生成粒子粒径也逐渐增大.3.2氨水浓度对产物粒径的影响在反应体系温度为40℃,二价铁盐和三价铁盐的物质的量比为1∶1,铁盐溶液浓度为0.25mol/L(C Fe2+=C Fe3+,搅拌速度恒定的条件下,考察了氨水浓度对Fe3O4粒子粒径的影响,结果如表2所示.表2NH3・H2O浓度对Fe3O4平均粒径的影响试样氨水浓度/(mol・L-1平均粒径/nm产物颜色a 1.523.8黑b 1.022.0黑c0.515.5黑由表2可知,当氨水浓度增大时,粒子平均粒径增大.如果氨水浓度增加,就有许多未反应的N H3・H2O附着在粒子表面,从而使产物粒径增大.3.3超声波对产物粒径的影响在反应体系温度为40℃,二价铁盐和三价铁盐的物质的量比为1∶1,C Fe2+=C Fe3+,搅拌速度恒定的条件下,开启超声波发生器,考察超声波对Fe3O4粒子粒径的影响,结果如表3所示.湖北大学学报(自然科学版第28卷52表3超声波对Fe3O4平均粒径的影响试样铁盐浓度/(mol・L-1氨水浓度/(mol・L-1平均粒径/nm产物颜色a0.25 1.523.8黑a30.25 1.517.2黑b0.25 1.022.1黑b30.25 1.09.4黑3为反应时引入超声波由表3可知,当反应物条件相同的情况下,超声波的引入使制得的Fe3O4粒子粒径减小.这可能是(1超声波使体系湍动状态加剧,晶核成长受到一定阻碍,所以产物粒径有所降低;(2超声波的分散作用使成形的Fe3O4粒子难以发生团聚,这样使产物的最终粒径减小.4结论采用化学共沉淀法制备纳米Fe3O4粒子,其粒径大小随铁盐溶液浓度和氨水浓度的增加而增大.在搅拌的同时引入超声波,可使产物粒径减小.改变实验条件,可制得平均粒径在10nm以下的纳米Fe3O4粒子.参考文献:[1]Yamguchi K,Matsumoto K,Fiji T.Magnetic anisotropy by ferromagnetic particles alignment in a magnetic field[J].J Appl Phys,1990,67:44934495.[2]Odenbach S.Magnetic fluids[J].Adv Colloid Interface Sci,1993,46:263282.[3]Atarshi T,Imai T.On the preparation of the colored water2based magnetic fluids cred,yellow blue and black[J],Magn Magn Mater,1990,85:3 6.[4]Caceres P G,Behbehani M H.Microstructural and surface area development during hydrogen reduction of magnetite[J],Appl Catal A,1994,109:211223.[5]Chikov V,Kuznetsov A.Single cell magnetophoresis and its diagnostic value[J],J Magn Magn Mater,1993,122:367370.[6]Fan R,Chen X H,Gui Z,et al.A new simple hydrothermal prepation of nanocrystalline magnetite Fe3O4[J].Materials Research Bulletin,2001,36:497502.[7]丁明,曾桓兴.中和沉淀法Fe3O4的生成研究[J].无机材料学报,1998,13:619624.[8]秦润华,姜炜,刘红缨,等.纳米磁性四氧化三铁的制备和表征[J].材料导报.2003,17:6668.[9]Zhu Y ihua,Wu Qiufang.Synthesis of magnetite nanoparticles by precipitation with forled mixing[J].Journal ofNanoparticle Research,1999,1:393396.[10]Wang Shizhong.Xin Houwen,Qian Y itai.Preparation of nanocry stallineFe3O4byγ2ray radition[J].MaterialsLetters,1997,33:113116.[11]Khollam Y B,Dhage S R,Potdar S B,et al.Microwave hydrothermal preparation of submicron2sized sphericalmagnetite(Fe3O4powders[J].Materials Letters,2002,56:571577.Fe3O4nanoparticles prepared by chemical co2precipitation methodHUAN G Jing2jing,XU Zu2shun,YI Chang2feng(School of Materials Science and Engineering,HubeiUniversity,Wuhan430062,China Abstract:Fe3O4nanoparticles were prepared by chemical co2precipitation met hod.The p roperties of Fe3O4nanoparticles were characterized by X2ray diffraction(XRDand t ransmission elect ronmicroscopy(TEM.The effect s of t he concent ration of Fe2+,Fe3+,N H3・H2O and t he ult rasonic on t he average diameter of t he Fe3O4nanoparticles are st udied.K ey w ords:chemical co2precipitation met hod;Fe3O4;ult rasonic(责任编辑晏建章。

