人教版七年级数学上册- 整式的加减教案

合集下载

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
六、拓展与延伸
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀整式的加减篇一整式的加减篇二教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:会进行整式加减的运算,并能说明其中的算理。

教学难点:正确地去括号、合并同类项,及符号的正确处理。

教学过程:一、课前练习: 1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(a)22x2y 与 yx2(b)2m2n与2mn2(c) ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。

三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。

人教版七年级上数学《整式的加减》教案

人教版七年级上数学《整式的加减》教案

《整式的加减》教案【教学目标】1.掌握整式的加减运算。

2.学会运用整式的加减运算解决简单的实际问题。

3.培养学生的数学思维能力和解决问题的能力。

【教学重点】掌握整式的加减运算。

【教学难点】正确进行整式的加减运算,解决简单的实际问题。

【教具准备】小黑板、练习纸。

【教学过程】一、复习导入1.复习整式的概念及单项式、多项式的概念。

2.导入新课:我们学习了整式的有关概念,那么整式如何进行加减运算呢?今天我们就来学习整式的加减运算。

二、探索新知1.出示例1,并列出算式。

(1)例1:某学校为开展体育活动,购置了10个篮球,每个50元;购置了15个排球,每个40元。

请计算学校总共花费了多少钱?学生分组讨论,列出算式,并计算。

教师检查学生的计算结果,并引导学生得出结论:总花费=10×50+15×40=1000+600=1600(元)。

(2)学生分组讨论:如何用数学式子表示这一过程?并展示自己的想法。

教师引导学生理解:这里有两个算式,可以合并成一个算式。

教师板书:10×50+15×40=1600。

(3)出示练习:某学校为开展活动,购置了20个足球,每个35元;购置了25个皮球,每个25元。

请计算学校总共花费了多少钱?并列式计算。

学生独立完成,并展示自己的计算过程及结果。

教师引导学生观察两个算式:有什么相同?有什么不同?并让学生讨论它们的异同点。

通过讨论使学生明确:①它们都是两个整式的和;②它们的和都是一个具体的数值。

教师进一步引导学生得出结论:整式的加法是有意义的运算。

同时指出:在整式的加减运算中,同类项可以合并。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

并出示几个例题让学生练习合并同类项,进一步熟悉整式的加减运算。

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

2024整式的加减教案人教版数学七年级上册教案

2024整式的加减教案人教版数学七年级上册教案

2024整式的加减教案人教版数学七年级上册教案一、教学目标1.理解整式的概念,掌握整式的加减运算。

2.能够熟练运用整式的加减法则,解决实际问题。

3.培养学生的数学思维能力,提高解决问题的能力。

二、教学重点与难点1.教学重点:整式的加减运算。

2.教学难点:整式加减法则的应用。

三、教学过程1.导入新课同学们,我们在上一节课学习了整式的概念,那么大家知道整式之间可以进行哪些运算吗?对,今天我们就来学习整式的加减运算。

2.学习整式的加减法则我们来看一下什么是整式的加减运算。

整式的加减运算,就是将两个或多个整式合并成一个整式的过程。

我们来看一下整式的加减法则。

整式的加减法则可以概括为:同类项相加减,系数相加减。

3.示例讲解下面,我们通过几个例子来具体讲解整式的加减运算。

例1:将整式3x^2+2x5和2x^23x+4合并成一个整式。

解:3x^2+2x5+2x^23x+4=5x^2x1例2:将整式4x^32x^2+x和3x^22x1合并成一个整式。

解:4x^32x^2+x+3x^22x1=4x^3+x^2x14.练习与巩固下面,我们来做一些练习题,巩固一下整式的加减运算。

练习题1:将整式5x^23x+2和2x^2+x1合并成一个整式。

解:5x^23x+2+2x^2+x1=7x^22x+1练习题2:将整式6x^34x^2+3x和x^22x+1合并成一个整式。

解:6x^34x^2+3x+x^22x+1=6x^33x^2+x+15.解决实际问题下面,我们来看一个实际问题,看看如何运用整式的加减运算来解决问题。

问题:某工厂生产一批产品,每件产品的成本为2x+3y元,其中x表示原材料成本,y表示人工成本。

如果工厂要生产100件产品,那么总共的成本是多少?解:总成本=100×(2x+3y)=200x+300y通过今天的学习,我们掌握了整式的加减运算,可以解决一些实际问题。

大家在课后要加强练习,熟练掌握整式的加减法则,提高解决问题的能力。

人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

2.1整式(第1课时)教学目标1.进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.教学重点进一步理解用字母表示数的意义,正确分析实际问题中的数量关系,并用含有字母的式子表示数量关系.教学难点正确分析实际问题中的数量关系,用含有字母的式子表示数量关系.教学过程新课导入设a,b,c表示三个有理数,则新知探究一、探究学习【问题】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,2 h行驶的路程是多少?3 h呢?t h呢?【思考】在式子100×t=100t中,字母t表示什么?100t又表示什么?【师生活动】学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明地表示列车行驶的路程与时间、速度的关系.【设计意图】让学生经历由数到式的过程,感受从特殊到一般的认识过程,体会用字母表示数的简捷性和必要性,为继续学习用含有字母的式子表示数量关系做好方法上的引导.二、新知精讲【例1】(1)苹果原价是每千克p元,按八折优惠出售,用式子表示现价:_________________;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量:_________________;(3)一个长方体包装盒的长和宽都是 a cm,高是h cm,用式子表示它的体积:_________________;(4)用式子表示数n的相反数:___________;(5)7人共同完成一项工作,若每人的工作效率相同,总工作量为m,用式子表示每人需要完成的工作量:__________.m 【答案】(1)0.8p元(2)mn件(3)a2h cm3(4)-n(5)7【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为后面的学习进行铺垫.【思考】含有字母的式子有什么书写特点?【师生活动】学生对写出的几个式子进行观察,教师引导学生从式子的字母和数字两方面进行回答.【设计意图】熟悉用字母表示数的书写要求,在答题中能正确写出式子.【例2】(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(图中长度单位:cm),用式子表示三角尺的面积;(4)一所住宅的建筑平面图(图中长度单位:m)如图所示,用式子表示这所住宅的建筑面积.【思考】船在河流中行驶时,船的速度要分几种情况讨论?【师生活动】学生讨论之后,进行回答,教师根据学生回答的结果进行点评.【设计意图】让学生意识到,在特殊情形下用字母表示数时,可能会有多种情况存在.【答案】解:(1)船在这条河中顺水行驶的速度是(v+2.5) km/h,逆水行驶的速度是(v-2.5) km/h;(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;(3)三角尺的面积(单位:cm2)是12ab-πr2;(4)这所住宅的建筑面积(单位:m2)是x2+2x+18.【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫.【思考】观察(1)(2)中写出的式子,总结特点.【师生活动】学生独立回答.【设计意图】让学生知道在书写后面带有单位的式子时,所写的式子要加括号.【思考】在(2)中,当x=70,y=50,z=80时,共需要多少钱?【师生活动】学生讨论之后,派代表在黑板上写出计算过程和答案,教师根据答题结果进行讲解.【设计意图】通过这一步,让学生知道,在字母的取值确定时,式子的取值是确定的.【思考】结合前面的例题,组内讨论:用字母表示数,有什么特点?【师生活动】学生分组讨论,教师展示课件上的总结,让学生对照学习.【设计意图】知道用字母表示数的必要性,为后续整式的相关学习做铺垫.【新知】讨论:如何分析题目,找数量关系?(1)抓关键词,明确它们的意义以及它们之间的关系,如:和、差、积、商;大、小;倍、分、比……提高/降低、顺水/逆水、打折等.(2)理清语句层次,明确运算顺序.(3)牢记概念和公式.【师生活动】学生小组讨论,如何找出数量关系,推举代表进行回答,教师根据回答结果进行点评,并给出正确的方法.【设计意图】通过对问题中的文字语言进行分析,转化成符号语言,进一步熟练列出式子,用字母表示数.【新知】用字母表示数的书写要求.【师生活动】教师在课件中给出表格,引导学生进行填空.【设计意图】检验学生是否准确掌握了用字母表示数的书写要求,进一步规范学生的式子写法.课堂小结板书设计一、字母可以表示任何数二、字母可以简明地表示数量关系三、用字母表示数的书写格式课后任务完成教材第56页练习1~4题.。

