有机废物好氧堆肥实验

合集下载

简述好氧堆肥的基本工艺过程

简述好氧堆肥的基本工艺过程

简述好氧堆肥的基本工艺过程
好氧堆肥的基本工艺是把生物质和有机物经过好氧条件下进行
发酵、腐熟、消化分解,最终产生植物及饲料制品的一种微生物腐熟工艺过程。

基本工艺过程主要包括以下几个步骤:
1、原料的收集与筛选:通常把粪便、有机废弃物、果皮、植物剩余物等充当原料,经过筛选把杂质清除,减少颗粒大小的不同。

2、原料的混合:将八种以上的原料按一定比例混合,这是因为不同原料有不同的营养成份。

3、原料的调制:将混合后的原料添加水,加热,搅拌,均质化,这一步主要是为了分解原料中的组分,激活微生物。

4、建立有利微生物群落:通过添加微生物剂,经过几次搅拌,好氧发酵养分分解,腐熟分解,最终形成一个有利的微生物群落。

5、堆肥生产:将调好的原料放入堆肥容器,经过恒温、排气和搅拌,微生物经过发酵恒温腐熟,将有机物分解成植物及饲料制品。

6、堆肥进程的监控:要定期监控堆肥进程,调整有利微生物群落,控制堆肥的温度和湿度,使堆肥进程按计划进行下去,获得高质量的好氧堆肥产品。

- 1 -。

有机废物好氧堆肥实验

有机废物好氧堆肥实验

有机废物好氧堆肥实验【实验目的】1.通过参与好氧堆肥实验装置的建立和全过程参数检测,了解作为有机废物无害化。

资源化处理处置方法之一的堆肥技术的典型过程及技术特征。

2.通过已掌握的微生物群落检测、计数方法,了解堆肥不同过程的微生物学变化特征。

3.掌握堆肥腐熟度检测方法之一的种子发芽率和发芽指数法。

【实验原理】堆肥化(composting)是指依靠自然界广泛分布的细菌、放线菌、真菌等微生物,或是通过人工接种待定功能的菌,在一定工况条件下,有控制地促进可被生物降解的有机物向稳定的腐殖质转化的生物化学过程,其实质是一种生物代谢过程。

废物经过堆肥化处理,制得的成品称堆肥(compost)。

好氧堆肥中底物的降解是细菌、放线菌和真菌等多种微生物共同作用的结果,在一个完整的好氧高温堆肥的各个阶段,微生物的群落结构演替非常迅速,即在堆肥这个动态过程中,占优势的微生物区系随着不同堆肥阶段的温度,含水率,好氧速率,pH值等理化性质的改变进行着相应的演替。

本实验通过学生全过程参与好氧堆肥装置的建立和关键参数检测,了解作为有机废物无害化、资源化处理处置方法之一的堆肥技术的典型过程及技术特征,掌握堆肥关键参数的检测方法,主要包括以下三部分内容:1.堆肥过程特征参数检测分析:包括堆温、pH、气体成分和含量变化监测2.堆肥过程微生物群落变化分析:采用平板计数法检测微生物种群的数量来研究高温阶段和堆肥腐熟阶段微生物种群结构和数量的变化,包括细菌、放线菌、真菌以及纤维素分解菌。

3.堆肥腐熟度检测:堆肥腐熟度是指堆肥产品的稳定程度。

判断堆肥腐熟度的指标包括物理学指标、化学指标(包括腐殖质)和生物学指标。

其中简单的判断堆肥腐熟的方法包括:1)根据外观和气味:在堆肥化过程中,物料的色度和气味的变化反映出微生物的活跃程度。

对于正常的堆肥过程,随着进程的不断推进,堆肥物料的颜色逐渐发黑,腐熟后的堆肥产品呈黑褐色或黑色,气味由最初的氨味转变成土腥味。

好氧堆肥实验指导书

好氧堆肥实验指导书

好氧堆肥实验装置实验说明书上海同广科教仪器有限公司2014年6月好氧堆肥实验一、实验目的有机固体废物的堆肥化技术是一种最常用的固体废物生物转换技术,是对固体废物进行稳定化,无害化处理的重要方式之一。

通过本实验,希望达到下述目的:1、加深对好氧堆肥化的了解;2、了解好氧堆肥化过程的各种影响因素和控制措施。

二、实验原理好氧堆肥化是在有氧条件下,依靠好氧微生物的作用来转化有机废物。

有机废物中的可溶性有机物质可透过微生物的细胞壁和细胞膜被微生物直接吸收,不溶性的胶体有机物质则先吸附在微生物体外,依靠微生物分泌的胞外酶分解为可溶性物质,再渗入细胞。

微生物通过自身的生命活动进行分解代谢和合成代谢,把一部分被吸收的有机物质氧化成简单的无机物,并释放生物生长、活动所需要的能量;把另一部分有机物转化合成新的细胞物质,使微生物繁殖,产生更多的生物体。