实验室球状颗粒制备方法

实验室球状颗粒制备方法

实验室球状颗粒制备方法
实验室制备球状颗粒有多种方法,具体如下:
1. 球形微粒制备法:通过控制溶液的成分和反应条件来制备球形的纳米粒子,如硫化镉纳米球、氧化锌纳米球等。

2. 水滴干燥法:在水滴表面吸附或溶解纳米粒子,通过水滴的干燥过程,可以制备出不同大小和形态的纳米球。

3. 碳球模板法:通过以糖为模板,在高温下炭化制备出球形的纳米碳球。

4. 共沉淀法:将金属离子和还原剂在一定条件下共沉淀,生成球形的金属纳米粒子。

5. 电沉积法:通过电化学反应在电极表面沉积金属离子,形成球形的金属纳米粒子。

6. 机械滚球装置法:用实验室研制的机械滚球装置,可以制备粒径为~的球形颗粒。

具体制备流程如下:(1)将原料在烘箱中干燥化,用粉碎机进行破
碎粉末化;(2)向NaCl粉末中加入黏结剂(NaCl和KCO3的饱和溶液),使
其具有适当的黏结性;(3)将粉末放入滚球锅中,使其逐渐长大,通过调节
滚球锅的转速和时间,可获得粒径为~的球形颗粒;(4)置于200℃烘箱中干燥,待颗粒硬化后,筛分。

以上方法仅供参考,如需实验室球状颗粒制备方法的更多信息,建议查阅相关文献或咨询专业人士。

纳米颗粒制备方法

纳米颗粒制备方法

纳米颗粒的化学制备方法纳米颗粒的各种化学制备方法及例举本文通过查阅图书馆中文数据库(CNKI)和外文数据库(Elsevier)相关资料,对纳米粒子的化学制备方法,如:沉淀法、溶胶-凝胶法、溶液蒸发法、化学气相沉积法和模板合成法等分别进行了举例说明,并对其各种化学制备方法的基本原理、化学反应及制备过程进行了简要的描述。

一.沉淀法1、共沉淀法Fe3O4磁性纳米粒子的共沉淀法制备研究陈亭汝青岛大学化学化工与环境学院孙瑾烟台南山学院以液相共沉淀法制备纳米磁性Fe3O4粒子的工艺,研究了反应搅拌速度、n(Fe3+ ) /n(Fe2+)的比例、pH值和熟化温度对制备纳米Fe3O4粒子的影响,并利用透射电镜表征观察Fe3O4纳米粒子的形貌。

研究结果表明,在搅拌速度较快的情况下制备纳米级Fe3O4颗粒的最佳合成工艺条件为:n(Fe3+)/n(Fe2+)为1﹒8:1(摩尔比),熟化温度70 ℃,熟化时间30 m in以氨水作沉淀剂最佳pH值是9左右,可制得纯度较高,粒径小于10nmFe3O4磁性粒子。

(1)制备原理搅拌速度的影响纳米颗粒可以自动的进行团聚降低本身的能量,适当的搅拌速度可以破坏团聚体中小微粒之间的库仑力和范德华力,有利于纳米微粒在混合溶液中保持稳定和分散均匀。