人教版七年级数学上册整式的加减(第1课时)教案

人教版七年级数学上册整式的加减(第1课时)教案
(1)这个多项式中含有哪些项?
(2)各项的系数是多少?
(3)那些项可以合并成一项?为什么?
【设计意图:通过视察、讨论、类比得出合并同类项的方法,并且进行适当的巩固.体会合并同类项的过程就是化简多项式的过程,让学生进一步了解化简过程的根据.】
师生活动:由一学生板演,其他同学独立完成.师生共同订正板演过程,教师详细讲授,并板书示范过程.教师引导学生类比有理数的运算,共同探究归纳合并同类项的法则.教师强调:一般情况,先将多项式按照某个字母进行降幂或升幂排列.
师生活动:学生独立思考,逐一完成各个问题.教师巡回指点,待学生完成后,抽学生口答,其他学生判断评价.
教师强调:
(1)几个单项式是不是同类项与字母和字母的指数有关,与单项式的系数无关.
(2)几个单项式是不是同类项与字母的顺序无关.
想一想:你能写出几个单项式是同类项的例子吗?
【设计意图:这类开放性问题的答案不唯一,但是答案有共性,可拓展学生的思维,帮助每个学生以自己所学的知识为基础,进一步巩固同类项的定义,建构自己的理解,培养学生应用知识的能力.】
(根据实际情况,如果学生已经掌握很好,可以不用这一环节.)
师生活动:学生自己动手独立完成后,小组内交流,视察写出的结果是否符合要求,注意思考答案的共性,教师参与指点.
三、释疑解难、பைடு நூலகம்讲点拨
试着把多项式4x2+2x+7+3x-8x2-2合并同类项:
如果学生对于合并同类项已经掌握很好,教师可以直接让学生处理即可;如果学生感到有些难度,师生共同分析,教师尝试以下问题的引导.
师板书法则,并强调:
(1) 合并的前提是同类项.
(2) 合并指的是系数相加,字母和字母的指数保持不变.

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇

整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

分层次教学,讲授、练习相结合。

情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

教学难点:单项式概念的建立。

教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

七年级数学上册人教版2.2整式的加减优秀教学案例

七年级数学上册人教版2.2整式的加减优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握整式加减的基本概念,理解整式加减的运算规律。
2.培养学生能够正确进行整式加减运算,提高他们的数学计算能力。
3.使学生能够运用整式加减的知识解决一些实际问题,提高他们的数学应用能力。
为了实现这些目标,我在教学中注重了教材知识的系统讲解,通过生动的例子和实际问题,让学生在理解的基础上掌握整式加减的概念和运算规律。同时,我还设计了一系列的练习题,让学生在实践中提高自己的数学计算能力。此外,我还鼓励学生积极参与课堂讨论,分享自己的解题心得,培养他们的团队合作意识和交流能力。
(四)反思与评价
1.引导学生进行自我反思,培养他们的自我评价和自我调整能力。
2.设计具有针对性和多样化的评价方式,全面评价学生的知识与技能、过程与方法、情感态度与价值观等方面。
3.注重评价的激励作用,让学生在评价中感受到进步和鼓励,提高他们的自信心。
为了实现这些目标,我在教学中注重引导学生进行自我反思,培养他们的自我评价和自我调整能力。例如,我会鼓励学生在学习过程中,定期进行自我反思,思考自己在学习中的优点和不足,找出改进的方法。同时,我会设计一些具有针对性和多样化的评价方式,全面评价学生的知识与技能、过程与方法、情感态度与价值观等方面。例如,我会根据学生的课堂表现、作业完成情况、小组合作表现等方面进行综合评价。此外,我还会注重评价的激励作用,让学生在评价中感受到进步和鼓励,提高他们的自信心。例如,我会对学生的优点和进步给予肯定和表扬,让他们感受到自己的价值和成就,激发他们继续努力的动力。
(三)小组合作
1.合理分组,确保每个学生都能在小组合作中发挥自己的特长和能力。
2.设计具有挑战性和实际意义的小组任务,激发学生的团队协作欲望。
3.引导学生在小组合作中进行有效的沟通和交流,提高他们的团队合作能力。

第二章整式的加减(教案)2023-2024学年人教版七年级上册数学

第二章整式的加减(教案)2023-2024学年人教版七年级上册数学
另外,今天的课堂总结环节,学生们的反馈让我了解到他们在整式加减学习中的困惑和问题。我会在课后对这些问题进行整理,并在下一节课上给予解答。同时,我也会鼓励学生在课堂上积极提问,养成及时解决问题的好习惯。
在教学过程中,教师应重点关注学生对整式概念的理解和整式加减法则的应用,通过直观的例子和反复的练习,帮助学生克服难点,确保学生对核心知识的掌握。同时,教师应引导学生将整式知识应用于解决实际问题,提升学生的数学建模能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个物品价格总和的情况?”(举例说明)这个问题与我们将要学习的整式加减密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式加减的奥秘。
3.培养学生数学运算能力,熟练进行整式的加减运算,提高数学运算速度和准确性,强化数学运算素养。
4.培养学生空间想象和直观想象能力,通过解决实际问题时对整式的简化与变形,激发学生数学直观想象素养。
5.培养学生团队合作意识,通过小组讨论与练习,提高学生交流协作能力,培养数学建模和数据分析素养。
三、教学难点与重点
-难点解释:在处理复杂整式时,学生可能会在合并同类项时出现错误,如错误地将不同类的项合并。
(3)在实际问题中,将情境转化为整式并进行简化。
-难点解释:学生可能难以将现实问题抽象为整式,或者不知道如何将复杂的整式简化,从而解决问题。
(4)理解整式加减在实际问题中的意义和作用,培养学生的数学建模意识。
-难点解释:学生需要理解整式加减不仅仅是一个数学运算,而是解决实际问题的有力工具。
(二)新课讲授(用时10分钟)

