双曲线的定义及标准方程 (1)
双曲线的定义及标准方程(1)
双曲线的定义及标准方程(1)
69全盛棋牌官方下载 [问答题,简答题]Y型过滤器如何清理? [问答题,简答题]简述突发公共卫生事件应急工作的方针与原则? [单选]从完整意义上来说,知情同意权不包括()。A.了解权B.被告知权C.告知权D.同意权E.拒绝权 [问答题,简答题]货运检查作业在列整理有何规定? [问答题,简答题]发电机出口分相封闭母线的作用? [问答题,简答题]简述止血带法止血适应证。 [单选,A1型题]下列哪项不是黄连的功效()A.清热B.安胎C.燥湿D.泻火E.解毒 [单选]下列不在电潜泵控制柜PCC保护能力范围内的是()。A、短路保护B、过载保护C、断电保护D、欠载保护 [单选,A4型题,A3/A4型题]男,29岁,火焰烧伤3小时,烧伤总面积80%,其中深Ⅱ°30%,Ⅲ°50%,伤后无尿,心律148次/分,呼吸32次/分,伤后头8小时输液4500ml(其中胶体1800ml)后仍无尿。感染的威胁将持续到创面的愈合,为避免侵入性感染的威胁,目前对深度烧伤创面的基本措施是 期切痂、削痂与植皮B.联合应用抗生素和支持治疗,避免创面感染C.对烧伤创面进行彻底清创D.保护肠粘膜屏障,防止内源性感染E.应用包扎疗法,避免创面污染 [单选]基础体温双相型表明().A.有排卵B.子宫内膜发生增生期变化C.生殖器感染D.子宫内膜结核E.有雌激素分泌 [单选]下列哪项不属于各级人民检察院管辖范围内的信访事项()。A.对人民检察院工作的建议、批评和意见B.对人民法院工作的建议、批评和意见C.对人民检察院生效决定不服的申诉D.对公安机关不予立案决定不服的申诉 [单选]物流目标优化的对象是指()A.物流系统的整体目标B.物流系统内部要素的目标C.物流系统的整体目标和内部要素目标D.物流系统内部和外部的要素 [单选]含嘌呤最少的食物是()A.猪肝B.牛奶C.豆腐D.猪肉E.鱼子 [单选]焦炉煤气加热焦炉时,当空气量偏小时,火焰()。A.亮白短小B.暗.冒烟C.充满火道 [单选]根据劳动合同法律制度的规定,下列情形中,用人单位与劳动者可以不签订书面劳动合同的是()。A.试用期用工B.非全日制用工C.固定期限用工D.无固定期限用工 [多选]手机导航业务开通的条件有哪些()?A.手机需开通GPRS功能;B.没有GPS配置的手机需要外接一个蓝牙GPS;C.用手机访问"移动梦网"首页;D.软件安装。 [填空题]晶片尺寸较小的探头发射的超声波束,其远场覆盖面积()。 [单选]关于脊柱的描述,正确的是()A.有8块颈椎B.有4块骶椎C.胸部运动最灵活D.腰曲凸向前E.颈曲凸向后 [单选,A1型题]能消食和中,回乳疏肝的药物是()A.山楂B.莱菔子C.神曲D.鸡内金E.麦芽 [单选,A2型题,A1/A2型题]输血时最严重的并发症是()A.循环超负荷B.细菌污染反应C.传染病的传播D.溶血反应E.过敏反应 [单选]放射性皮炎国际标准分型的临床表现有()A.红斑B.干性脱屑、水疱、形成瘙痒C.湿性脱皮溃疡D.剥脱性皮炎、坏死E.以上全是 [问答题,案例分析题]背景材料: [单选]某写字楼工程主楼尚未完工,裙楼商场部分未经验收即投入使用。使用中发现一楼基础底板断裂。对此,应承担质量责任的是()。A.建设单位B.施工单位C.使用单位D.质量监督机构 [单选]动产质权自()设立。A、通知质权人时B、签订质押合同时C、交付质押财产时D、债务人不履行到期债务时 [单选,A1型题]卫生总费用对GDP的弹性系数大于1,表明()。A.卫生总费用的增长慢于GDP增长速度B.卫生总费用的增长快于GDP增长速度C.卫生总费用的增长等于GDP增长速度D.卫生总费用的增长与GDP增长速度相适应E.以上均不正确 [单选]民航VHF收发信机的工作方式为()。A.单工B.双工C.半双工 [问答题,案例分析题]B企业拟在A市郊区原A市卷烟厂厂址处(现该厂已经关闭)新建屠宰量为120万头猪/年的项目(仅屠宰,无肉类加工),该厂址紧临长江干流,A市现有正在营运的日处理规模为3万t的城市污水处理厂,距离B企业1.5km。污水处理厂尾水最终排入长江干流(长江干流在A市段水 为Ⅱ类)。距B企业、沿长江下游7km处为A市饮用水水源保护区。工程建设后工程内容包括:新建4t/h的锅炉房、6000m2待宰车间、5000m2分割车间、1000m2氨机房、4000m2冷减库。配套工程有供电工程、供汽工程、给排水工程、制冷工程、废水收集工程及焚烧炉工程等。工程建成后所需的原材料 (生猪进厂前全部经过安全检疫)、液氨、包装纸箱、包装用塑料薄膜。项目废水经调节池后排入城市污水处理厂处理。牲畜粪尿经收集后外运到指定地方堆肥处置。A市常年主导风向为东北风,A市地势较高,海拔高程为789m,属亚热带季风气候区,厂址以西100m处有居民260人,东南方向80m处 人。 [名词解释]效用 [单选]下列雾航措施中,何者是错误的()。A.通知机舱备车,采用安全航速B.开启VHF,按章施放雾号C.开启雷达,必要时增派瞭望人员D.保持肃静,关闭所有驾驶台的门窗 [问答题,简答题]进化的主要研究内容是什么? [判断题]水平胶带真空过滤机适用于选煤厂粗、细煤泥的过滤脱水。