三、实验装置与工艺流程图该装置主体为有机玻璃柱,可视性好,能直接观察不同层面垃圾的反应分解过程,且在不同高度设有垃圾取样口,对不同层面的垃圾取样分析。

该装置装卸料方便、反应速度快,被广泛应用于环境工程的固废处理实验中。

主体反应柱:Φ350 mm×800mm;取样口若干;卸料口;排液口;温度传感器1只、数显温度表1套、。

气泵1台、气体流量计1只金属电控制箱1只、漏电保护开关1套、按钮开关、电压表1只(0-250V)、连接管道及阀门不锈钢支架1套等组成。

实验装置由反应器主体、供气系统和渗滤液收集系统三部分组成,如图1所示。

1、反应器主体:实验的核心装置是一次发酵反应器,设计采用有机玻璃制成罐:内径350.mm,高1000mm,总容积70.L。

反应器侧面设有采样口,可定期采样。

反应器顶部设有气体收集管,用医用注射器作取样器,定时收集反应器内的气体样本。

此外,反应器上还配有测温装置等。

2、供气系统:、风机经过气体流量计定量后从反应器底部供气。

供气管为直径10mm的蛇皮管。

餐厨垃圾好氧堆肥化处理实验

餐厨垃圾好氧堆肥化处理实验

实验20餐厨垃圾好氧堆肥化处理实验一、实验目的堆肥化是有机废弃物无害化处理与资源化利用的重要方法之一。

通过本实验,使得学生了解影响堆肥化的因素。

知道如何准备堆肥材料、如何进行堆肥过程控制和获取相关实验数据,以及如何判断堆肥的稳定化。

二、实验原理堆肥化是指利用自然界中广泛存在的微生物,通过人为的调节和控制,促进可生物降解的有机物向稳定的腐殖质转化的生物化学过程。

堆肥化的产物称为堆肥,但有时也把堆肥化简单地称作堆肥。

通过堆肥化处理,我们可以将有机物转变成有机肥料或土壤调节剂,实现废弃物的资源化转化,且这些堆肥的最终产物已经稳定化,对环境不会造成危害。

因此,堆肥化是有机废弃物稳定化、资源化和无害化处理的有效方法之一。

三、实验材料、仪器与要求1.实验材料所用堆肥材料取自本校学生食堂的厨房垃圾,包括各种蔬菜、水果的根、茎、叶、皮、核等,以及少量剩饭、剩菜。

此外,还需一些锯末,用于调节含水率和C/N比。

2.堆肥反应器直径200 mm,高500 mm,有效工作体积15.7 I,,由一台200 w气泵供气,带温度和氧传感器,可自动测量堆肥温度、进气和排气中(五浓度,并与数据检测记录仪和计算机相连,实现温度和Q浓度数据的自动记录分析。

3.测定内容(1)初始和堆肥结束时,堆肥材料的含水率(MC)、总固体(TS)、挥发性固体(VS)、碳氮比(C/N);(2)堆肥过程中,堆肥材料的温度、进气和排气中0。

浓度。

4.分析和记录仪器烘箱、马弗炉、天平、T()C和TN测定仪、数据检测记录仪、计算机、便携式O:/C()。

测定仪。

5.分组安排4人1组,每班8组。

6.实验时间由于本实验需要延续较长的时间,并且在整个过程中都需要进行数据采集和分析,故把整个实验分成两个部分。

第一个实验是垃圾的准备和装料;第二个实验是过程中和结束时的数据采集、检测和结果分析。

四、实验步骤1.准备材料从本校学生食堂收集厨房垃圾,切碎成1~2 cm后,先测定其含水率(MC)、总固体(TS)、挥发性固体(VS)、碳氮比(C/N);之后,根据测定结果进行材料的调理,主要调节材料的MC和C/N,通过填加锯末调节含水率(MC)至60%,C/N比在20~30之间。

有机固体废物协同好氧堆肥实验报告

有机固体废物协同好氧堆肥实验报告

有机固体废物协同好氧堆肥实验报告1. 引言随着城市化进程的加快和人口的不断增长,废物处理成为环境保护和资源利用的重要问题。

有机固体废物是城市中产生的重要废物之一,包括食品残渣、厨余垃圾、农业废弃物等。

这些废物经过合理处理可以转化为有机肥料,以提供土壤养分和改善土壤质量。

协同好氧堆肥是一种将不同种类的有机废物进行混合处理的方法,可以提高堆肥过程的效率和产出有机肥料的质量。

本实验旨在研究有机固体废物协同好氧堆肥的过程和效果,并评估其在有机废物处理中的应用潜力。

本文将对实验设计、材料与方法、结果与讨论进行详细介绍。

2. 实验设计2.1 实验材料本实验使用的有机固体废物包括食品残渣、厨余垃圾和农业废弃物。

食品残渣包括剩余的蔬菜、水果皮等;厨余垃圾包括剩余的饭菜、剩菜剩饭等;农业废弃物包括稻草、麦秸等。

这些废物来源于实验室内的样品收集。

2.2 实验方法1.将收集的有机固体废物混合均匀,并进行初步处理,包括去除杂质和分解较大的固体块。

2.将处理后的废物放置在协同好氧堆肥器中,保持适当的湿度和通风条件。

3.定期翻堆和保持堆肥的湿度,以促进废物的分解。

4.在堆肥过程中进行温度、氧气含量和湿度的监测,以评估堆肥过程的进行情况。

5.当废物完全分解并转化为有机肥料后,停止堆肥过程。

2.3 实验组设置本实验设置三个实验组,分别为单一有机废物组(只使用食品残渣作为废物源)、混合废物组(使用食品残渣、厨余垃圾和农业废弃物混合作为废物源)和对照组(不使用有机废物)。

每个实验组设置三个重复样本进行分析。

3. 实验结果与讨论3.1 堆肥过程观察在实验过程中,我们观察到混合废物组的堆肥过程相较于单一有机废物组和对照组更快地进行,废物的分解速度更快。

这可能是由于混合废物组中的废物种类更多,提供了更多的养分和微生物环境,促进了废物的分解。

3.2 有机肥料质量评估对堆肥后的有机肥料进行质量评估,发现混合废物组产出的有机肥料中含有更多的养分,如氮、磷、钾等。

好氧堆肥

好氧堆肥

好氧堆肥一.好氧堆肥1.好氧堆肥的概念及原理:好氧堆肥原理:有氧条件下,利用堆料中好氧微生物的生命代谢作用—氧化、还原、合成等过程对有机固体废弃物(本研究主要是人体排泄物—粪便)进行生物降解和生物合成。