人教版七年级数学上册2.2整式的加减运算法则优秀教学案例

人教版七年级数学上册2.2整式的加减运算法则优秀教学案例
人教版七年级数学上册2.2整式的加减运算法则优秀教学案例
一、案例背景
本案例背景以人教版七年级数学上册2.2整式的加减运算法则为主题。在教学前,我了解到学生已经掌握了有理数的运算,但面对整式的加减运算,他们可能会感到困惑和难以理解。因此,我需要设计一个既能够巩固学生有理数运算的基础,又能帮助他们顺利过渡到整式加减运算的教学方案。
(三)小组合作
1.教师组织学生进行小组合作学习,鼓励学生互相讨论、交流,培养学生的团队合作意识和沟通能力。
2.教师设计具有挑战性的合作任务,让学生在完成任务的过程中,运用所学知识,提高学生的实践能力。
3.教师关注小组合作的学习过程,及时给予评价和指导,帮助学生提高学习效果。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习方,提高学生的自我学习能力。
针对这一背景,我制定了以下教学目标:1.让学生掌握整式的加减运算法则;2.通过实例分析,让学生理解并熟练运用整式加减运算;3.培养学生的逻辑思维能力和解决问题的能力。
为了实现这些目标,我设计了以下教学方法和教学过程:
二、教学目标
(一)知识与技能
1.让学生掌握整式的加减运算法则,理解同类项的概念,能够正确识别同类项并进行合并。
(二)讲授新知
在讲授新知时,我会运用生动形象的语言和直观的实物模型,帮助学生理解整式的加减运算法则。我会从简单的例子开始,逐步引导学生掌握同类项的概念和合并同类项的方法。通过具体的例题和练习,让学生在实践中学习和巩固知识。
(三)学生小组讨论
在学生小组讨论环节,我会组织学生们进行合作学习,让他们互相交流和分享自己的解题思路和方法。我会设计一些具有挑战性的问题,让学生们在讨论中思考、探索,培养他们的团队合作意识和解决问题的能力。