A.正确B.错误 [单选]根据供给的价格弹性的大小,可将其划分为几种基本类别,其中,富有弹性的供给是指():A.当供给价格弹性小于1,即供给量变动百分比小于价格变动百分比时;B.当供给价格弹性大于1,即供给量变动百分比大于价格变动百分比时;C.当供给价格弹性等于1,即供给量变动百分比与价格变动 同时D.当供给价格弹性大于0,即供给量变动百分比大于价格变动百分比时 [单选]有助于系统性红斑狼疮临床确诊及其活动性判断的标记性抗体是()A.抗SSA抗体B.抗RNP抗体C.抗Sm抗体D.抗dsDNA抗体E.抗磷脂抗体 [单选]关于预制梁模板设计要求,下述说法错误的是()A、能保证混凝土结构和构件各部分设计形状、尺寸和相互间位臵正确B、接缝不漏浆,制作简单,安装方便,便于拆卸和多次使用C、只需具有足够的强度即可,能承受新浇筑混凝土的重力、侧压力及施工中可能产生的各项荷载 [单选]通航安全水上水下施工作业管理的主管机关是()。A.中华人民共和国建设部B.中华人民共和国渔业部C.中华人民共和国海洋局D.中华人民共和国海事局 [单选]下列乳腺癌中哪一种癌在超声显示上有特征性()。A.黏液癌B.导管内乳头状癌C.未分化癌D.腺癌E.以上都不是 [单选,A1型题]瓜蒂具有的功效是()A.涌吐痰涎,截疟B.涌吐痰食,祛湿退黄C.涌吐痰涎,解毒收湿D.涌吐痰涎,收疮E.涌吐痰食,温肺化饮 [多选]在建设项目施工中,施工单位与其他主体产生合同之债的情形有()等。A.施工单位与材料供应商订立合同B.施工现场的砖块坠落砸伤现场外的行人C.施工单位将本应汇给甲单位的材料款汇入了乙单位帐号D.材料供应商向施工单位交付材料E.施工单位向材料供应商支付材料款 [填空题]英国生物学家()于1859年出版的<物种起源>一书,提出了生物进化的观点. [单选]国际单位制取消了相当数量的繁琐的制外单之间的单位换算。体现的是国际单位制的()。A.统一性B.简明性C.科学性D.实用性
2.3.1双曲线及其标准方程
焦点在 x 轴上
焦点在 y 轴上
定义 方程
| | MF1 | - | MF2 | | = 2a ( 2a <| F1F2
|)
x2 y2 a2 b2 1(a, b o)
x2 y2 b2 a2 1(a, b o)
图象
y
. .B
A1 o A x B1
y
. B.
A1 o A x B1
2
2
(x c)2 y2 2a (x c)2 y2
cx a 2 a (x c)2 y 2
(c2 a 2 )x2 a 2 y 2 a 2 (c2 a 2 )
令c2 a2 b2
x2 a2
y2 b2
1(a
0, b
∴可设双曲线方程为:
x2 a2
y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.∴b2=52-32=16.
所以点 P 的轨迹方程为 x2 y2 1 ( x ≥ 3) . 9 16
小结
1.双曲线定义及标准方程
2.焦点位置的确定方法 3.求双曲线标准方程关键(定位,定量)
例 1. 已 知 两 定 点 F1(5, 0) , F2(5, 0) , 动 点 P 满 足
PF1 PF2 6 , 求动点 P 的轨迹方程.
解:∵ F1F2 10 >6, PF1 PF2 6
∴ 由双曲线的定义可知,点 P 的轨迹是一条双曲线, ∵焦点为 F1(5, 0), F2(5, 0)
双曲线中, c 2 = a 2 + b 2。
椭圆的标准方程中,哪个二次项的分母大, 焦点就在哪个相应的轴上;
双曲线的定义及其标准方程
方程表示的曲线是x轴上分别以F1和F2为端点,
指向x轴的负半轴和正半轴的两条射线。
题型二
例2
利用双曲线的定义求轨迹问题
动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:
(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.
【解】 ∵圆 M 与圆 C1 外切,且与圆 C2 内切,
∴|MC1|=R+3,|MC2|=R-1,
测得的爆炸声的时间差,可以求出另一个双曲线的方
程,解这两个方程组成的方程组,就能确定爆炸点的
准确位置.这是双曲线的一个重要应用.
2
2
x
y
例2:如果方程
1 表示双曲
2 m m 1
线,求m的取值范围.
解: 由(2 m )(m 1) 0 得m 2或m 1
∴ m 的取值范围为 ( , 2) ( 1, )
4 9
线上.
(1)若∠F1MF2=90°,求△F1MF2 的面积;
(2)若∠F1MF2=60°时,△F1MF2 的面积是多少?
解:(1)由双曲线方程知 a=2,b=3,c= 13,
设|MF1|=r1,|MF2|=r2(r1>r2).
由双曲线定义得 r1-r2=2a=4,
两边平方得 r21+r22-2r1·
又由双曲线的定义得|PF1|-|PF2|=2,
∵|PF1|∶|PF2|=3∶2,∴|PF1|=6,|PF2|=4.
又|F1F2|=2c=2 13,
62+42-52
由余弦定理,得 cos∠F1PF2=
=0,
2×6×4
∴三角形 F1PF2 为直角三角形.