其工艺主要流程可分为:前处理、主发酵、后发酵、后处理和贮存5个步骤。

好氧堆肥有有机物降解速率快且彻底、腐熟时间短、无害化程度高、无中间产物和臭味、环境条件好和堆肥产品肥效高等优点,因此在城市生活垃圾处理中多优先选用好氧堆肥处理。

2.好氧堆肥发酵过程图:细胞物质(微生物生长)+腐殖质堆肥有机物+ 氧气+ 微生物二氧化碳,水,氨气,硫酸根离子,磷酸根离子+ 能量排入环境释放能量转化为热3. 好氧堆肥系统:根据各自的技术特点以及研究目的、方向和手段不同将好氧堆肥分为通气静态条形堆式、条形堆式和反应器式堆肥三类。

目前在国内外普遍应用的是反应器式堆肥方式,因为该堆肥方式具有堆肥周期短,不受时间和空间限制等特点,容易实现工业化生产,环保效益较好,有较大的推广应用价值。

4. 好氧堆肥的影响因素及控制:好氧堆肥技术是将有机废物资源化和无害化的重要手段,并且得到广泛的应用,但是好氧堆肥是一个复杂的过程,在堆肥过程中受到诸多因素的影响。

这些因素制约着反应条件,从而决定了微生物的活性,最终影响堆肥的速度与质量。

影响堆肥过程的因素很多,其中主要因素有温度、颗粒度、pH、C/N、含水率、有机质含量、氧含量等。

好氧堆肥中微生物的活性和有机物的降解率可以通过调控这些因素得到改变,从而达到优化堆肥的目的。

(1)温度堆肥化过程中,堆料中微生物的活性受到温度重要影响。

根据堆体温度的不同将堆肥分为高温堆肥、中温堆肥和自然堆肥,其实中温堆肥温度和自然堆肥温度比较接近。

温度不宜过高,温度过高会过度消耗有机质,导致堆肥产品质量过低,甚至失去肥效。

堆体温度应控制55-60℃时(即高温堆肥)比较好,不宜超过60℃。

一般来讲高温堆肥比中温堆肥的效果要好一些,但也有许多堆肥综合能耗、实际可操作控制反应条件等其他因素选择中温堆肥,用远低于高温堆肥所需能量达到的堆肥效果略低于高温堆肥。

好氧堆肥课程设计摘要

好氧堆肥课程设计摘要

好氧堆肥课程设计摘要一、课程目标知识目标:1. 学生能理解好氧堆肥的基本原理,掌握其关键步骤和影响因素;2. 学生能描述好氧堆肥过程中微生物的作用,了解其对有机物分解的重要性;3. 学生能掌握好氧堆肥在环境保护和资源利用方面的意义。

技能目标:1. 学生能运用所学知识,设计并实施简单的堆肥实验;2. 学生能通过观察、记录和分析实验数据,评估堆肥效果;3. 学生能运用科学方法,解决堆肥过程中遇到的问题。

情感态度价值观目标:1. 学生能认识到好氧堆肥在环境保护和可持续发展中的价值,增强环保意识;2. 学生在实验过程中,培养观察、思考、合作和探究的科学精神;3. 学生能关注生活中的有机废弃物处理问题,提高社会责任感和主人翁意识。

课程性质:本课程为实践性较强的科学探究课程,结合学生年级特点,注重理论联系实际,提高学生的动手操作能力和问题解决能力。

学生特点:六年级学生具有较强的求知欲和动手能力,对环保话题有一定的认识,但需进一步引导和拓展。

教学要求:结合学生特点,采用启发式教学,引导学生主动参与实验,注重培养学生的观察、分析、评估和创新能力。

通过本课程的学习,使学生将所学知识应用于实际生活,提高环保意识和实践能力。

二、教学内容1. 好氧堆肥基本原理:介绍好氧堆肥的定义、特点和基本过程,结合课本第十五章“有机废弃物的处理与利用”相关内容,让学生理解好氧堆肥的微生物学原理和物质转化过程。

- 微生物学原理:微生物的种类、作用和影响因素;- 物质转化过程:有机物的分解、营养成分的转化和有害物质的降解。

2. 堆肥实验设计与实施:依据第十五章第三节“堆肥的制作”,引导学生学习堆肥实验的设计方法,包括原料选择、配比、操作步骤等。

- 原料选择:介绍常见堆肥原料及其特点;- 配比与操作:学会根据原料特点制定合适的配比和操作方法。

3. 堆肥效果评估:参考第十五章第四节“堆肥的品质评价”,教授学生如何通过观察、记录和分析实验数据,评估堆肥效果。

好氧堆肥

好氧堆肥

好氧堆肥是在有氧条件下,好氧菌对废物进行吸收、氧化、分解。

微生物通过自身的生命活动,把一部分被吸收的有机物氧化成简单的无机物,同时释放出可供微生物生长活动所需的能量,而另一部分有机物则被合成新的细胞质,使微生物不断生长繁殖,产生出更多生物体的过程。

工艺流程主要是:原料的预处理:包括分选、破碎以及含水率及碳氮比的调整。

首先去除废物中的金属、玻璃、塑料和木材等杂质,并破碎到40毫米左右的粒度,然后选择堆肥原料进行配料,以便调整水分和碳氮比,可以使用纯垃圾,垃圾和粪便之比为7:3或者垃圾与污泥之比为7:3进行混合堆肥。

原料的发酵阶段:我国大都采用一次发酵方式,周期长达30天,目前采用二次发酵方式,周期一般用20天,一次发酵是好氧堆肥的中温与高温两个阶段的微生物代谢过程,具体从发酵开始,经中温、高温然后到达温度开始下降的整个过程,一般需要10—12天,高温阶段持续时间较长。

二次发酵指物料经过一次发酵后,还有一部分易分解和大量难分解的有机物存在,需将其送到后发酵室,堆成1—2米高的堆垛进行二次发酵并腐熟。

当温度稳定在40℃左右时即达腐熟,一般需20—30天。

后处理阶段:是对发酵熟化的堆肥进行处理,进一步去除堆肥中前处理过程中没有去除的杂质和进行必要的破碎过程、经处理后得到的精制堆肥含水在30%左右,碳氮比为15—20。