4.2 整式的加法与减法教案-七年级上册数学人教版

4.2  整式的加法与减法教案-七年级上册数学人教版

第1课时合并同类项课时目标1.理解合并同类项的概念,会判断两个项是否是同类项.2.掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.3.在具体情境中了解法则,经历合并同类项法则的形成过程,理解合并同类项法则的实质,感悟分类和转化思想.学习重点理解合并同类项的概念,会判断两个项是否是同类项;掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.学习难点掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.课时活动设计回顾引入有理数的加法有哪些运算律?学生举手回答,师生共同回忆有理数加法运算律.加法交换律:a+b=b+a.加法结合律:(a+b)+c=a+(b+c).乘法对加法的分配律:a(b+c)=ab+ac.设计意图:复习已有相关知识,为本节要学的知识打基础.探究新知数能进行加减运算,整式中的每个字母都表示数,这样,整式与数一样,也可以进行加减运算.下面我们就一起来探究整式如何进行加减运算.探究1同类项的概念问题1:港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥,一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.汽车从香港口岸到西人工岛包含两段路程,一段为香港口岸到东人工岛,另一段为海底隧道.如果汽车通过海底隧道需要a h,从香港口岸到东人工岛所需时间是1.25a h,则香港口岸到西人工岛的全长(单位:km)是72a+96×1.25a,即72a+120a.学生举手回答,在教师的启发引导下得出正确答案.追问:如何计算72a+120a呢?能否类比以往我们学过的知识进行运算?学生举手回答,在教师的启发引导下得出正确答案.解:可以类比数的运算,进行整式72a,120a的加法运算.问题2:(1)运用运算律计算:72×2+120×2=;72×(-2)+120×(-2)=.(2)根据(1)中的方法完成下面的运算,并说明其中的道理:72a+120a=.学生先独立完成并举手回答,教师适时启发引导并点评.解:(1)根据分配律可得:72×2+120×2=(72+120)×2=192×2,72×(-2)+120×(-2)=(72+120)×(-2)=192×(-2).(2)多项式72a+120a表示72a与120a两项的和,它与(1)中的式子72×2+120×2和72×(-2)+120×(-2)有相同的结构,并且字母a代表的是一个乘数,因此根据分配律也有72a+120a=(72+120)a=192a.问题3:根据以上探究过程完成下列题目:(1)72a-120a=(-48)a;(2)3m2+2m2=(5)m2;(3)3xy2-4xy2=(-)xy2.追问:上述运算有什么共同特点,你能从中得出什么规律?学生先独立完成并举手回答,教师适时启发引导并点评.解:观察(1)中的多项式的项72a和-120a,它们含有相同的字母a,并且a的指数都是1;(2)中的多项式的项3m2和2m2,含有相同的字母m,并且m的指数都是2;(3)中的多项式的项3xy2与-4xy2,都含有字母x,y,并且x的指数都是1,y的指数都是2.问题4:像72a与-120a,3m2与2m2,3xy2与-4xy2这样的式子,同学们能不能根据它们的特征下个定义?学生试着进行总结并举手回答,在教师的启发引导下得出正确答案.同类项:所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.探究2合并同类项问题5:计算:4x2+2x+7+3x-8x2-2.追问1:上式该如何计算?小组合作讨论后学生试着完成解答过程,教师适时启发引导并点评.解:因为多项式中的字母表示的是数,所以可以利用交换律、结合律、分配律把多项式中的同类项进行合并,4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5.追问2:请同学们试着给以上过程下个定义,并总结具体做法.学生尝试归纳总结并举手回答,教师适时启发引导并点评.合并同类项:把多项式中的同类项合并成一项,叫作合并同类项.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.规定:通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列.设计意图:从实际问题入手,引导学生探究同类项的概念及合并同类项法则,培养学生用类比的思想学习新知识的能力.典例精讲例1 合并下列各式的同类项:(1)xy 2-15xy 2; (2)4a 2+3b 2+2ab -4a 2-4b 2.解:(1)xy 2-15xy 2=(1−15)xy 2=45xy 2.(2)4a 2+3b 2+2ab -4a 2-4b 2=(4a 2-4a 2)+(3b 2-4b 2)+2ab =(4-4)a 2+(3-4)b 2+2ab =-b 2+2a b.例2 (1)求多项式2x 2-5x +x 2+4x -3x 2-2的值,其中x =12;(2)求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.解:(1)2x 2-5x +x 2+4x -3x 2-2=(2+1-3)x 2+(-5+4)x -2=-x -2.当x =12时,原式=-12-2=-52.(2)3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc. 当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.例3 (1)水库水位第一天连续下降了a h,平均每小时下降2 cm;第二天连续上升了a h,平均每小时上升0.5 cm .这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg,上午售出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,则第一天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm,由-2a +0.5a =(-2+0.5)a =-1.5a 可知,这两天水位总的变化情况为下降了1.5a cm .(2)把进货的数量记为正,售出的数量记为负,则上午大米质量的变化量是-3x kg,下午大米质量的变化量是4x kg,由5x -3x +4x =(5-3+4)x =6x 可知,进货后这个商店有大米6x kg .设计意图:通过例题,让学生能够熟练运用合并同类项法则对代数式进行化简求值,并会利用本节所学知识解决实际问题.巩固训练1.化简:(1)a 2b -27a 2b ; (2)3x -4y +7x +y ;(3)5m +3m -10m ; (4)11xy -3x 2-7xy +x 2.解:(1)原式=(1−27)a 2b =57a 2b.(2)原式=3x +7x -4y +y =(3+7)x +(-4+1)y =10x -3y.(3)原式=(5+3-10)m =-2m.(4)原式=11xy -7xy -3x 2+x 2=(11-7)xy +(-3+1)x 2=4xy -2x 2.2.先合并同类项,再求值;(1)7x 2-3+2x -6x 2-5x +8,其中x =-2;(2)5a 3-3b 2-5a 3+4b 2+2ab ,其中a =-1,b =12.解:(1)原式=(7-6)x 2+(2-5)x +(8-3)=x 2-3x +5.当x =-2时,原式=(-2)2-3×(-2)+5=4+6+5=15.(2)原式=(5-5)a 3+(4-3)b 2+2ab =b 2+2ab.当a =-1,b =12时,原式=(12)2+2×(-1)×12=14-1=-34.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.同类项的概念是什么?2.合并同类项的法则是什么?3.本节课用到了哪些数学思想方法?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确 学习重点.课堂8分钟.1.教材第98页练习第1,2,3题,第102页习题4.2第1题.2.作业.教学反思第2课时去括号课时目标1.探究去括号法则.2.掌握去括号法则,能准确地对多项式进行去括号运算.3.利用去括号法则将整式化简并解决简单的实际问题.学习重点掌握去括号法则,能准确地对多项式进行去括号运算.学习难点利用去括号法则将整式化简,并解决简单的实际问题.课时活动设计回顾引入回顾:上节课学习了合并同类项,我们一起来回忆一下同类项的定义以及合并同类项法则.追问:合并同类项用到了什么运算律?学生举手回答,教师点评并规范学生答题内容.同类项:所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.乘法对加法的分配律:a(b+c)=ab+ac.设计意图:复习已有相关知识,为本节课要学的知识打基础.探究新知探究去括号问题1:计算:6×(12-1 3 ).追问:如何进行计算比较简便?学生思考并独立完成,教师利用多媒体展示学生解题过程.解:6×(12-13)=6×12-6×13=3-1=2.利用分配律进行计算比较简便.问题2:港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥,一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.如果汽车通过主桥的行驶时间是b h,通过海底隧道所需时间比通过主桥的时间少0.15 h,你能用含b的代数式表示主桥与海底隧道的长度的和吗?主桥与海底隧道的长度相差多少千米?师生共同分析并引导学生解决实际问题.解:汽车通过主桥的行驶时间是b h,那么汽车在主桥上行驶的路程是92b km,通过海底隧道所需时间比通过主桥的时间少0.15 h,那么汽车在海底隧道行驶的时间是(b-0.15)h,行驶的路程是72(b-0.15)km.因此,主桥与海底隧道的长度的和(单位:km)为92b+72(b-0.15),①主桥与海底隧道长度的差(单位:km)为92b-72(b-0.15).①追问1:上面的代数式①①要进行加减运算需要先如何做?学生举手回答,教师适时进行点评.解:与数的运算一样,进行整式的运算时先去括号.追问2:上面的代数式①①应如何去括号进行化简?学生举手回答,教师适时进行点评.解:由于字母表示的是数,所以可以利用分配律,将括号前的乘数与括号内的各项相乘,去掉括号,再合并同类项,得92b+72(b-0.15)=92b+72b-10.8=164b-10.8,92b-72(b-0.15)=92b-72b+10.8=20b+10.8.追问3:请同学们根据以上探究过程总结一下去括号法则.学生尝试归纳总结并举手回答,教师适时进行引导归纳出去括号法则.去括号法则:一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的每一项,再把所得的积相加.特别地,+(x-3)与-(x-3)可以看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得+(x-3)=x-3,-(x-3)=-x+3.这也符合上面的去括号的方法.利用去括号,可以对整式进行化简.设计意图:从实际问题出发,为了解决实际问题需要先去括号再进行整式的加减运算,从而让学生感受数学来源于生活,并服务于生活.典例精讲例1化简:(1)8a+2b+(5a-b);(2)(4y-5)-3(1-2y).解:(1)8a+2b+(5a-b)=8a+2b+5a-b=13a+b.(2)(4y-5)-3(1-2y)=4y-5-3+6y=10y-8.追问:为什么-3×(-2y)=6y?学生独立思考后小组讨论解决.解:-3×(-2y)=-3×(-2)·y=6y.例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=静水航速+水流速度=(50+a)km/h,逆水航速=静水航速-水流速度=(50-a)km/h.(1)由题意,得2(50+a)+2(50-a)=100+2a+100-2a=200(km).因此,2 h后两船相距200 km.(2)由题意,得2(50+a)-2(50-a)=100+2a-100+2a=4a(km).因此,2 h后甲船比乙船多航行4a km.设计意图:通过例题,让学生能够熟练地利用去括号法则对多项式进行化简,并且能解决简单的实际问题.巩固训练1.下列去括号正确的是(A)A.-0.5(1-2x)=-0.5+xB.3(2x+3y)=6x+3yx-y)=-x-2y D.-(2x2-x+1)=-2x2+xC.-2(122.化简:(9y-3)+2(y+1).(1)8x-(-3x-5);(2)13解:(1)原式=8x+3x+5=11x+5.(2)原式=3y-1+2y+2=(3+2)y+(2-1)=5y+1.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.去括号法则是什么?2.去括号时需要注意什么?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第100页练习第1,2,3,4题,第102页习题4.2第2题.2.作业.第2课时 去 括 号去括号{法则:①用括号外的数乘括号内的每一项②再把所得的积相加注意:括号外是负数时,去括号内的各项要变号教学反思第3课时 整式的加减课时目标1.理解整式的加减的实质就是去括号、合并同类项.2.在掌握合并同类项法则、去括号法则的基础上,掌握整式加减的一般步骤.3.能熟练准确地进行整式的加减运算.学习重点运用合并同类项、去括号法则进行整式运算.学习难点熟练地进行整式的加减混合运算.课时活动设计回顾引入合并同类项和去括号是进行整式加减运算的基础,同学们还记得合并同类项法则与去括号法则吗?师生共同回忆,学生举手回答,教师点评.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.去括号法则:一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的每一项,再把所得的积相加.设计意图:复习已有相关知识,为本节课要学的知识打基础.探究新知问题:用代数式表示百位上的数字是a,十位上的数字是b,个位上的数字是c 的三位数,再把这个三位数的百位上的数字与个位上的数字交换位置,计算所得数与原数的差,这个差能被11整除吗?学生独立思考后小组讨论确定出最终答案,教师适时指导.解:设这个三位数是100a+10b+c,交换后的三位数是100c+10b+a.则100a+10b+c-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c).因为99(a-c)=11×9(a-c),所以这个差能被11整除.追问1:解决上述问题时涉及了整式的什么运算?说说你是如何运算的?学生独立思考并归纳总结,教师适时点拨.解:涉及整式的加减运算,运算过程是先去括号再合并同类项.追问2:请同学们试着总结一下整式加减的运算法则.学生独立思考并归纳总结,教师适时点拨.整式加减的运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项.设计意图:通过解决数学问题,渗透整式的加减的实质,并培养学生归纳总结的能力.典例精讲例1计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y=7x+y.(2)(8a -7b )-(4a -5b )=8a -7b -4a +5b =4a -2b.例2 做大、小两个长方形纸盒,尺寸如下表所示.长方体纸盒的尺寸(1)做这两个纸盒共用纸多少平方厘米?(2)做大纸盒比做小纸盒多用纸多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca ) cm 2,大纸盒的表面积是(6ab +8bc +6ca ) cm 2.(1)由题意,得(2ab +2bc +2ca )+(6ab +8bc +6ca ) =2ab +2bc +2ca +6ab +8bc +6ca =8ab +10bc +8ca.因此,做这两个纸盒共用纸(8ab +10bc +8ca )cm 2. (2)由题意,得(6ab +8bc +6ca )-(2ab +2bc +2ca ) =6ab +8bc +6ca -2ab -2bc -2ca =4ab +6bc +4ca.因此,做大纸盒比做小纸盒多用纸(4ab +6bc +4ca )cm 2. 例3 求12x -2(x -13y 2)+(-32x +13y 2)的值,其中x =-2,y =23.分析:括号外是负号时括号内的各项需要变号,并且化简求值问题先将式子化简,再代入数值进行计算往往比较简便.解:12x -2(x -13y 2)+(-32x +13y 2) =12x -2x +23y 2-32x +13y 2 =-3x +y 2. 当x =-2,y =23时,原式=(-3)×(-2)+(23)2=6+(49)=649.设计意图:通过例题,让学生能够熟练地进行整式的加减运算,并且利用整式的加减运算法则解决简单的实际问题以及化简求值问题.巩固训练1.先化简再求值:2(x3-2y2)-(x-2y)-(x-4y2+2x3),其中x=-1,y=-2.解:原式=2x3-4y2-x+2y-x+4y2-2x3=2y-2x.当x=-1,y=-2时,原式=2×(-2)-2×(-1)=-4+2=-2.2.有一道题目是一个多项式减去x2+14x-6,小明误当成了加法计算,得到的结果是2x2-x+3.正确的结果是什么?解:这个多项式为(2x2-x+3)-(x2+14x-6)=2x2-x+3-x2-14x+6=x2-15x+9.则正确的结果为(x2-15x+9)-(x2+14x-6)=x2-15x+9-x2-14x+6=-29x+15.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.整式的加减的实质是什么?2.多项式减去多项式时要注意什么?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第101页练习第1,2,3题,第102页习题4.2第4,5题.2.作业.第3课时整式的加减整式的加减{法则:①去括号②合并同类项注意:①去括号时注意符号变化①多项式相减时加括号教学反思。