由于搅拌速度的加快有利于反应物之间的充分接触,能避免搅拌不均而产生的局部浓度过高,使晶核生成和长大都均匀地进行,从而粒径小且分布均匀。

因此较高的搅拌速度有利于合成较小粒径的纳米粒子。

(2)试剂及反应方程式试剂:FeCl3*6H20, FeCl2*4H20, NH3*H20, NaOH,柠檬酸、尿素均为分析纯。

反应方程式采用液相共沉淀法制备纳米Fe3O4 的反应原理如下:Fe2+ + 2Fe3+ + 8OH-- =Fe3O4 +4H2O(3)制备工艺过程如下图2、均匀沉淀法均匀沉淀法合成纳米氧化铁欧延,邱晓滨,许宗祥,林敬东,廖代伟厦门大学物理化学研究所,化学系,固体表面物理化学国家重点实验室以尿素为均匀沉淀剂、氯化铁为原料,采用均匀沉淀法在不同的条件下合成具有实用价值的a型纳米氧化铁.用XRD和TEM测定产品的形貌并确定产品的纳米尺度.实验表明,所合成的Fe2O3为α型,粒径在20~40 nm范围,且分散性好.(1)制备原理采用均匀沉淀法,利用尿素高温发生水解反应(1)(如下),缓慢生成构晶离子,随着反应的缓慢进行,溶液的pH值逐渐上升.Fe3+和OH一反应,并在溶液的不同区域中均匀地形成铁黄粒子,尿素的分解速率直接影响了形成铁黄粒子的粒度,而尿素的分解速率又由反应温度所决定.温度很低时,离子具有的能量较低,晶粒生成速度很小,虽然有利于形成稳定的晶粒,但反应速度太慢,使得粒径大且分布不均匀.反应温度升高则反应速度加快,晶粒形成的速度也加快,但温度过高,一方面溶液的过饱和度下降,同时不利于形成稳定的晶粒,晶粒生成速度反而下降.(2)反应方程式(3)合成过程二.溶液蒸发法1.冷冻干燥法冷冻干燥法制备氧化铜纳米粉体的实验研究刘军东北大学机械工程与自动化学院徐成海沈阳大学师范学院利用冷冻干燥法,以无机化合物硫酸铜和氢氧化钠为原料,选取铜氨络合物为前驱体,制备出了粒径为20~50nm的氧化铜粉和带有均匀~10nm孔隙的多孔颗粒材料,并进行了TEM 和SEM检测。

纳米材料合成(液相)

纳米材料合成(液相)
纳米材料合成(液相)
5.2.5 胶体体系分类
体系
分散相
溶胶

乳胶

固体乳胶

泡沫

雾、烟、气溶胶(液体粒子) 液
烟、气溶胶(固体粒子)
纳米材料合成(液相)
5.2.4 溶剂挥发分解法
(1)液滴的冻结
使金属盐水溶液冻结 用的冷却剂是不能与 溶液混合的液体,如 正己烷或液氮。
纳米材料合成(液相)
5.2.4 溶剂挥发分解法
(2)冻结液体的 干燥
将冻结的液滴加热, 使水快速升华,同时 采用凝结器捕获升华 的水,使装置中的水 蒸汽压降低,达到提 高干燥效率的目的。
5.2液相合成法
液相法是目前实验室 和工业上应用最广泛 的合成超微粉体材料 的方法.
与气相法比较有如下 优点:
主要特征:
①可精确控制化学组成;
②容易添加微量有效成分, 制成多种成分均一的纳米 粉体;
①在反应过程中利用多 种精制手段;
②通过得到的超细沉淀 物, 可很容易制取高 反应活性的纳米粉体.
金属醇盐制备法
(b) 碱性基加入法:平衡右移 B+ROH(BH)++(OR)-,
(OR)- + MCl MOR +Cl-, (BH)+ + Cl- (BH)+Cl-
TiCl4 + 3C2H5OH TiCl2(OC2H5)2 + 2HCl, TiCl4 + 4C2H5OH + 4NH3 Ti(OC2H5)4 + 2NH4Cl,
纳米材料合成(液相)
影响因素
醇盐的种类对微粒的 形状和结构基本无影 响.
醇盐的浓度对粒径影 响不大.