1
S△ PF1F2= ×6×4=准方程
复习
双曲线及其标准方程
双曲线1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0;(1)当a <c 时,P 点的轨迹是双曲线.(2)当a =c 时,P 点的轨迹是两条射线.(3)当a >c 时,P 点的轨迹不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)1.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线.(2)当m <0,n <0时,则表示焦点在y 轴上的双曲线.2.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).3.常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.((4).双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是m (5).若双曲线x )x ±ny =0.( )2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 222.双曲线2x 2-y 2=8的实轴长是=1(此条件中两条双曲线称为共轭双曲线).( )()A .2B .22C .4D .423.(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为()A.95B.85C.65D.454.(教材改编)过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是()A .28B .14-82C .14+82D .825.已知双曲线E :x 216-y 2m 2=1的离心率为54,则双曲线E 的焦距为__________.双曲线的定义的应用例题:(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为()A.x 22-y 216=1(x ≤-2) B.x 22-y 214=1(x ≥2)C.x 22-y 216=1 D.x 22-y 214=1(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为______________(4)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=__________.(5)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为()A .1B .52C .2D .5(6).(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(7)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A .215a 2B .15a 2C .30a 2D .15a 2(8)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为()A .1B .2+155C .4+155D .22+1(9)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是()A.4B.6C.8D.16(10)双曲线C的渐近线方程为y=±233x,一个焦点为F(0,-7),点A的坐标为(2,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.8B.10C.4+37D.3+317双曲线的标准方程求双曲线标准方程的方法:(1)定义法(2)待定系数法①当双曲线焦点位置不确定时,设为Ax2+By2=1(AB<0);②与双曲线x2a2-y2b2=1共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);③与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-k-y2b2+k=1(-b2<k<a2).例题:(1)根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).(2)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为(-3,0),且C 的离心率为32,则双曲线C 的方程为()A.y 24-x 25=1 B.y 25-x 24=1 C.x 24-y 25=1 D.x 25-y 24=1(3)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是()A.7x 216-y 212=1 B.y 23-x 22=1C .x 2-y 23=1D.3y 223-x 223=1(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1(5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A .x12-y 2=1B .x 29-y 23=1C .x 2-y 23=1D .x 223-y 232=1(6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=1(7)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线的右支上,点N 为F 2M 的中点,O 为坐标原点,|ON |-|NF 2|=2b ,∠ONF 2=60°,△F 1MF 2的面积为23,则该双曲线的方程为__________.双曲线的几何性质求双曲线的渐近线方程例:(1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线方程为()A .y =±3xB .y =±33x C .y =±12xD .y =±2x(2)已知双曲线T 的焦点在x 轴上,对称中心为原点,△ABC 为等边三角形.若点A 在x 轴上,点B ,C 在双曲线T 上,且双曲线T 的虚轴为△ABC 的中位线,则双曲线T 的渐近线方程为()A .y =±153xB .y =±53xC .y =±33x D .y =±55x (3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=12的焦点相同,则双曲线的渐近线方程为()A .y =±3xB .y =±33x C .y =±22x D .y =±2x(4)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为()A .y =±32x B .y =±233xC .y =±12xD .y =±22x求双曲线的离心率(范围)例:(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13(2).已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__________.(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点O 的直线与双曲线C 的左、右支分别交于点P ,Q ,若|PQ |=2|QF |,∠PQF =60°,则该双曲线的离心率为()A .3B .1+3C .2+3D .4+23(4)(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(5)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .(2,5)B.⎪⎭⎫⎝⎛2535,C.⎪⎭⎫⎝⎛2545,D .(5,2+1)双曲线几何性质的综合应用例:(1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()A.⎪⎪⎭⎫⎝⎛-3333, B.⎪⎪⎭⎫⎝⎛-6363,C.⎪⎪⎭⎫⎝⎛-322322, D.⎪⎪⎭⎫⎝⎛-332332,逻辑推理(2020·新高考卷Ⅰ)(多选)已知曲线C :mx 2+ny 2=1.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线直线与双曲线的位置关系例题:若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,求k 的值.双曲线课后练习1.方程x2m+2+y2m-3=1表示双曲线的一个充分不必要条件是()A.-3<m<0B.-1<m<3C.-3<m<4D.-2<m<3 2.在平面直角坐标系中,已知双曲线C与双曲线x2-y23=1有公共的渐近线,且经过点P(-2,3),则双曲线C的焦距为()A.3B.23C.33D.433.设双曲线C:x2-4y2+64=0的焦点为F1,F2,点P为C上一点,|PF1|=6,则|PF2|为()A.13B.14C.15D.224.若双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则C的渐近线方程为()A.y=±13x B.y=±33x C.y=±3x D.y=±3x5.若双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点A到一条渐近线的距离为223a,则双曲线的离心率为()A.223B.13C.3D.226.已知双曲线的一个焦点F(0,5),它的渐近线方程为y=±2x,则该双曲线的标准方程为_____________7.已知双曲线x24-y25=1的左焦点为F,点P为其右支上任意一点,点M的坐标为(1,3),则△PMF周长的最小值为()A.5+10B.10+10C.5+13D.9+138.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB 的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.12B.1C.2D.49.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且|PF 1|=2|PF 2|.若cos ∠F 1PF 2=14,则该双曲线的离心率等于()A.22 B.52C .2 D.3+110.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .3211.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交双曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°,若该双曲线的离心率为e ,则e 2=()A .11+43B .13+53C .16-63D .19-10312.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为()A.52 B.5C.2D .213.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为)______________14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,点P 为双曲线上一点,∠F 1PF 2=120°,则双曲线的渐近线方程为__________;若双曲线C 的实轴长为4,则△F 1PF 2的面积为__________.15.已知F 1,F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于_____________16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N .若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为____________.17.已知点P (1,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线上,F 为双曲线C 的右焦点,O 为原点.若∠FPO =90°,则双曲线C 的方程为_____________,其离心率为__________.18.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.19.(2021·山东淄博二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,下列结论错误的是()A .C 的离心率为2B .C 的渐近线方程为y =±3xC .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,|PF 1||PF 2|2的最大值为14。
双曲线标准方程及几何意义
9 16
焦点(-5,0)和(5,0).焦距10
y 2 x2 1 在y 轴. a2=1,b2=3,c2=a2+b2=4
3
焦点(0,-2)和(0,2).焦距4
判断双曲线标准方程的焦点在哪个轴上的准则: 焦点在系数为正的那个轴上。
练习1
判断下列双曲线焦点在哪个轴上, 并写出焦点坐标
x2 y 2 1 X轴(-3,0),(3,0) 45
A1A2叫实轴,其长为2a(和焦点在同一个坐标轴上) B1B2叫虚轴,其长为2b,F1F2叫焦距,其长为2c
焦点:F1(0,-c), F2(0,c)
c2 a2 b2
双曲线呢?