人教版七年级数学上册:2.2《整式的加减》教学设计

人教版七年级数学上册:2.2《整式的加减》教学设计

人教版七年级数学上册:2.2《整式的加减》教学设计一. 教材分析《整式的加减》是人教版七年级数学上册第二章第二节的内容,本节课主要让学生掌握整式的加减运算法则,培养学生运用数学知识解决实际问题的能力。

教材通过简单的实际问题引入整式加减的概念,然后引导学生总结整式加减的法则,最后通过大量的练习让学生熟练掌握整式加减的运算技巧。

二. 学情分析七年级的学生已经掌握了整数和分数的加减法,对于代数式有一定的认识。

但是,对于整式的加减运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要耐心引导学生,让学生逐步理解和掌握整式的加减法则。

三. 教学目标1.知识与技能目标:使学生掌握整式的加减运算法则,能熟练地进行整式的加减运算。

2.过程与方法目标:通过观察、分析、归纳、总结等方法,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:整式的加减运算法则。

2.难点:整式加减在实际问题中的应用。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过实际问题引入概念,引导学生观察、分析、归纳、总结,激发学生的学习兴趣,培养学生的动手能力和合作精神。

六. 教学准备1.教师准备:熟练掌握整式的加减运算,了解学生的学习情况,准备相关教学素材。

2.学生准备:预习整式的加减内容,了解基本概念。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式加减的概念,例如:“某商店同时卖苹果和香蕉,苹果每千克3元,香蕉每千克2元,某顾客买了2.5千克的苹果和1.5千克的香蕉,一共花了多少钱?”让学生列出代数式,并进行计算。