药物纳米颗粒的制备及表征

药物纳米颗粒的制备及表征

药物纳米颗粒的制备及表征药物纳米颗粒是一种应用广泛的新型药物载体,具有较小的粒径和较大的比表面积,能够提高药物的溶解度、稳定性和生物利用度。

本文将介绍药物纳米颗粒的制备方法以及常用的表征技术。

一、制备方法1. 溶剂沉淀法溶剂沉淀法是一种常用的制备药物纳米颗粒的方法。

首先,将药物和载体溶解在有机溶剂中,形成混合溶液。

然后,在搅拌的条件下,将混合溶液缓慢滴入抗溶剂中,药物溶液中的有机溶剂会逐渐扩散到抗溶剂中,形成纳米颗粒。

2. 激光烧结法激光烧结法利用激光将药物固体颗粒加热至熔点,然后迅速冷却成固态纳米颗粒。

这种方法具有操作简单、制备时间短的优点,适用于多种药物的制备。

3. 胶束法胶束法是通过形成胶束来制备药物纳米颗粒。

首先,在水相中加入表面活性剂和辅助剂,形成胶束。

然后,将药物溶解在有机溶剂中,将有机溶液滴入胶束溶液中,药物溶液中的有机溶剂会逐渐扩散到胶束中,形成纳米颗粒。

二、表征技术1. 扫描电子显微镜(SEM)SEM是一种常用的表征技术,能够观察到药物纳米颗粒的形貌和表面形态。

通过SEM观察,可以获得颗粒的大小、形状等信息。

2. 透射电子显微镜(TEM)TEM是一种高分辨率的表征技术,能够观察到药物纳米颗粒的内部结构和形貌。

通过TEM观察,可以获得颗粒的粒径、晶体结构等信息。

3. 粒度分析仪粒度分析仪可以用来测量药物纳米颗粒的粒径分布。

该仪器通过光散射原理,可以快速、准确地确定颗粒的平均粒径以及粒径分布情况。

4. 红外光谱(IR)红外光谱可以用来确定药物纳米颗粒的化学成分。

通过对红外光谱的分析,可以确定药物颗粒中是否存在特定的官能团或化合物。

5. 热重分析(TGA)热重分析可以用来研究药物纳米颗粒的热稳定性和热分解行为。

通过热重曲线,可以了解颗粒在不同温度下的热解特性。

总结:药物纳米颗粒的制备和表征是药物纳米技术研究中的重要环节。

通过合适的方法制备纳米颗粒,并采用准确可靠的表征技术进行表征,能够为药物的研发和应用提供有力的支持。

药物制剂中纳米颗粒的制备与应用

药物制剂中纳米颗粒的制备与应用

药物制剂中纳米颗粒的制备与应用随着纳米科技的发展,纳米颗粒被广泛应用于药物制剂领域。

纳米颗粒具有较大的比表面积和特殊的物理化学性质,使其具有优异的药物传输和释放性能。

本文将对纳米颗粒在药物制剂中的制备方法及应用进行探讨。

一、纳米颗粒的制备方法纳米颗粒的发展促进了药物传输和释放的效率和选择性,而精确掌握纳米颗粒的制备方法对于药物制剂的开发至关重要。

目前常用的纳米颗粒制备方法主要包括溶剂沉淀法、乳化法、胶束法、凝胶颗粒法等。

1. 溶剂沉淀法溶剂沉淀法是制备纳米颗粒最常用的方法之一。

它通过溶剂中溶解活性成分,并在另一个不溶解活性成分的溶剂中形成纳米颗粒。

该方法适用于多种药物,制备过程简单且效果稳定。

2. 乳化法乳化法是一种通过乳化剂在较大相容溶剂中溶解活性成分,并与较小相容溶剂形成乳液的方法。

通过调整乳化剂的性质和溶剂的选择,可以控制纳米颗粒的粒径和分布。

乳化法制备的纳米颗粒具有高度稳定性,适合于口服、注射等多种给药途径。

3. 胶束法胶束法是一种通过表面活性剂形成的胶束结构来包裹活性成分的方法。

对于亲水性活性成分,通过选择合适的表面活性剂可以得到稳定的亲水性纳米颗粒;而对于疏水性活性成分,则可以在胶束内部形成微乳液结构,提高药物的溶解度和生物利用度。

4. 凝胶颗粒法凝胶颗粒法是制备纳米颗粒的一种新方法,通过凝胶颗粒的形成来包裹活性成分。