看x2、y2
的系数正负
椭圆的标准方程:
x2 a2
y2 b2
1
a b 0
双曲线的标准方程:
x2 y2 a2 b2 1(a 0,b 0).
y2 a2
x2 b2
1
a b 0
y2 x2 1(a 0,b 0). a2 b2
中职数学拓展课程
(一)双曲线定义及方程
数学 实验
如图,把一条拉开 一部分的拉链分成一长 一短两支,将拉开的两 头把分笔别尖固放定在在拉头F1和处F,2处随, 着拉链的开合,移动笔 尖M,可画出一支曲线, 再把拉链的长短两端互 换,用同样的方法可画 出另一支曲线,这两支 曲线构成的是什么呢?
①如图(A), |MF1|-|MF2|=2a
②如图(B), |MF2|-|MF1|=2a
由①②可得:
演示
| |MF1|-|MF2| | = 2a
(差的绝对值)
上面 两条合起来叫做双曲线
双曲线的定义:
平面内与两定点F1,F2的距离的 差的绝对值等于常数2a (小于的F1F2 )
双曲线的定义及标准方程
y x 2. 1 25 16
2
2
椭圆与双曲线标准方程的区别:
一、定型:
椭圆:焦点在哪轴,哪轴字母的分母大。 双曲线:焦点在哪轴,哪轴字母系数为
正。
二、a、b、c的关系:
椭圆:c2=a2-b2 双曲线:c2=a2+b2
若P是以F1,F2为焦点的双曲线
上的点,且P到F1的距离是12,
x y 1 25 75
即cx a 2 a ( x c) 2 y 2
两边平方得 (cx a ) a ( x 2cx c y )
2 2 2 2 2 2
即(c a ) x a y a (c a ) 2 2 2 令b c a
2 2 2 2 2 2 2 2
x2 y2 则方程可化为 2 2 1 a b
若F1,F2为定点, |PF1|-|PF2|=±2a(a>0),则动 点P的轨迹是什么?
若2a < | F1F2 |,则动点P的轨迹是双曲线;
若2a = | F1F2 |,则动点P的轨迹是射线;
若2a> | F1F2 | , 则动点P的轨迹不存在。
判断下列曲线的焦点在哪轴? 并求a、b、c
x y 1. 1 16 25
双曲线
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的 绝对值等于常数(小于|F1F2 | )
的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴, 线段F1F2的垂直平分线为y轴。 设|F1F2|=2c,常数为2a, 则F1(-c,0)、F2(c,0), 设M(x,y)为轨迹上任意一点, 2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
人教版高二数学选修1-1《双曲线及标准方程、几何性质》
双曲线及标准方程、几何性质一、双曲线的定义及标准方程【知识要点】1. 双曲线的定义第一定义:平面内与两定点21,F F 的距离之差的绝对值为常数(小于21F F )的点的轨迹叫双曲线.第二定义:平面内与一个定点F 和一条定直线)(l F l ∉的距离之比是常数)),1((+∞∈e e 的点的轨迹叫做双曲线。
2. 双曲线的方程(1)标准方程:12222=-b y a x 或12222=-b x a y ,其中222,0,0b a c b a +=>>。
(2)一般方程:122=+By Ax ,其中0<AB【基础训练】1.已知点)0,5(1-F ,)0,5(2-F ,动点P 满足821=-PF PF ,则动点P 的轨迹是( ) A.椭圆 B.双曲线 C.两条射线 D.线段 2.已知双曲线19422=-y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.1B.9C.1或9D.4或93.到两定点)5,0(),5,0(B A -的距离之差的绝对值为6的动点的轨迹方程为 。
4.两个焦点的坐标分别为)0,2(),0,2(-,并且经过)2,3(的双曲线的标准方程是 。
5.已知平面内有一长度为4的定线段AB ,动点P 满足3=-PB PA ,O 为AB 的中点,则OP 的最小值为 。
【典例精析】例1.方程13122=-+-my m x 表示焦点在y 轴上的双曲线,则m 的范围是( ) A. 3<m 且1≠m B.1>m 且3≠m C.31<<mD.3>m 或1-<m例2.已知双曲线的中心在原点,焦点在坐标轴上,分别求满足下列条件的双曲线的方程.(1)一个焦点为)0,4(-,且一条渐近线的方程是023=-y x ;(2)离心率为2,且过点)10,4(-P .例3.求与圆4)2(22=++y x 外切,并过定点)0,2(B 的动圆圆心M 的轨迹方程。
双曲线的标准方程
双曲线定义、标准方程一. 教学内容:双曲线定义、标准方程(一)双曲线的定义1. (1)图示:取一拉链,在拉开两边上各选一点,分别固定在F1、F2上,|F1F2|=2c,即|PF1|-|PF2|=2a,得到的图形,我们称为双曲线一支(加绝对值两支)3. 定义:平面内与两定点F1、F2的距离之差的绝对值等于常数c小于|F1F2|的点的轨迹叫双曲线。
(1)焦点:F1、F2,焦距:|F1F2|(2)定义重点:①绝对值②小于|F1F2|若去掉①则为一支;去掉②,2a=2c射线,2a>2c无曲线,2a=0是F1F2的中垂线。
(二)双曲线的标准方程(1)推导:①建系;②写出集合;③坐标化;④化简图象特征:[注意]1. 位于标准位置,才能有标准方程;3. 判断双曲线焦点的位置由函数的正负决定(不比大小),若x2的函数为正,则焦点在x轴上,反之则在y轴上。
4. 记住a、b、c的关系:一般地:第二定义:平面内与一个定点的距离和它到一条定直线的距离的比是常数线叫做双曲线的准线,这个常数e叫做离心率。
理解:①第二定义的隐含条件:定点在直线外,否则轨迹是除去交点的两条相交直线。
③双曲线的离心率的定义是:双曲线上一点到焦点的距离与到相应准线的距离的比。
(几何意义)2. 焦半径及焦半径公式定义:双曲线上一点到焦点的距离叫做双曲线上这点的焦半径。
(4)等轴双曲线:渐近线:(定义:若曲线上的点到某一直线的距离为d,当点趋向于无穷远时,d能趋近于0,则这条直线称为该曲线的渐近线)【典型例题】例1. 一炮弹在某处爆炸,在F1(-5000,0)处听到爆炸声的时间比在F2(5000,0)么样的曲线上,并求爆炸点所在的曲线方程。
解:6000(米),因此爆炸点在以F1、F2为焦点的双曲线上。
因为爆炸点离F1处比F2处更远,所以爆炸点应在靠近F2处的一支上。
设爆炸点P的坐标为(x,y),则小结:远6000米,这是解应用题的第一关——审题关;根据审题结合数学知识知爆炸点所在的曲线是双曲线,这是解应用题的第二关——文化关(用数学文化反映实际问题);借助双曲线的标准方程写出爆炸点的轨迹方程是解决应用题的第三关——数学关(用数学知识解决第二关提出的问题)。
高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
双曲线及其标准方程
2.3双曲线2.3.1双曲线及其标准方程1.了解双曲线的定义,几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1、F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程1.判断(正确的打“√”,错误的打“×”)(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程x2a2-y2b2=1中,a>0,b>0且a≠b.()答案:(1)×(2)×(3)×2.已知双曲线x216-y29=1,则双曲线的焦点坐标为()A.(-7,0),(7,0)B.(-5,0),(5,0) C.(0,-5),(0,5) D.(0,-7),(0,7)答案:B3.在双曲线的标准方程中,若a=6,b=8,则其标准方程是()A.y236-x264=1B.x264-y236=1C.x236-y264=1D.x236-y264=1或y236-x264=1答案:D4.设双曲线x216-y29=1的右支上一点P到左焦点F1的距离是15,则P到右焦点F2的距离是________.答案:7探究点一 求双曲线的标准方程求适合下列条件的双曲线的标准方程.