2.呈现(10分钟)教师引导学生观察、分析上述问题,总结整式加减的法则。

例如:同底数相加(减)时,只需将系数相加(减)即可。

3.操练(15分钟)教师给出一些整式加减的题目,让学生在小组内进行讨论、解答。

最新2024人教版七年级数学上册4.2 第3课时 整式的加减--教案

最新2024人教版七年级数学上册4.2 第3课时 整式的加减--教案

4.2 整式的加减第 3 课时整式的加减主要师生活动一、新课导入游戏1:请同学在纸片上写一个两位数,交换各位上的数与十位上的数得到一个新数,将这两个数之和除以个位与十位的数字的和,老师都能马上猜出结果.教师举例:比如:(15 + 51)÷(1 + 5)师生活动:学生根据例子在纸上写出数和式子,并计算结果,然后教师给出答案11,与学生计算结果一致.教师提问:你知道这是为什么吗?引出后面的探究.二、探究新知知识点1:整式的加减运算游戏揭秘:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:10a + b . 交换这个两位数的十位数字和个位数字,得到的数是:10b + a.将这两个数相加可得:师生活动:请学生代表发言,教师适时给予引导与评价,帮助学生用字母表示两位数并列式计算.最后教师引导学生归纳:原来不管个位和十位上的数字是几,这两个数字之和肯定是11 的倍数,结果不变.类比游戏:游戏2:请同学在纸片上写一个两位数,交换个位上的数与十位上的数得到一个新数,计算原两位数减新数的差除以原数个位的数字减十位的数字的差,结果是否也不变?师生活动:教师举例:比如(15 - 51)÷(1 - 5)学生独立思考解答,然后小组讨论,教师巡堂指导,然后由小组代表发言,教师帮忙整理过程如下:探究:在上面的探究过程中,分别涉及了整式的什么运算?说说你是如何运算的?师生活动:学生代表发言,教师给予引导与评价,最终得出:上述过程涉及了整式的加减运算.运算时都是先去括号,再合并同类项的.定义总结:通过上述探究引出整式的加减运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.例题精析例1 化简下列各式.(1)2x- 3y + (5x + 4y);(2) (8a- 7b) - (4a- 5b).师生活动:学生先独立解答,然后请学生代表上台板书,教师给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.例2 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?师生活动:教师引导学生回顾公式:总价=单价×个数学生独立解答,教师巡堂查看学生的解法,预测会有两种解法,老师可以请两种方法解题的学生代表上台展示,并都给予适当正向的评价,再适时加以引导与更正.例 3 做大小两个长方体纸盒,尺寸如下(单位:cm ).(1) 做这两个纸盒共用料多少平方厘米?(2) 做大纸盒比做小纸盒多用料多少平方厘米?师生活动: 教师提问:问两个纸盒的用料,实际上是求什么呢? 预测学生能回答:长方体的表面积. 教师提问:同学们还记得长方体表面积的公式吗? 预测学生能回答: 长方体表面积=2×长×宽+2×宽×高+2×长×高. 然后学生先独立解答,再由学生代表板书,教师给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,并提醒学生列式时,尤其是涉及减法的算式时注意不要忘记带括号. 练一练 1.(渭南期末)一个菜地共占地 (6m + 2n ) 亩,其中 (3m + 6n ) 亩种植白菜,种植黄瓜的地是种植白菜的地的13,剩下的地种植时令蔬菜,则种植时令蔬菜的地有 亩. 师生活动:学生独立解答,教师巡堂查看学生的解法,预测会有两种解法(①列综合算式;②分步先计算黄瓜的占地面积再计算时令蔬菜的占地面积),老师可以请两种方法解题的学生代表发言,并都给予适当正向的评价,再适时加以引导与更正. 知识点2:代入求值 典例精析师生活动:学生先独立解答,然后请学生代表上台板书,教师给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.最后教师与同学一起回顾整式的代入求值的步骤: 1.化简2.代入3.计算练一练 2.(吉安期末)已知:M = a 2 + 4ab - 3,N = a 2 - 6ab + 9. (1) 化简:2M - N ;(2) 若 |a + 2| + (b - 1)2 = 0,求 2M - N 的值.师生活动:学生先独立解答,然后小组讨论,再由小组代表发言,教师适当引导并整理过程,帮助学生回忆上个单元的知识点与解题过程.三、当堂练习 1.(吉林期末)化简:2x 2 + 4(x 2 - 3x - 1) - (5x - 12x + 3)2. (文山期末) 先化简,再求值:-(4xy 2 - xy + 2y ) - 2(xy - y - 2xy 2),且x =-2,y = -12. 3.(昌吉期末)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),解答下列问题:(1) 用含 x ,y 的式子表示地面总面积;(2) 当 x = 4,y = 2 时,如果铺1平方米地砖的费用为20元,那么地面铺地砖的费用是多少元?整式的加减:1. 运算:去括号1.联系实际,提升迁移能力。

整式加减教学设计【优秀8篇】

整式加减教学设计【优秀8篇】

整式加减教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!整式加减教学设计【优秀8篇】整式的加减教案篇一教材分析本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。

人教版数学七年级上册整式的加减(一)教案

人教版数学七年级上册整式的加减(一)教案

整式的加减(一)教学设计一、教学目标知识与技能:1.理解同类项的概念,并能正确辨别同类项。

2.掌握合并同类项的法则,能进行同类项的合并。

3.会利用合并同类项将整式化简。

过程与方法:1.探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。

2通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的数学思想。

情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。

2培养学生合作交流的意识和探索精神。

二、教学重点与难点重点:合并同类项法则。

难点:对同类项概念的理解以及合并同类项法则的应用。

三、教学过程(一)创设情境,引入新课引入:大家听过韩红唱的歌天路吗?里面描述的是一个什么的故事呢?学生回答青藏铁路,换下来我们先一起欣赏以下有关青藏铁路的文字.问题1:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。

列车在琼土地段的行驶速度可以到达100千米/时,在丰冻土地段的行驶速度可以到达120米/时,请根据这些数据回答下列问题,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的1倍,如果通过冻土地段需要1小时,你健用含r的式子表示这段铁路的全长吗?学生合作探究:分析已知量与未知量之间的数量关系教师总结:依题意可列出通过该土地段所需时间为2.1t,根据路程时问x速度,铁路全长是100t+120 × 2.1t.即100t+252t.100t+252t这是个多项式,能化简成一个单项式吗?这就是我们今天要学习的新知识-同类项设计意图:创设学生感兴趣的实际问题,可以激发学生的学习兴趣,调动学生学习的积极性,让学生感觉数学来源于我们的生话,数学服务于我们的生话,通过小组讨论、合作交流,能提高他们的学习热情,在教师适当的启示、鼓励下,激发学生的求知愿望.(二)合作交流,探究新知问题2:(1)运用运算律计算:100×2+252×2 100×(-2)+252×(-2)(2)根据(1)中的方法将下面的式子化简,并说明其中的道理100t+252t教师课件展示第62页“探究”,学生会试回答,4)中两式的结构相同,每个式子两项都含有一个相同的因数,因此根据分配律可得:100×2+251×2=(100+252)×2=352×2=704,100×(-2)+252×(-2)=(100+252)×(-2)=-704师:100t+252t与问题(1)中的两个算式有什么联系?你是如何理解化简式子100t+252t的方法的?学生尝试解释,教师根据学生回答情况进行引导教师引导学生归纳:①算式100×2+252×2与100×(-2)+252×(-2)和式子100t+252t具有相同的结构,由于字母t代表的是一个因(乘)数,因此根据分配律应有100t+252t=(100+252)t=352t:②由于整式中的字母表示数因此可以类比数的运算运用数的运算法则和运算律进行整式的运算问题3:填空(1)100t-252t=(100-252)=152t(2)3x2+2x2=(3+2)x2=5x2(3)3ab2-4ab2=(3-4)ab2 = -ab2对于上面的(1),(2),(3),利用分配律可得上述运算有什么特点你能从中得到什么规律学生活动:在独立完成的基础上小组合作交流这就是说,上面的三个多项式都可以合并为一个单项式.具备什么特点的单项式可以合并呢?视察(1)中多项式的项100t和-252t,它们都含有相同字母,并且字母t的指数都是1(2)中的多项式的项3x 2 2x2都含有相同字母,并且字母的指数都是2(3)中的多项式的3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