该方法不需要使用有机溶剂,适用于成环肽药物、蛋白质等易受有机溶剂干扰的化合物。

二、纳米颗粒在药物制剂中的应用纳米颗粒在药物制剂中的应用包括药物传输、药物释放、药物稳定性提高等方面。

下面将分别进行介绍。

1. 药物传输纳米颗粒可以通过改变其粒径、表面性质和药物分子的亲和力,提高药物在体内的生物利用度。

通过纳米颗粒的载体效应,药物分子的水溶性和脂溶性都能得到很好的平衡,从而提高药物在水相和脂相中的传输。

2. 药物释放纳米颗粒可以通过调控其制备方法和组成,实现药物的控制释放。

例如,通过改变纳米颗粒的粒径和表面性质,可以调节药物在纳米载体中的扩散和溶解速度,从而控制药物的释放速率和持续时间。

纳米材料制备方法

纳米材料制备方法

CH
CH 2
R CH 2 CH
CH 2
聚异丁烯
烃化反应
CH CO O
CH CO
CH 3 CO N H ( C H 2 C H 2 N H ) n H
CHR
CH 2 CO
CCHHCCH 2H
CHCO
2 CH OCO
CHR CHCO
CH 3C(C2OHH3 ) 180~200℃
O
C(C2OHH4 ) 180~220℃
采用低温沉淀方法(降低温度不但可以相应提高反应物过饱和度,
同时也增加了介质的粘度,而粘度又可决定粒子在介质中的扩散速率, 所以通常在某一适当温度时晶核生长速率为极大 );
在极低浓度下完成沉淀反应(在浓度约0.1~1 mmol/L时,过饱
和度足以引起大量晶核形成,但晶核的生长却受到溶液中反应物浓度的 限制。在浓度稍大时,晶核的形成量并不增加很多,但有较多的物质可 用于晶核的生长,易形成大颗粒沉淀 );
速减小,使晶核生长速率变慢,这就有利于胶体的形成;
②当(c-s)/s值较小时,晶核形成得较少,(c-s)值也相应地降低较慢
,但相对来说,晶核生长就快了,有s值极小,晶核的形成数目虽少,但晶核生长速率也非
常慢,此时有利于纳米微粒的形成。
精选ppt
6
N0.3 沉淀法制备纳米材料技巧
精选ppt
5
N0.2 沉淀制备法制备条件分析
成核速率:rN =
kc s

( s为溶解度,c-s为过饱和度)
晶核生长速率: rG =
Ds d
– (c-s) (D为粒子的扩散系
数,d为粒子的表面积,δ为粒子δ的扩散层厚度)
由上二式可知:
①假定开始时 (c-s)/s值很大,形成的晶核很多,因而(c-s)值就会迅

制备纳米粒子的方法

制备纳米粒子的方法

制备纳米粒子的物理方法1 机械粉碎法机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。

物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。

一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。

理论上,固体粉碎的最小粒径可达0101~0105μm。

然而,用目前的机械粉碎设备与工艺很难达到这一理想值。

粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。

比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。

其中,气流磨是利用高速气流(300~500 m/ s)或热蒸气(300~450 ℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。