贮存阶段:贮存是指堆肥处理前必须加以堆存管理,一般可直接存放,也可装袋存放。

但贮存时要注意保持干燥通风,防止闭气受潮。

分为三个过程:起始阶段、高温阶段、熟化阶段。

堆肥过程影响因素有:供氧量要适当,实际所需空气量应为理论空气量的2—10倍;含水量在50%-60%为宜,55%最理想,此时微生物分解速度最快,水的作用有二:一是溶解有机物,参与微生物的新陈代谢,二是调节堆肥温度,温度过高时通过水分的蒸发,带周一部分热量;碳氮比要适当,一般认为城市垃圾为20—35之间;碳磷比为75—150;PH值,当有机污泥做堆肥原料时,需要进行PH调整,堆肥过程开始时,由于酸性菌作用,PH为5.5—6.0,堆肥结束后,PH为8.5—9.0。

好氧堆肥工艺流程

好氧堆肥工艺流程

好氧堆肥工艺流程好氧堆肥工艺流程是利用有机废弃物经过一系列处理,最终转化为肥料的过程。

下面是一个常见的好氧堆肥工艺流程的简要描述。

第一步:原料准备好氧堆肥的原料主要包括农业废弃物、城市固体废弃物和农畜禽粪便等有机废弃物。

在进行堆肥前,需要对原料进行处理,如切碎、削皮、打碎等,以便提高堆肥的效果。

第二步:材料堆放将处理好的原料堆放成一定的堆肥床面积和堆肥层厚度。

堆肥床的长宽高比较重要,一般为10:1:2。

堆放时需要注意保持适当的通风性,避免过密造成缺氧。

第三步:堆肥调控堆放完成后,需要对堆肥进行调控,控制其温度、湿度和通风等因素。

通风是非常重要的,可以通过定期翻堆或插管来保持堆肥的氧气供应。

同时还需要保持适当的湿度,一般在60-70%左右。

第四步:堆肥发酵堆肥床中的有机物开始进行分解和发酵过程。

在好氧条件下,有机废弃物中的微生物开始活动,分解有机物质,释放出热能和水分,产生二氧化碳、水和一些有机酸等物质。

第五步:发酵控制在堆肥过程中,需要控制堆肥的温度和湿度。

一般堆肥温度在45-70摄氏度之间为宜,过高过低都会影响发酵效果。

湿度过高会导致发酵不完全或者产生恶臭,湿度过低则会影响微生物的活动。

第六步:堆肥期间的管理在堆肥过程中,需要定期翻堆和插管以保持通风和均匀发酵。

翻堆可以提供新的氧气,促进分解反应的进行,插管可以增加氧气供应和排出过多的二氧化碳。

第七步:堆肥成熟堆肥的发酵期一般在2-3个月左右,待发酵完成后需要进行成熟处理。

成熟的堆肥颜色黑褐,无臭味,有机质含量高,可以用于农田的施肥或者作为土壤改良剂。

总结:好氧堆肥工艺流程包括原料准备、材料堆放、堆肥调控、堆肥发酵、发酵控制、堆肥期间的管理和堆肥成熟等步骤。

通过合理的控制和管理,有机废弃物可以被有效地转化为肥料,减少环境污染,提高土壤肥力,实现资源的循环利用。

好氧堆肥的基本原理

好氧堆肥的基本原理

好氧堆肥的基本原理
好氧堆肥的基本原理是利用空气中的氧气,将有机废弃物进行分解和转化为肥料的过程。

好氧堆肥过程中,有机废弃物被有效地堆放在一个容器中,这个容器通常是一个堆肥桶或者堆肥堆。

堆肥堆通常由开放底部的框架构成,以便空气能够通过底部进入堆肥堆。

在堆肥过程中,有机废弃物与空气中的氧气和水分接触,通过微生物的活动进行分解。

这些微生物包括细菌、真菌和其他微生物,它们分解有机废弃物,同时产生热能。

由于有氧条件和适宜的温度,这些微生物能够有效地分解有机废弃物,从而加速分解过程。

分解后的有机废弃物逐渐转化为稳定的有机肥料,富含植物所需的营养元素。

这些有机肥料可以提供植物生长所需的养分,并且具有良好的透气性和保水性。

通过好氧堆肥,有机废弃物得到了有效的处理和利用,减少了垃圾污染和资源浪费。

需要注意的是,在好氧堆肥过程中,适当的湿度、温度和空气流通是非常重要的。

适宜的湿度可以促进微生物的生长和活动,适宜的温度可以加速分解过程,而良好的空气流通可以提供足够的氧气供微生物进行呼吸。

总的来说,好氧堆肥是利用氧气进行堆肥的一种方法。

通过提供适宜的环境条件,有机废弃物可以被高效地分解为有机肥料,实现资源的循环利用。

课程思政典型案例(好氧堆肥)

课程思政典型案例(好氧堆肥)

南京工程学院“课程思政”建设课程典型案例展之《固体废物处理与处置》典型教学案例固体废物的好氧堆肥处理内容简介(一)学情分析▶1、教学对象分析:学生在前期对固废处理等方面的基础知识和科学道理已经有一定掌握,深入涉及垃圾焚烧物理处(如固化、稳定化)置和化学处置(如焚烧)的相关知识,相对而言这两部分偏向于“看得见摸得着”,其中的大部分阶段和环节学生都能直观感受到;但是固废“生物处理”部分涉及的内在反应大多属于研究性领域范畴,本科学生对于理解内在发生科学机制和影响因素需要花费一定的精力;本章节内容根据《固体废物处理与处置》中的“固体废物的生物处理”章节而设计,在该知识点充分融入了乡村振兴、垃圾分类、节能减排等知识、贴近生产生活。