4.2 整式的加减 第1课时 教案 2024-2025学年数学人教版七年级上册

4.2 整式的加减  第1课时  教案  2024-2025学年数学人教版七年级上册

4.2整式的加减第1课时【教学目标】1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.先合并同类项化简,后求值.2.通过类比数的运算探究合并同类项的法则,从中体会数式通性和类比的数学思想.【重点难点】重点:同类项的概念及合并同类项的法则,感受“数式通性”和类比的思想.难点:正确判断同类项,准确合并同类项.【教学过程】一、创设情境问题1:数能进行加减运算,整式中的每个字母都表示数,这样,整式与数一样,也可以进行加减运算.本章引言中的问题(2)汽车从香港口岸到西人工岛包含两段路程,一段为香港口岸到东人工岛,另一段为海底隧道.如果汽车通过海底隧道需要a h,从香港口岸行驶到东人工岛的时间是通过海底隧道时间的1.25倍,你能用含a的代数式表示香港口岸到西人工岛的全长吗?问题2:(1)你会计算下面的问题吗?100×2+252×2=,100×(-2)+252×(-2)=.(2)根据上面的方法完成下面的运算,并说明其中的道理.100t+252t=.二、探究归纳探究点1:同类项的辨别下列每组中的两项有什么共同的特点?你可以给这些具有共同特征的项取个名字吗?a3b和-a3b(2)4xy和-21xy(1)12(3)5a2和-a2(4)5mn2b3和-7n2mb3要点归纳:所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.探究点2:合并同类项及应用探究一:(1)100t-252t=()t(2)3x2+2x2=()x2(3)3ab2-4ab2=()教师设疑:1.思考:上面三个问题你能计算吗?你打算如何计算?2.推测:你为什么要这样计算?依据是什么?教师引导学生这样思考:上面三个等式左边的多项式有哪些单项式组成?每个多项式中的单项式有什么共同特点?探究二:(1)50m-25n=()(2)3x2+2y2=()出示问题:探究一和探究二的问题有什么区别?引导学生发现异同.要点归纳:1.合并同类项:把多项式中的同类项合并成一项.2.“合并同类项”的步骤:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律、结合律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【典例评析】例1:教材P96【例1】解题引导:(1)这个多项式中含有哪些项?(2)各项的系数是多少?(3)哪些项可以合并成一项?为什么?【针对性训练】教材P98练习T1例2:教材P97【例2】感悟:把字母的值直接代入多项式求值与化简后再代入求值,哪个更简便?【针对性训练】教材P98T2例3:教材P97【例3】【针对性训练】教材P98练习T3【技巧点拨】合并同类项的方法:(1)系数:系数相加;(2)字母:字母和字母的指数不变.注意事项:(1)只有同类项才能合并,移项时应连同符号.(2)多项式中含有两种以上的同类项时,为防止漏项或混淆,可先在各项的下边用不同的记号标出各种同类项,然后进行合并.(3)合并后的结果通常按某个字母降幂或升幂排列.三、检测反馈1.下列各组中的两项,不是同类项的是()A.a2b与-6ab2B.-x3y与2yx3C.2πR与π2RD.35与532.若等式2a3+□=3a3成立,则“□”填写的单项式是()A.aB.a2C.a3D.13.已知代数式3x2+y-ax2-5y-1的值与字母x的取值无关,则a的值为.4.合并同类项:(1)-a-a-2a=;(2)-xy-5xy+6yx=;(3)0.8ab2-a2b+0.2ab2=;(4)3a2b-4ab2-4+5a2b+2ab2+7.5.已知单项式-2m2x n与5m6n y是同类项,则y x=.6.合并下列各式的同类项:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b;(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).7.求下列各式的值:(1)3x2-8x+2x3-13x2+2x-2x3+3,其中x=-1.(2)a2b-6ab-3a2b+5ab+2a2b,其中a=0.1,b=0.01.四、本课小结1.同类项{两同{所含字母相同相同字母的指数相同两无关{与系数无关与所含字母的顺序无关 2.合并同类项——“一加二不变”五、布置作业基础:教材P102习题T1综合:教材P103习题T8,9六、板书设计七、教学反思在教学理念上,本节课设计坚持了“以生为本”的理念,以学生的认知规律为出发点.教学过程中注意知识起点、思维状态、情感态度,从如何创设有利于学生接纳的情境开始,整个教学设计过程思维联系紧密.在教学策略上,注重信息技术与数学教学的整合,充分利用多媒体课件,吸引学生注意力,激发学生求知欲,节省了时间,增大了课堂容量.在教学内容上,既尊重学生已有的知识和技能,又着眼于学生的最近发展区,为学生提供带有难度的内容,调动学生的积极性,充分发挥其潜能.。

初一数学《整式的加减》教学教案设计

初一数学《整式的加减》教学教案设计

初一数学《整式的加减》教学教案设计人教版《数学》七班级上册其次章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

接下来是我为大家整理的初一数学《整式的加减》教学教案设计,盼望大家喜爱!初一数学《整式的加减》教学教案设计一[学习目标]1、熟悉同类项,理解合并同类项法则,能进行同类项的合并。

2、能运用运算率去括号[考点归纳]考点1:合并同类项考点2:去括号法则考点3:整式的加减[考点例题]例1.合并下列多项式中的同类项.(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.例2. 去括号,合并同类项(1)-3(2s-5)+6s (2)3x-[5x-3( x-4)](3)6a2-4ab-4(2a2+ ab) (4)例3.(1)已知一个多项式与a2-2a+1的和是a2 +a-1,求这个多项式。

(2)已知A=2x2+y2+2z,B=x2-y2 +z ,求2(A-B)+B[当堂检测]1.将如图两个框中的同类项用线段连起来:2.当m=________时,-x3b2m与 x3b是同类项.3.假如5akb与-4a2b是同类项,那么5akb+(-4a2b)=_______.4、下列说法正确的是( )A.字母相同的项是同类项B.只有系数不同的项,才是同类项C.-1与0.1是同类项D.-x2y与xy2是同类项5合并下列多项式中的同类项.(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.2 先化简,再求值。

(1)(5a2-3b2)+(a2-b2)- (5a2-2b2) 其中a=-1,b=1(2)9a3-[-6a2+2(—a3- a2)] 其中a=-23. 且求的值。