气流磨技术发展较快,20世纪80年代德国Alpine 公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。

降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到011μm以下。

除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。

因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。

2 蒸发凝聚法蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。

利用这种方法得到的粒子一般在5~100 nm之间。

蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。

而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。

3离子溅射法用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar (40~250Pa) ,两极间施加的电压范围为013~115 kV。

由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例如:
随着尿素水溶液的温度逐渐升高至70℃附 近,尿素会发生分解。
(NH2)2CO+3H2O→3NH4OH +CO2↑ 则沉淀剂在金属盐溶液中均匀分布,浓度 低,使得沉淀物均匀生成,尿素的分解速 率收加热温度和尿素浓度的控制,因此可 以使尿素分解速度降得很低。
(3)水解沉淀法
金属醇盐水解法原理:利用一些金属有机醇盐能 溶于有机溶剂并可能发生水解,生成氢氧化物或氧 化物沉淀的特性,制备细粉料的一种方法。
经洗涤、脱水、煅烧得ZrO2(Y2O3)微粒.
混合物共沉淀过程是非常复杂的.溶液中不同种 类的阳离子不能同时沉淀.各种离子沉淀的先后 与溶液的pH值密切相关.
例如,Zr,Y,Mg,Ca 的氯化物溶入水形成溶液, 随pH值的逐渐增大,各 种金属离子发生沉淀的 pH值范围不同.
为了获得沉淀的均匀性,通常是 将含多种阳离子的盐溶液慢慢加到过 量的沉淀剂中并进行搅拌,使所有沉 淀离子的浓度大大超过沉淀的平衡浓 度,尽量使各组份按比例同时沉淀出 来,从而得到较均匀的沉淀物。
➢ 将上述获得的两种醇盐混 合溶入苯中,使Ba:Ti之比 为1:1,再回流约2h;
➢ 在此溶液中慢慢加入少量 蒸馏水并进行搅拌,由于加 水分解结果白色的超微粒子 沉淀出来(晶态BaTiO3).
知识回顾 Knowledge Review
祝您成功!
粒之间组成的均一性。用醇盐水解法就能获得具有同一组 成的微粒。
例如,由金属醇盐合成的SrTiO3通过50个粒子进行组分分 析结果见表,由表可知,不同浓度醇盐合成的SrTiO3粒子 的Sr/Ti之比都非常接近1,这表明合成的粒子,以粒子为
单位都具有优良的组成均一性,符合化学计量组成.
A 金属醇盐的合成
沉淀法制备 纳米微粒
沉淀法分类
(1)共沉淀法
(i)单相共沉淀 (ⅱ)混合物共沉淀
(2)均相沉淀法 沉淀剂慢慢地生成
(3)水解沉淀法 金属醇盐水解法
(a)复合醇盐法 (b)金属醇盐混合溶液
沉淀法
原理:在溶液状态下将不同化学成分的物质混合,在混合溶
液中加入适当的沉淀剂(如OH-,C2O42-,CO32-等)制 备纳米粒子的前驱体沉淀物(氢氧化物、水合氧化物或 盐类),再将此沉淀物进行干燥或煅烧,从而制得相应的