(1)a =25,经过点A (2,-5),焦点在y 轴上;(2)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);[解] (1)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).由题设知,a =25,且点A (2,-5)在双曲线上,所以⎩⎪⎨⎪⎧a =25,25a 2-4b 2=1,解得a 2=20,b 2=16. 故所求双曲线的标准方程为y 220-x 216=1.(2)因为焦点相同,所以设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以c 2=16+4=20,即a 2+b 2=20.①因为双曲线经过点(32,2),所以18a 2-4b 2=1.②由①②得a 2=12,b 2=8,所以双曲线的标准方程为x 212-y 28=1.求双曲线的标准方程的步骤求双曲线的标准方程通常采用待定系数法,步骤归结如下:1.根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)经过点(3,0),(-6,-3).解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0).由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a 2-(15)2b 2=1,解得⎩⎨⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,0),(-6,-3),所以⎩⎨⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,所以所求双曲线的标准方程为x 29-y 23=1.探究点二 双曲线定义的应用设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积.[解] 由已知得2a =2,又由双曲线的定义得|PF 1|-|PF 2|=2,因为|PF 1|∶|PF 2|=3∶2,所以|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c =213,由余弦定理,得cos ∠F 1PF 2=62+42-522×6×4=0, 所以△F 1PF 2为直角三角形.S △PF 1F 2=12×6×4=12.若将“|PF 1|∶|PF 2|=3∶2”改为“|PF 1|·|PF 2|=24”,求△PF 1F 2的面积.解:由双曲线方程为x 2-y 212=1,可知a =1,b =23,c =1+12=13.因为|PF 1|·|PF 2|=24,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-4c 22×24=4+2×24-4×1348=0 所以△PF 1F 2为直角三角形.所以S △PF 1F 2=12|PF 1|·|PF 2|=12.双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应用.2.(1)若双曲线x 24-y 212=1上的一点P 到它的右焦点F 2的距离为8,则点P 到它的左焦点F 1的距离是( )A .4B .12C .4或12D .6(2)已知双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,求△F 1MF 2的面积.解:(1)选C.由双曲线的定义得||PF 1|-|PF 2||=2a =4, 所以||PF 1|-8|=4,所以|PF 1|=4或12.(2)由双曲线方程知a=2,b=3,c=13,不妨设|MF1|=r1,|MF2|=r2(r1>r2).由双曲线定义得r1-r2=2a=4.两边平方得r21+r22-2r1·r2=16,即|F1F2|2-4 S△F1MF2=16,即4 S△F1MF2=52-16,所以S△F1MF2=9.探究点三利用双曲线的定义求轨迹问题动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.[解]设动圆半径为R,因为圆M与圆C1外切,且与圆C2内切,所以|MC1|=R+3,|MC2|=R-1,所以|MC1|-|MC2|=4.所以点M的轨迹是以C1、C2为焦点的双曲线的右支,且有a=2,c=3,b2=c2-a2=5,所以所求轨迹方程为x24-y25=1(x≥2).本例中圆的方程不变,若动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解:如图,设动圆半径为R,根据两圆外切的条件,得|MC2|=R +1,|MC1|=R+3,则|MC 1|-|MC 2|=2.这表明动点M 与两定点C 1,C 2的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的右支(点M 与C 1的距离大,与C 2的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x >0).用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位).(2)根据已知条件确定参数a ,b 的值(定参).(3)写出轨迹方程并下结论(定论).3.(1)若动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)(2) 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解:(1)选D.由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎨⎧2c =10,2a =6,所以a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x >0),因此选D.(2)以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c 2R (R 为△ABC 的外接圆半径).因为2sin A +sin C =2sin B ,所以2a +c =2b ,即b -a =c 2,从而有|CA |-|CB |=12|AB |=22<|AB |.所以a =2,c =22,b 2=6,所以顶点C 的轨迹方程为x 22-y 26=1(x >0,y ≠0).1.对双曲线标准方程的三点说明(1)标准方程中两个参数a 和b ,是双曲线的定形条件,确定了其值,方程也即确定.并且有b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别.(2)焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型,若x 2的系数为正,则焦点在x 轴上,若y 2的系数为正,则焦点在y 轴上.(3)在双曲线的标准方程中,因为a ,b ,c 三个量满足c 2=a 2+b 2,所以长度分别为a ,b ,c 的三条线段恰好构成一个直角三角形,且长度为c 的线段是斜边,如图所示.2.对双曲线定义的理解设M (x ,y )为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的任意一点,左、右焦点分别为F 1,F 2.若点M 在双曲线的右支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a .因此得到|MF 1|-|MF 2|=±2a ,这与椭圆的定义中|MF 1|+|MF 2|=2a 是不同的.[注意] 双曲线定义中||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.3.双曲线方程的其他形式(1)当双曲线的焦点所在坐标轴不易确定时可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B =1.因此,当A >0时,。
19双曲线定义和标准方程1
A
分析: 由 (2 m)(m 1) 0
得1 m 2
变式一:
x2 y2 1 表示双曲线时,则m的取值 方程 2m m1
m 1 或 m 2 范围_________________.