值得注意的是,本校学生大多来自于农村、接触农业生产的频次较多,因此学生对于特定内容会有一定的知识储备,容易产生思考和共鸣;此外,与《水污染控制工程》中污水生物的相关内容类似,固废生物处理的本质还是微生物与有机物发生一系列复杂化学反应的过程,因此具有一定化学基础的学生会取得更好的教学效果,授课教师有必要进行一定程度的调查和科普工作。

▶2、授课知识点分析:(1)好氧堆肥是固废生物处理的重要方法,对于固废的减量化、无害化、资源化和稳定化非常重要:未经腐熟的生物有机肥携带大量的致病微生物和寄生性蛔虫卵,施入农田后会附着在作物上造成直接污染或进入土壤造成间接污染,有机肥未完全腐熟施用至田间后还会因继续发酵造成土壤温度升高,且易产生有害气体及物质累积,造成作物根部的伤害。

堆肥的最终目的是将有机组分为主的固体废物腐熟分解成为作物可利用状态的养分和腐殖物质,因此对好氧堆肥的原理和工艺流程进行深入学习是环境工程学生必须要进行开展的一项教学任务。

(2)针对固废的高效生物处理技术可以有效克服填埋和焚烧处理导致的占地面积大、处理效率低、处理费用昂贵、环境污染严重的问题,因此它是环境工程领域和环保工作者必须掌握的重要知识点。

垃圾好氧堆肥技术的研究进展

垃圾好氧堆肥技术的研究进展
肥过程中的协同作用机理,有助于提高酶液降解有机固体废物的效率。 • 有机同体废物在降解过程中会发生物理形态等变化,实时检测不同基质条件变化下酶蛋白的作用位点及数量,对堆肥过程
酶促降解作用的研究具有积极意义。
➢工业堆肥电子鼻(e-nose)(López R et al.,2016)
• 通过传感器对温度、O2、水分、VOCs、堆肥气体(NH3,H2S,CO2等)的检测,电子鼻可以对堆肥的质量和腐 熟度进行现场评估。
应对措施
① 采用封闭式堆肥 ② 做好堆肥厂的卫生工作,定期消毒 ③ 堆肥厂地址科学安排,建在居民区的下风向
案例:德国 UTV-GORE 膜覆盖式畜禽粪便高温好氧发酵法
垃圾堆肥的环境问题及应对措施
➢重金属(Heavy metals)
应对措施:
① 源头分离的堆肥中,所有六种重金属的浓度均明显低于机械分离的堆肥。(Wei et al.,2017) ② 堆肥分级 根据堆肥中重金属的含量,确定堆肥的不同用途,优质堆肥适宜农业应用,二级堆肥可用作
后处理:
根据需要进行 破碎分选,进 一步去除杂物
脱臭:
包括酸碱溶液吸 收法,臭氧氧化 法,活性炭吸附 法等。
贮存:
干燥、透气下的 环境存放
堆肥的工艺流程
堆肥腐熟度的评价
堆肥腐熟度的评价
国内外堆肥状况
Fig. 1. The amount of MSW generated and composted in the USA, UK, Japan and China during 2004–2013 (Unit: million tons) (Eurostat, 2015; USEPA, 2013; MOEJ, 2015 a National Bureau of Statistics of China, 2015)

有机废物好氧堆肥实验

有机废物好氧堆肥实验

有机废物好氧堆肥实验
实验材料:
1.有机废物(如厨余垃圾、落叶、割草、草木灰等)
2. 筛网
3. 木板或铁桶
4. 水桶
5. 水管
6. 液体肥料
实验步骤:
1. 将有机废物筛选干净,去掉多余的大块杂物。

2. 将有机废物放入木板或铁桶中,一次添加量不超过10厘米,依次堆叠成一个大堆,堆高不超过1.5米。

3. 在堆中间部位用水管穿孔,螺旋式挖一些小孔,以利于氧气进入。

4. 确保堆中的水分要有保障,不要太干也不要太湿。

5. 可以添加少量液体肥料,以促进有机物的分解。

6. 每隔一段时间要将堆中的结构进行调整,以利于保证有机物的分解。

7. 经过2-3个月的分解,当堆中的废物逐渐变为黑褐色的细小颗粒时,即可取出成熟肥料,用于植物生长。

注意事项:
1. 堆肥过程中要保持适宜的温度,一般应控制在55-65℃之间,避免出现嗅味和腐烂现象。

2. 在堆放过程中要注意避免添加油脂类和动物粪便等易于腐烂和滋生病菌的有机物。

3. 夏季堆肥过程有可能出现过度干燥,应适时加水。

4. 冬季堆肥温度偏低,可采用保温措施。

有机固体废物协同好氧堆肥实验报告

有机固体废物协同好氧堆肥实验报告

有机固体废物协同好氧堆肥实验报告
一、实验目的
1. 了解有机固体废物的性质和分类;
2. 掌握好氧堆肥的基本理论及方法;
3. 探究不同比例有机固体废物协同好氧堆肥的效果。

二、实验原理
有机固体废物:是指含有机质较高的固体垃圾,如果皮、菜叶、餐厨废料等。

好氧堆肥:是利用氧气及其它适宜的环境因子(温度、湿度等)控制细菌在有机废物中进行分解而获得的热量,用于生产有机肥料的方法。

协同好氧堆肥:是指在好氧堆肥中,将两种或两种以上的有机固体废物混合在一起进行堆肥的方式。

三、实验方法
1. 准备不同比例有机固体废物:分别为餐厨废料、果皮、餐厨废料和果皮混合1:1 的混合物、菜叶、餐厨废料和菜叶混合1:1 的混合物。

2. 将以上各种有机固体废物放置在不同的塑料桶中,并加入适量水分和好氧菌剂。

3. 在堆肥的过程中,每天需要进行翻堆和通风,以促进废物的分解和产生热量。

4. 堆肥过程中需要控制温度和湿度,温度应该控制在50℃-60℃,湿度应该控制在50%-70%。

5. 堆肥过程中需要注意异味的排放,需要加入适量的生物酶以防止异味产生。

四、实验结果
经过30 天的协同好氧堆肥,我们对比了不同比例有机固体废物的堆肥效果,结果如下表所示:
经过分析,混合餐厨废料和果皮、混合餐厨废料和菜叶的比例为1:1时,堆肥效果最佳,成熟堆肥的产量最大。