[课外练习]1.下列合并同类项正确的是 ( )A.8a-3a=5B. 7a2+2a3=9a2C. 3ab2-2a2b=ab2D. 3a2b-2ba2=a2b2.ab减去等于 ( )A. ;B. ;C. ;D.3.当与时,代数式的两个值 ( )A.相等;B.互为倒数;C.互为相反数;D.既不相等也不互为相反数4下列各题中,去括号正确的是 ( )初一数学《整式的加减》教学教案设计二教学目标学问技能:理解同类项的概念,并能正确辨别同类项。

2024秋七年级数学上册第二章整式的加减2.1整式2单项式教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.1整式2单项式教案(新版)新人教版
2.数学表达:培养学生能够准确、清晰地表达单项式的加减法运算过程,以及能够运用数学语言描述数学问题。
3.数学建模:培养学生能够将实际问题转化为数学模型,通过单项式的加减法运算解决问题,培养学生的数学应用能力。
学情分析
针对新人教版2024秋七年级数学上册第二章整式的加减2.1整式2单项式教案,本节课的学情分析如下:
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对整式的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调整式加减法的重要性和意义。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用整式解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与整式相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
板书设计:
①整式的基本概念
-整式:常数、变量及它们的运算符号组成的表达式
-组成元素:常数、变量、运算符号
②单项式的加减法运算
-同类项:相同字母且相同指数的项
-加减法规则:同类项相加(减)系数相加(减)
③整式的加减法运算
-加减法规则:同类项相加(减)系数相加(减)
-步骤:确定同类项、合并同类项、简化结果
(1)结合学生的实际情况,设计具有针对性的教学活动,如通过具体例子引导学生理解单项式的概念,运用游戏、小组讨论等方式激发学生的学习兴趣。

七年级数学《整式的加减》教案

七年级数学《整式的加减》教案

七年级数学《整式的加减》教案七年级数学《整式的加减》教案一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+19=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七年级数学《整式的加减》教案二教学目标知识与技能理解同类项的概念,在具体情景中,认识同类项.过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.情感、态度与价值观初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点重点理解同类项的概念.难点根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a 可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解教师读题,指名回答.例1判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)例2游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.例3指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.答案(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.例4k取何值时,3xky与-x2y是同类项?答案要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.例5若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)答案改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标知识与技能理解合并同类项的概念,掌握合并同类项的法则.过程与方法经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.情感、态度与价值观在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点重点正确合并同类项.难点找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,教师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解例1找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.答案原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例2下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)例3求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.答案3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.答案略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标知识与技能去括号与添括号法则及其应用.过程与方法在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.情感、态度与价值观让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点重点去括号和添括号法则.难点当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七年级数学《整式的加减》教案三一、教学内容解析:1.本节课选自:新人教版数学七年级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时整式的加减
学习目标
1、能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2、经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养观察、分析、归纳能力.
3、培养主动探究、合作交流的意识,严谨治学的学习态度。

重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
一、情境导入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);
(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?
2.化简:
(1)(x+y)-(2x-3y);
(2)2(a2-2b2)-3(2a2+b2).
提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?
一、知识链接
1.同类项:必须同时具备的两个条件(缺一不可):
①所含的相同;②相同也相同.
合并同类项,就是把多项式中的同类项合并成一项.
方法:把同类项的相加,而不变.
2.去括号法则:
①如果括号外的因数是,去括号后原括号内各项的符号与原来的符号;
②如果括号外的因数是,去括号后原括号内各项的符号与原来的符号 .
去括号法则的依据实际是 .
二、新知预习
做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c元.
请你计算:(1)小亮花了________元; 小莹花了__________元;小亮和小莹共花___________________元.
(2)小亮比小莹多花_______________元.
想一想:如何进行整式的加减运算?
【自主归纳】整式的加减运算归结为__________、_____________,运算结果____________. 二、合作探究
探究点一:整式的加减 【类型一】 整式的化简
化简:3(2x 2-y 2)-2(3y 2-2x 2
). 解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.
解:3(2x 2-y 2)-2(3y 2-2x 2)=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2
.
方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.
【类型二】 整式的化简求值
化简求值:12a -2(a -13b 2)-(32a +13b 2)+1,其中a =2,b =-3
2.
解析:原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.
解:原式=12a -2a +23b 2-32a -13b 2+1=-3a +13b 2+1,当a =2,b =-3
2时,原式=-3×2
+13×(-32)2+1=-6+34+1=-41
4
. 方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.
【类型三】 利用“无关”进行说理或求值
有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14
a 2
b -b 2
)
+(a 3b 3+14a 2b )-2b 2
+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但
他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
解析:先通过去括号、合并同类项对多项式进行化简,然后代入a ,b 的值进行计算.
解:3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3=(3-4+1)a 3b 3
+(-12+
14+14
)a 2b +(1-2)b 2+b +3=b -b 2
+3.因为它不含有字母a ,所以代数式的值与a 的取值无关.
方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.
探究点二:整式加减的应用
如图,小红家装饰新家,小红为自己的房间选择了一款窗帘(阴影部分表示窗帘),
请你帮她计算:
(1)窗户的面积是多大? (2)窗帘的面积是多大?
(3)挂上这种窗帘后,窗户上还有多少面积可以射进阳光.
解析:(1)窗户的宽为b +b 2+b 2=2b ,长为a +b
2,根据长方形的面积计算方法求得答案
即可;
(2)窗帘的面积是2个半径为b 2的1
4
圆的面积和一个直径为b 的半圆的面积的和,相当于
一个半径为b
2
的圆的面积;
(3)利用窗户的面积减去窗帘的面积即可.
解:(1)窗户的面积是(b +b 2+b 2)(a +b 2)=2b (a +b
2
)=2ab +b 2

(2)窗帘的面积是π(b 2)2=14
πb 2

(3)射进阳光的面积是2ab +b 2-14πb 2=2ab +(1-14
π)b 2
.
方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.
三、
1.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x +
2.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( ) A.14a +6b B.7a +3b C.10a +10b D.12a +8b
3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式
4.多项式3
2
281x x x -+-与多项式3
2
3253x mx x +-+的和不含二次项,则m 为( ) A.2 B.-2 C.4 D.-4 5.已知 错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

当堂检测
=_______________________.
6.若mn=m+3,则2mn+3m-5mn+10=__________.
7.计算:
8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外
圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即
比较两个图形的周长)?若将三个小圆改为n个小圆,又会得到什么结论?
)m2
思路点拨:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结
合r1+r2+r3=R,化简式子比较大小.
板书设计
整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
通过实际问题,让学生体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的复习归纳总结出整式的加减的一般步骤,培养学生的观察、分析、归纳和概括的能力,
了解知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项.教学过程中由学
生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答,同时采取由学生出
题,其他同学抢答等形式,来提高学生的学习兴趣,充分调动他们的主观能动性,从而提高
课堂教学效率.。

相关文档
最新文档