变式二:
上述方程表示焦点在y轴的双曲线时,求m 的范围和焦点坐标。
分析:
m 1 0 m2 2 m 0
x2 y 2 是双曲线 64 36 1 上一点,它到 F (10,0) 的
距离为 21, Q 是 PF 的中点, O 为坐标原点,求 | OQ | 的值.
若把21改成17,则答案是多少?
y2 变式 2:设 F1,F2 分别是双曲线 x 9 1的左、右焦点.若点 P 在 双曲线上,且 PF1 PF2 0 ,则 PF1 PF2 ______.
复习知识点:
定义 | |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1 o F2
x
F1
x
方程
x y 2 1 2 a b
F ( ±c, 0)
2
2
y x 2 1 2 a b
F(0, .c 的关 系
c a b
2
复习知识点:
c, 0 , c
a2 x c
a 2 b2
0, c , c
a2 y c
a 2 b2
c 离心率e (e 1), a b y x a
2
通径为
c a b
2
b x y a
2
2b 2 a
基础训练:
y2 x2 1 16 9
高中数学 双曲线的定义和方程课件(1) 新人教A版选修1
练习:写出适合下列条件的双曲线的标准方程: (1) a=2,b=1,焦点在x轴上; (2)两个焦点的坐标分别是(0,-6),(0,6) ,并 且经过点(2,-5) ;
(3)焦点坐标分别为(0,-5),(0,5) ,a=4;
(4)a+c=10,c-a=4; (5) a b 6, c 2 5
2
2
距离是( ) A.7 B. 23 C. 5或25
D. 7或23
x2 y2 2.若椭圆 1 (m n 0) F1 和双曲 m n 线 (a b 0) F2 x2 y2 1 有相同的焦点 、 a b 点 P 为椭圆与双曲线的公共点,则
| PF1 | | PF2 | 等于( ) 1 m a A. B. ( m a ) 2
对 称 性 顶点坐标 焦点坐标 半 轴 长 焦 距
关于x轴、y轴成轴对称;关于原点成中心对称。 (a,0),(-a,0),(0,b),(0,-b) (b,0),(-b,0),(0,a),(0,-a) (c,0)、(-c,0) (0 , c)、(0, -c) a>b>0
长半轴长为a,短半轴长为b.
焦距为2c;
2 2 2 c a b b 0代入上式整理得: 设
x y 2 1 a 0, b 0 2 a b
2
2
四 、 标 准 方 程 应 用
判断下列方程是否表示双曲线,若 是,求出其焦点的坐标
x y x y (1) 1 (2) 1 4 2 2 2 2 2 x y (3) 1 (4)4 y 2 9 x 2 36 4 2
1
P
F2
x
三 、 双 曲 线 的 标 准 方 程
移项两边平方后整理得:
人教版选修2-1【数学】1双曲线定义与标准方程 (共33张PPT)教育课件
人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过高Biblioteka 的奢望,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
尘
口
罗
不
■
电
(x c)2y2(x c)2y2 2 a
2
2
(x c )2 y 2 2 a (x c )2 y 2
双曲线的定义及其基本性质
双曲线的定义及其基本性质
一、双曲线的定义:
(1)到两个定点F 1与F 2的距离之差的绝对值等于定长(<
2
1F F )的点的轨迹。
两定点叫双曲线的焦点。
a PF PF 221=-<2
1F F
(2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。
二、双曲线的方程: 双曲线标准方程的两种形式:
①
12
222=-b y a x ,2
2b a c +=,
F 1(-c,0),F 2(c,0) 三、双曲线的性质:
(1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长(2)双曲线的离心率为e=a
c
,e>1(3)焦点到渐近线的距离:虚半轴长b (4)有两条准线,c a x l 21:-=x l 2:=四、双曲线的渐近线:
(1)若双曲线为12222=-b y a x ⇒渐近线方程为x a
b
y ±=,
(2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22
22b
y a x ,
(3)特别地当a=b 时⇔2=e ⇔两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线
五、共轭双曲线:
双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11
122=+B
A e e 。
双曲线的定义及标准方程(2019年新版)
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的
绝对值等于常数(小于|F1F2 | ) 的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的ห้องสมุดไป่ตู้距(2c)
1、建系:以线段F1F2所在直线为x轴,
M
线段F1F2的垂直平分线为y轴。F1
F2
设|F1F2|=2c,常数为2a,
高祖初起 ”舜让於德不怿 姓姬氏 散鹿台之钱 虽有周旦之材 ” 管仲富拟於公室 ”使还报 建汉家封禅 弟外壬立 苍以客从攻南阳 天下安宁有万倍於秦之时 围郑三月 韩生推诗之意而为内外传数万言 所以为藉也 冤哉亨也 ”乃许张仪 武庚既死 乞骖乘 生锺分:子一分 是为帝太甲 北自龙门至于朔方 故诸博士具官待问 其明年冬 安在公子能急人之困也 解而去 最小鬼之神者 遵其言 不至而还 遂将兵会垓下 宣侯十三年卒 夫率师 阴阳有分 骂曰:“竖儒 即反接载槛车 其他名殷星、太正、营星、观星、宫星、明星、大衰、大泽、终星、大相、天浩、序星、月纬 和夷厎绩 君俎郊祀 与叔向私语曰:“齐国之政卒归於田氏矣 以故自弃 泰一之佐也 其富如此 五世其昌 绝楚粮食 原效愚忠而未知王之心也 乘法驾 所爱者 王按剑而怒 趣舍有时若此 死後留权 乃复东至海上望 柱国、相国各一人 立二十七年卒 日方南金居其南 毋偏毋党 世世相传 必有大害 太子苏 虏魏王 是为易行 多从人 秦使相国吕不韦诛之 建读之 阳虎执怀 上以寄为将军 二十二年 贰师将军与哆、始成等计:“至郁成尚不能举 ”被曰:“以为非也 王尚何救焉 ”舜曰:“龙 计者事之机也 好儒术 久之 秦复予我河外及封陵为和 造父为缪王御 岂世世贤 哉 汉军皆无功 其後梁王益亲驩 以为不媾军必破也 攻布别将於相 而海上燕齐怪迂之方士多相效 於是遂闭关绝约於齐 奉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的定义及标准方程题型一、圆锥曲线的标准方程 例1、讨论192522=-+-kykx表示何种圆锥曲线,它们有何共同特征.