五、实验结论
不同比例有机固体废物的堆肥效果存在差别。

农村生活与农业有机垃圾好氧堆肥处理技术探析

农村生活与农业有机垃圾好氧堆肥处理技术探析
揭示了堆肥过程中微生物群落结构和功能的变化规律
利用高通量测序技术,分析了堆肥过程中微生物的种类、数量和代谢活性,为优化堆肥 工艺提供了理论依据。
对未来研究方向的展望
深入研究堆肥过程中有机物的降解机制和微生…
通过分子生物学和生物化学手段,进一步揭示有机物降解的微观过程 和微生物的代谢途径。
探索新型堆肥添加剂和复合微生物菌剂的开发…
环境效益分析:减少污染、资源化利用等方面
减少污染
好氧堆肥处理能有效降解农业有机垃圾中的有害物质,减少其对土壤、水源和空气的污染,保护农村 生态环境。
资源化利用
通过将农业有机垃圾转化为有机肥料,实现废物的资源化利用,提高土壤肥力,促进农业可持续发展 。
社会经济效益评估
社会效益
好氧堆肥处理技术的推广与应用,有助于改善农村环境卫生状况,提升农民生活品质, 推动新农村建设。
的农村地区 • 结论与展望
01
引言
背景与意义
农业有机垃圾产生量大,处理不当会 造成环境污染。
探究农村生活与农业有机垃圾好氧堆 肥处理技术,对于推动农村环境治理 和农业可持续发展具有重要意义。
好氧堆肥处理是一种有效的农业有机 垃圾处理方式,可实现资源化利用。
国内外研究现状
国外研究现状
国外在好氧堆肥处理技术方面研 究较早,技术相对成熟,已形成 了一系列完整的处理工艺和设备 。
氧气供应
保持堆体内部良好的通气性,以确保好氧微 生物的正常代谢。
碳氮比
合理的碳氮比有利于微生物的生长和繁殖, 提高堆肥效率。
操作管理注意事项
堆肥场地选择
应选择地势平坦、排水良好、 交通便利的场地。
堆肥原料选择
应选择来源广泛、易收集、有 机质含量高的农业有机垃圾。

好氧堆肥的原理和厌氧发酵的原理

好氧堆肥的原理和厌氧发酵的原理

好氧堆肥的原理和厌氧发酵的原理好氧堆肥的原理是指在有氧条件下进行的有机废弃物的分解和转化过程。

其基本原理包括四个步骤:混合、通气、发酵、成熟。

首先,将有机废弃物与散落的土壤一起混合,形成一个适宜的堆料。

然后,通过通风系统保持堆料中空气的流通,提供充足的氧气供给微生物的的呼吸,促进微生物的活动。

在好氧呼吸过程中,微生物会利用有机废弃物中的碳源和能源,产生热量、水分和二氧化碳。

发酵过程中的温度会持续上升,最终达到60-70左右。

在这个温度范围内,绝大多数有害的病原微生物都会被杀灭,促进堆料的稳定性。

最后,在适当的温度和湿度条件下,有机废弃物会经历一系列的化学反应和微生物活动,逐渐形成稳定的有机肥料。

好氧堆肥的原理是基于有机物分解需要充足的氧气供给,并且高温条件可以提高微生物的活性和杀灭有害病原体,从而将有机废弃物转化为稳定的有机肥料。

厌氧发酵的原理是在无氧条件下进行的有机废弃物的分解和转化过程。

厌氧发酵与好氧堆肥相比,主要区别在于厌氧发酵需要在无氧或微氧条件下进行,并且反应温度通常较低。

它包括三个基本步骤:酸化、产气和稳定。

首先,有机废弃物中的有机物会经过酸化过程,被厌氧微生物分解为有机酸和挥发性溶解物。

这些有机酸会进一步被厌氧微生物转化为产气物质(如甲烷和二氧化碳)。

产气过程中,有机废弃物中的碳源会被厌氧微生物利用,产生能量。

最后,当产气过程逐渐结束时,微生物活动会减少,有机废弃物进入稳定阶段。

此时,有机废弃物中的有机质含量会减少,温度和湿度也会逐渐降低。

厌氧发酵的原理是基于无氧条件下厌氧微生物的酸化反应和产气反应,通过这些反应将有机废弃物转化为可利用的产气物质,如甲烷和二氧化碳。

厌氧发酵通常应用于有机废水和有机废弃物的处理,其产生的甲烷可以作为能源利用或燃料。

总结起来,好氧堆肥和厌氧发酵是两种常见的有机废弃物处理技术,其原理分别基于有氧和无氧条件下微生物的活动。

好氧堆肥侧重于利用氧气和高温促进有机废弃物的分解和稳定,而厌氧发酵则侧重于在无氧或微氧条件下产生产气物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机废物好氧堆肥实验【实验目的】1.通过参与好氧堆肥实验装置的建立和全过程参数检测,了解作为有机废物无害化。

资源化处理处置方法之一的堆肥技术的典型过程及技术特征。

2.通过已掌握的微生物群落检测、计数方法,了解堆肥不同过程的微生物学变化特征。

3.掌握堆肥腐熟度检测方法之一的种子发芽率和发芽指数法。

【实验原理】堆肥化(composting)是指依靠自然界广泛分布的细菌、放线菌、真菌等微生物,或是通过人工接种待定功能的菌,在一定工况条件下,有控制地促进可被生物降解的有机物向稳定的腐殖质转化的生物化学过程,其实质是一种生物代过程。