(ⅱ)混合物共沉淀.
如果沉淀产物为混合物时,称为混合物共沉淀.
共沉淀例子:ZrO2-Y2O3
(锆、钇)
例: Y2O3+6HCl=2YCl3+3H2O ZrOCl2·8H2O和YCl3混合液中加NH4ON
ZrOCl2+2NH4OH+H2O=Zr(OH)4+2NH4Cl
YCl3+3NH4OH=Y(OH)3+3NH4Cl
定义:含多种阳离子的溶液中加入沉淀剂后,所有离子完 全沉淀的方法称共沉淀法,它又可分成单相共沉淀和混合 物的共沉淀。
(i)单相共沉淀:沉淀物为单一化合物或单相固溶体时,称 为单相共沉淀.
例如,BaCl2+TiCl4(加草酸)形成了单相化合物 BaTiO(C2O4)2·4H2O↓,经(450-7500C)分解得到BaTiO3 的纳米粒子。
B 超细粉末的制备
金属醇盐与水反应生成氧化物、氢氧化物、水合 氧化物的沉淀.
除硅和磷的醇盐外,几乎所有的金属醇盐与水反应都很快, 产物中的氢氧化物、水合物灼烧后变为氧化物.
迄今为止,己制备了100多种金属氧化物或复合金属氧 化物粉末.
(i)一种金属醇盐水解产物. 由于水解条件不同,沉淀的类型亦不同。
(ⅱ)复合金属氧化物粉末.
金属酵盐法制备各种复合金属氧化物粉末是本法的优越性之所 在.表中列出了根据氧化物粉末的沉淀状态分类的复合氧化物.
粒径为10~15nm的BaTiO3纳米微粒的工艺流程图
➢ 由Ba与醇直接反应得到 Ba的醇盐,并放出氢气;
➢ 醇与加有氨的四氯化钛 反应得到Ti的醇盐,然后滤 掉氯化铵.
(i)金属与醇反应 碱金属、碱土金属、镧系等元素可以与醇直接反应生
成金属醇盐和氢。
M十nROH一M(OR)n十n/2H2, 其 中 R 为 有 机 基 团 , 如 烷 基 ,—C3H7 , —C4H9 等 , M 为 金 属.Li,Na,K,Ca,Sr,Ba等强正电性元素在惰性气 氛下直接溶于醇而制得醇化物.但是Be,Mg,Al,Tl, Sc,Y等弱正电性元素必须在催化剂(I2、HgCl2、HgI2)存 在下进行反应。
纳米粒子。例如; 金属盐或氢氧化物 调节溶液酸度、温度、溶剂 沉淀
过滤与溶液分离 沉淀物 洗涤、干燥、加热 纳米粒子
生成粒子的粒径通常取决于沉淀物的溶解度,沉淀物的溶解 度越小,相应粒子径也越小。 沉淀法主要分为:直接沉淀法 共沉淀法 均匀沉淀法
水解沉淀法 化合物沉淀法等
(1)共沉淀法Coprecipitation Method
(ⅱ)金属卤化物与醇反应
.金属不能与醇直接反应可以用卤化物代替金属. (a)直接反应(B,Si,P) MCl3+3C2H5OH→M(OC2H5)3+HCl, 氯离子与烃氧基(RO)完全置换生成醇化物.
(b)碱性基加入法. 多数金属氯化物与醇的反应,仅部分C1- 离子与烃氧基
(RO)发生置换.则必须加入NH3、吡啶、三烷基胺、醇钠 等碱性基,使反应进行到底。
(2)均相沉淀法
定义: 一般的沉淀过程是不平衡的,但如果控制 溶液中的沉淀剂浓度,使之缓慢地增加,则使溶 液中的沉淀处于平衡状态.且沉淀能在整个溶液 中均匀地出现,这种方法称为均相沉淀.
特点: 通过溶液中的化学反应使沉淀剂慢慢地生 成,从而克服了由外部向溶液中加沉淀剂而造成 沉淀剂的局部不均匀性,结果沉淀不能在整个溶 液中均匀出现的缺点。
特点 : (i)采用有机试剂作金属醇盐的溶剂 , 由于有机试剂纯度
高.因此氧化物粉体纯度高. (ⅱ)可制备化学计量的复合金属氧化物粉末. 对钛盐溶液的水解可以使其沉淀,合成球状的单分散形态 的二氧化钛纳米粒子。 通过水解三价铁盐溶液,标之一是氧化物粉末颗
相关文档
最新文档