分析:由于9≠k ,25≠k ,则k 的取值范围为9<k ,259<<k ,25<k ,分别进行讨论. 解:(1)当9<k 时,025>-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0).(2)当259<<k 时,025>-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0).(3)25<k ,9=k ,25=k 时,所给方程没有轨迹.说明:将具有共同焦点的一系列圆锥曲线,称为同焦点圆锥曲线系,不妨取一些k 值,画出其图形,体会一下几何图形所带给人们的美感.例2、根据下列条件,求双曲线的标准方程.(1)过点⎪⎭⎫⎝⎛4153,P ,⎪⎭⎫ ⎝⎛-5316,Q 且焦点在坐标轴上. (2)6=c ,经过点(-5,2),焦点在x 轴上. (3)与双曲线141622=-yx有相同焦点,且经过点()223,解:(1)设双曲线方程为122=+nymx∵ P 、Q 两点在双曲线上,∴⎪⎪⎩⎪⎪⎨⎧=+=+12592561162259n mnm 解得⎩⎨⎧=-=916n m ∴所求双曲线方程为191622=+-y x说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的.(2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:1622=--λλyx(其中60<<λ) ∵双曲线经过点(-5,2),∴16425=--λλ∴5=λ或30=λ(舍去)∴所求双曲线方程是1522=-y x(3)设所求双曲线方程为:()160141622<<=+--λλλyx∵双曲线过点()223,,∴1441618=++-λλ∴4=λ或14-=λ(舍) ∴所求双曲线方程为181222=-yx说明:(1)注意到了与双曲线141622=-yx有公共焦点的双曲线系方程为141622=+--λλyx后,便有了以上巧妙的设法.例3、求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.解:设所求双曲线方程为:()0122≠=-k kykx,则()1312=--kk,∴191=-kk,∴8-=k ,∴所求双曲线方程为18822=-xy说明:(1)以上巧妙简捷的设法是建立在一个事实的基础上的,即离心率2=e 是双曲线的等轴双曲线的充要条件,它的证明如下:设等轴双曲线()0222>=-m m y x ,则222m b a ==,∴22222m b a c =+=∴m c 2=,∴22===mm ac e反之,如果一个双曲线的离心率2=e .∴2=a c ,∴a c 2=,222a c =,∴2222a b a =+,∴22b a =,b a =∴双曲线是等轴双曲线(2)还可以证明等轴双曲线的其他性质:两条渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项等.例4、根据以下条件,分别求出双曲线的标准方程.(1)过点)2,3(-P ,离心率25=e .(2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2.分析:(1)、(3)用待定系数法,(2)用定义法.解:(1)依题意,双曲线的实轴可能在x 轴上,也可能在y 轴上,分别讨论如下.如双曲线的实轴在x 轴上,设12222=-by ax 为所求. 由25=e ,得4522=ac . ①由点)2,3(-P 在双曲线上,得12922=-ba. ② 又222c b a =+,由①、②得12=a ,412=b . ③若双曲线的实轴在y 轴上,设12222=-by ax 为所求.同理有4522=ac ,19222=-ba,222c b a =+.解之,得2172-=b (不合,舍去).∴双曲线的实轴只能在x 轴上,所求双曲线方程为1422=-y x .(2)设双曲线上任意一点),(y x P ,因为双曲线右准线4=x ,右焦点)0,10(F ,离心率2=e ,根据双曲线的第二定义,有24)10(22=-+-x yx ,化简,得03612322=---x y x ,即14816)2(22=--yx .∴所求双曲线方程为14816)2(22=--yx .(3)设双曲线方程为12222=-by ax ,因c F F 221=,而2==ac e ,由双曲线的定义,得c a PF PF ==-221.由余弦定理,得212122212cos 2)2(PF F PF PF PF PF c ∠⋅⋅-+=)60cos 1(2)(21221︒-⋅⋅+-=PF PF PF PF ,∴21224PF PF c c ⋅+=. 又31260sin 212121=︒⋅=∆PF PF S F PF ,∴4821=⋅PF PF .∴4832=c ,162=c ,得42=a ,122=b .∴所求双曲线的方程为112422=-yx.题型二、双曲线的定义及焦点三角形 例5、P 是双曲线1366422=-yx上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值.分析:利用双曲线的定义求解. 解:在双曲线1366422=-yx中,8=a ,6=b ,故10=c .由P 是双曲线上一点,得1621=-PF PF . ∴12=PF 或332=PF . 又22=-≥a c PF ,得332=PF .说明:本题容易忽视a c PF -≥2这一条件,而得出错误的结论12=PF 或332=PF . (2)方程2222(6)(6)8x y x y -+-++=表示的曲线是_____例6、已知双曲线116922=-yx的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴1002221=+PF PF ∵()100441222221=+==ba c F F ∴9021=∠PF F例7、 已知1F 、2F 是双曲线1422=-y x的两个焦点,点P 在双曲线上且满足9021=∠PF F ,求21PF F ∆的面积.分析:利用双曲线的定义及21PF F ∆中的勾股定理可求21PF F ∆的面积. 解:∵P 为双曲线1422=-y x上的一个点且1F 、2F 为焦点.