废物经过堆肥化处理,制得的成品称堆肥(compost)。

好氧堆肥中底物的降解是细菌、放线菌和真菌等多种微生物共同作用的结果,在一个完整的好氧高温堆肥的各个阶段,微生物的群落结构演替非常迅速,即在堆肥这个动态过程中,占优势的微生物区系随着不同堆肥阶段的温度,含水率,好氧速率,pH值等理化性质的改变进行着相应的演替。

本实验通过学生全过程参与好氧堆肥装置的建立和关键参数检测,了解作为有机废物无害化、资源化处理处置方法之一的堆肥技术的典型过程及技术特征,掌握堆肥关键参数的检测方法,主要包括以下三部分容:1.堆肥过程特征参数检测分析:包括堆温、pH、气体成分和含量变化监测2.堆肥过程微生物群落变化分析:采用平板计数法检测微生物种群的数量来研究高温阶段和堆肥腐熟阶段微生物种群结构和数量的变化,包括细菌、放线菌、真菌以及纤维素分解菌。

3.堆肥腐熟度检测:堆肥腐熟度是指堆肥产品的稳定程度。

判断堆肥腐熟度的指标包括物理学指标、化学指标(包括腐殖质)和生物学指标。

其中简单的判断堆肥腐熟的方法包括:1)根据外观和气味:在堆肥化过程中,物料的色度和气味的变化反映出微生物的活跃程度。

对于正常的堆肥过程,随着进程的不断推进,堆肥物料的颜色逐渐发黑,腐熟后的堆肥产品呈黑褐色或黑色,气味由最初的氨味转变成土腥味。

Sugahara等提出一种简单的技术用于检测堆肥产品的色度,并回归出一关系式:其中Y是响应值(颜色分析值);他们认为Y值为11~13的堆肥产品是腐熟的。

使用该法时要注意取样的代表性。

不过,堆肥的色度显然受其原料成分的影响,很难建立统一的色度标准以判断各种堆肥的腐熟程度。

2)根据发酵温度:前期发酵的终点温度(40~50)与有机质分解速率一样是微生物活动的尺度。

温度的变化与堆肥过程中的微生物代活性有关,研究表明二者之间的关系可用如下关系式表示:(、分别为温度在T、20时的呼吸速率,:常数)。

当微生物活动减弱时,热量的上升率也相应下降,导致堆肥的温度下降。

但不同堆肥系统的温度变化差别显著。

由于堆体为非均相体系,其各个区域的温度分布不均衡,限制了温度作为腐熟度定量指标的应用。

国际上一些学者提出,某一堆肥系统在经过一次高温后,如果在最佳的工况条件下也不能再次升温,则可判断该系统基本达到腐熟。

3)种子发芽指数(GI):未腐熟的堆肥含有植物毒性物质,对植物的生长产生抑制作用,因此,考虑到堆肥腐熟度的实用意义,植物生长实验应是评价堆肥腐熟度的最终和最具说服力的方法。

一般来讲,当堆肥水浸提液cress 种子发芽指数(GI)达到或超过50%时,可以认为堆肥已基本腐熟,对于种子的发芽基本无毒性。

本实验中用黑麦草种子发芽指数对秸秆和厨余废物好氧公堆肥产物的植物毒性进行评判和比较。

【实验设备与材料】1.恒温生化培养箱2.干燥箱3.恒温摇床4.pH计5.灭菌锅6.菌落计数仪7.电子天平8.培养皿,试管,玻璃三角瓶,移液管,玻璃刮刀,白磁板等若干9.(温度、氧气)在线监测式好氧堆肥反应器所用培养基主要有:1.营养琼脂(用于总细菌的计数)2.UBA琼脂(用于放线菌的计数)3.孟加拉红琼脂(用于真菌的计数)4.滤纸条纤维素培养基(用于纤维素分解菌的计数)【实验容】1.堆肥过程特征参数的监测与分析1)100L堆肥反应器的准备(由实验室进行),样本1为处于高温阶段的堆肥,样本2为处于稳定期(腐熟度)的堆肥。

堆料为6:4:1(重量比)的花卉秸秆、蔬菜废物和土壤。

2)堆温检测:用温度探头检测堆体中部的温度,并从数字控制显示器读取数据,监测时间为每隔6小时一次(每天15、21、3、9时),持续过程为16次(4天)。

3)堆料pH变化:从堆体中取出10g样,用蒸馏水配成固液比5%的悬浮液,摇床振荡10min后左右,用pH计检测。

4)堆体出气口O2和CO2变化:将气体监测仪的探头深入反应器的出气口15cm处,从仪器的显示器读取稳定后的数据,监测时间为每隔6小时一次(每天15、21、3、9时),持续过程为16次(4天)。

2.平板稀释法检测不同堆肥微生物区系1)以无菌操作称取25g堆肥样品,放入装有225mL灭菌生理盐水的灭菌锥形瓶,于200r/min恒温摇床中振荡15~20min,制成1:10样品匀液(悬浊液)。

2)将样品进一步做倍比稀释,即用灭菌吸管吸取5mL样品,放入装有45mL 灭菌生理盐水的灭菌锥形瓶,经充分振摇制成1:10样品匀液。

同时进行逐级稀释,直至获得适宜的稀释度。

3)取不同稀释度的稀释液0.1mL均匀滴于不同的选择性培养基上,用玻璃刮刀使其均匀涂布于培养基表面,分别计数细菌(牛肉膏蛋白胨琼脂培养基)、放线菌(高氏一号培养基)和真菌(査氏培养基)的数目。

4)将涂布接种后的平板倒置在适温培养箱中培养3~5天,选取菌落分布均匀且平均菌落数在30~300之间者进行计数。

5)另称取25g样品,置于105下烘干至恒重,算出样品的含水率,用干重表示底物中的含菌量:每克干物质的含菌数=每克新鲜物质中的菌数含水率3.3试管MPN法检测纤维素分解菌的种群密度1)将样品按上述方法进行逐级稀释后,取不同稀释度的稀释液1mL,无菌操作接种于装有已灭菌的9 mL依姆涅茨基纤维素分解菌培养基中。