∴4221==-a PF PF ,52221==c F F ∵9021=∠PF F∴在21F PF Rt ∆中,202212221==+F F PF PF∵()162212221221=-+=-PF PF PF PF PF PF∴1622021=-PF PF ∴221=⋅PF PF ∴1212121=⋅=∆PF PF S PF F练习、设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F 1、F 2是左右焦点,若0212=⋅F F PF ,|PF 1|=6,则该双曲线的方程为 ;例8、已知:()11y x M ,是双曲线12222=-by ax 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.分析:利用双曲线的第二定义.解:如图,设点M 到相应焦点1F 、2F 的准线的距离为1d 、2d . 当M 点在双曲线的右支上时,a x ≥1,且有e d MF d MF ==2211a ex cax e ed MF +=+==12111a ex cax e ed MF -=-==12122当点M 在双曲线的左支上时,a x -≤1,且有e d MF d MF ==2211∴()a ex cax e ed MF +-=+==12111,()a ex cax e ed MF --=-==12122说明:以上结论称为双曲线的焦点半径公式,它在解题过程中发挥着很大的优越性,可使解题过程的运算量简化,从而得到避繁就简效果. 例9、若椭圆122=+nymx)0(>>n m 和双曲线122=-ty sx)0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是( ) . A .s m - B .)(21s m - C .22s m - D .s m -分析:椭圆和双曲线有共同焦点,P 在椭圆上又在双曲线上,可根据定义得到1PF 和2PF 的关系式,再变形得结果. 解:因为P 在椭圆上,所以m PF PF 221=+. 又P 在双曲线上,所以s PF PF 221=-.两式平方相减,得)(4421s m PF PF -=⋅,故s m PF PF -=⋅21.选(A).练习、已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满1M F ·2M F=0, |1M F |·|2M F |=2,则该双曲线的方程是 ( )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1 D.x 27-y 23=1 解析:∵1M F ·2M F =0,∴1M F ⊥2M F,∴MF 1⊥MF 2, ∴|MF 1|2+|MF 2|2=40,∴(|MF 1|-|MF 2|)2=|MF 1|2-2|MF 1|·|MF 2|+|MF 2|2=40-2×2=36, ∴||MF 1|-|MF 2||=6=2a ,a =3,又c =10,∴b 2=c 2-a 2=1, ∴双曲线方程为x 29-y 2=1. 答案:A题型三、双曲线的轨迹例10、求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A(2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切.(3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切. 分析:这是圆与圆相切的问题,解题时要抓住关键点,即圆心与切点和关键线段,即半径与圆心距离.如果相切的⊙1C 、⊙2C 的半径为1r 、2r 且21r r >,则当它们外切时,2121r r O O +=;当它们内切时,2121r r O O -=.解题中要注意灵活运用双曲线的定义求出轨迹方程.解:设动圆M 的半径为r(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=-MC MA∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:22=a ,2=c ,27222=-=a c b∴双曲线方程为()2172222-≤=-x y x(2)∵⊙M 与⊙1C 、⊙2C 都外切∴11+=r MC ,22+=r MC , 112=-MC MC ∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有: 21=a ,1=c ,43222=-=a c b∴所求的双曲线的方程为:⎪⎭⎫ ⎝⎛≥=-43134422y x y(3)∵⊙M 与⊙1C 外切,且与⊙2C 内切(4)∴31+=r MC ,12-=r MC ,421=-MC MC∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有:2=a ,3=c ,5222=-=a c b ∴所求双曲线方程为:()215422≥=-x yx说明:(1)“定义法”求动点轨迹是解析几何中解决点轨迹问题常用而重要的方法. (2)巧妙地应用“定义法”可使运算量大大减小,提高了解题的速度与质量.(3)通过以上题目的分析,体会,灵活准确地选择适当的方法解决问题是我们无休止的追求目标. 例11、在周长为48的直角三角形MPN 中,︒=∠90MPN ,43tan =∠PMN ,求以M 、N 为焦点,且过点P 的双曲线方程.分析:首先应建立适当的坐标系.由于M 、N 为焦点,所以如图建立直角坐标系,可知双曲线方程为标准方程.由双曲线定义可知a PN PM 2=-,c MN 2=,所以利用条件确定MPN ∆的边长是关键.解:∵MPN ∆的周长为48,且43tan =∠PMN ,∴设k PN 3=,k PM 4=,则k MN 5=.由48543=++k k k ,得4=k . ∴12=PN ,16=PM ,20=MN . 以MN 所在直线为x 轴,以∴MN 的中点为原点建立直角坐标系,设所求双曲线方程为12222=+by ax )0,0(>>b a .由4=-PN PM ,得42=a ,2=a ,42=a .由20=MN ,得202=c ,10=c . 由96222=-=a c b ,得所求双曲线方程为196422=-yx.例12、在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹.分析:要求点A 的轨迹,需借助其轨迹方程,这就要涉及建立坐标系问题,如何建系呢?解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,则()01,-B ,()01,C . 设()y x A ,,由A B C sin 21sin sin =-及正弦定理可得:121==-BC AC AB∵2=BC ∴点A 在以B 、C 为焦点的双曲线右支上设双曲线方程为:()0012222>>=-b a by ax , ∴12=a ,22=c ∴21=a ,1=c ∴43222=-=a c b∴所求双曲线方程为134422=-y x ∵01>=-AC AB ∴21>x∴点A 的轨迹是双曲线的一支上挖去了顶点的部分。