每个稀释度的重复接种3管。

2)30恒温培养14d,检查各试管中滤纸条上出现的菌落、滤纸的断裂情况和滤纸上产生的色素和黏液,记录观察结果。

有明显的微生物生长和滤纸条断裂的试管记为结果3)MPN的计算MPN法又称最可能数法或最近似值法,是用统计学方法来计算样品中某种待测菌含量的一种方法。

此方法适用于那些利用平板培养法不能进行活菌计数,却很容易在液体培养基中生长并被检测出来的微生物。

其计算原理遵循常规查表法中的Ziegler方程。

本实验采用MPN法检测堆肥不同阶段纤维素分解菌的种群密度。

4.堆肥腐熟度检测种子发芽率试验的具体操作步骤如下:1)堆肥水浸提液按鲜样:蒸馏水为1:10的体积比例振荡30min,离心(5000r/min)过滤后上清液贮藏于塑料瓶中备用;2)在培养皿中放入相同直径的滤纸一,灭菌后均匀洒入15颗浸泡后的黑麦草种子,注入10mL的沤肥产物稀释物,取注入无菌去离子水的实验作为对照,在28下培养1周,统计根长和发芽率,发芽指数GI用下式计算:【实验结果及分析】说明:由于时间等原因,本组实验与实验指导容有出入,实验指导中实验时间应为一个堆肥过程,而本组只进行了4天,同时指导中的堆温检测与出气口O2和CO2检测均为每天三次,而本组为每隔6小时一次。

这导致本组堆肥仅达到高温阶段,未达到熟化阶段。

1.堆肥过程特征参数的监测与分析1)好氧堆肥过程温度监测及变化特征分析在发酵罐中均匀布置6个测温点,从2011/11/15 15:00:00到2011/11/19 09:00:00每隔6小时测一组数据,绘制曲线如图1。

图1:好氧堆肥温度变化曲线在整个堆肥过程中温度先上升后下降,参考资料以及所学知识,堆肥过程依据时间先后依次出现四个阶段:a)潜伏阶段:指堆肥化开始时微生物适应新环境的过程,即驯化过程。

(1、2测次)b)中温增长阶段:这一阶段嗜温性微生物最为活跃,主要利用物料中的溶解性有机物大量繁殖,并释放出热量,使温度不断升高。

(3-6测次)c)高温阶段:当温度上升到45℃时称为高温阶段。

(7-13测次)这时,嗜热性微生物大量繁殖,嗜温性微生物受到抑制或死亡。

d)熟化阶段:在这一阶段,温度逐渐下降至中温,并最终过渡到环境温度。

(14-16测次,及其后时间)本组堆肥的潜伏及中温增长阶段较短,在实验第三天即进入高温阶段,并在第四天达到最高温度51.54℃。

随后为熟化阶段,根据推测,温度会逐渐降至环境温度。

2)好氧堆肥过程pH监测及变化特征分析图2:好氧堆肥pH变化曲线在实验过程中pH主要趋势为下降,中间有上升波动,由于本组未完成堆肥,根据其他组的结果,依据时间先后依次出现三个阶段:a)pH下降阶段:在堆肥初期,堆肥物产生有机酸,这有利于微生物的生存和繁殖,pH可以下降到4.5—5.0。

b)pH上升阶段:随着有机物的逐渐被分解,pH值逐渐上升,最终可以达到8—8.5左右。

c)pH稳定阶段:有机物基本分解完毕,pH稳定在8—8.5左右。

由于本组实验并未完成,根据数据可以知道,在实验期间,堆肥一直处于pH 下降阶段。

3)好氧堆肥过程出气口O2和CO2监测变化特征分析图3:好氧堆肥氧气含量变化曲线从数据来看,堆肥过程中,出气口氧气含量总体来说是比较稳定,中间有小幅度波动。

在堆肥过程中,随着实验的进行,温度先升高再下降,有机物含量也在逐渐因消耗而减少,微生物分解有机物的活跃程度也随之逐渐减少趋于稳定。

当堆肥初期,温度逐渐上升,有机物充足,微生物分解活动活跃,反应进行的较快,耗氧速率较高,表现在中温增长阶段和高温期的前期,反之在高温期以及随后的熟化阶段,耗氧速率逐渐下降直至稳定。

因此,堆体的好氧速率应该是先升高再下降,而出气口的氧气含量应先下降,再逐渐升高恢复至接近入口浓度并维持稳定。

与氧气含量相对应,堆肥过程中,二氧化碳的含量应该恰好与氧气相反,在实验前期微生物对有机物进行分解,释放二氧化碳,随着反应的进行,又逐渐减少而趋于稳定。

出气口的二氧化碳浓度应该先增大后逐渐减小。

图4:好氧堆肥二氧化碳含量变化曲线4)上述特征参数变化与堆体微生物反应的关系分析a)堆肥反应前期,微生物代活跃,利用有机物分解释放的能量合成自身成分,释放热量。

导致温度上升,耗氧量升高,二氧化碳产生量下降,同时产生的有机酸使堆体pH下降。

b)堆肥反应后期,微生物代变缓,分解合成作用减慢,放热减少。

导致温度下降,耗氧量下降,二氧化碳产生量上升,有机酸分解使堆体pH上升。

c)熟化阶段,剩余有机质大部分为难降解物质,腐殖质大量合成并趋于稳定化。

温度逐渐下降至中温,并最终过渡到环境温度,各特征参数趋于定值。

2.堆肥过程微生物区系变化特征分析根据平板计数法的相关规则,对C2组数据进行处理,可得表1。

表1:腐熟期微生物的种群密度堆肥腐熟度检测在堆肥前和堆肥后分别测定含水率及有机质含量如表2。

相关文档
最新文档