命题的四种形式
1.3充分条件、必要条件与命题的四种形式
![1.3充分条件、必要条件与命题的四种形式](https://img.taocdn.com/s3/m/a5e356fcac51f01dc281e53a580216fc700a53fb.png)
1.充分条件、必要条件与充要条件(1)“若p ,则q ”形式的命题为真时,记作p ⇒q ,称p 是q 的充分条件,q 是p 的必要条件. (2)如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充要条件,q 也是p 的充要条件.p 是q 的充要条件又常说成q 当且仅当p ,或p 与q 等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ )(3)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × ) (4)若一个命题是真命题,则其逆否命题是真命题.( √ )(5)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )1.(2015·重庆)“x >1”是“12log (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 B解析 x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”成立的充分不必要条件.因此选B.2.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 a =3时A ={1,3},显然A ⊆B .但A ⊆B 时,a =2或3.所以A 正确.3.(教材改编)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x ≤y ,则x 2≤y 2”C .“若x >y ,则x 2>y 2”D .“若x ≥y ,则x 2≥y 2”答案 B解析 根据原命题和其逆否命题的条件和结论的关系,得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.4.已知命题p :若x =-1,则向量a =(1,x ),与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .4答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.5.(教材改编)下列命题:①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab ≠0是a ≠0的充分不必要条件.其中为真命题的是________(填序号).答案 ②④题型一 充分条件、必要条件的判定例1 (1)(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( ) A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0答案 (1)B (2)B解析 (1)根据指数函数的单调性得出a ,b 的大小关系,然后进行判断.∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件. (2)∵y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.思维升华 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.(1)(2015·陕西)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (2)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 (1)A (2)A解析 (1)∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin α⇒/ sin α=cos α,故选A.(2)当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A. 题型二 充分必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究1.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈(綈P )是x ∈(綈S )的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10},∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S ⇒/ P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.(1)ax 2+2x +1=0至少有一个负实根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)方法一 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根.当a ≠0时,原方程为一元二次方程,有实根的充要条件是Δ=4-4a ≥0,即a ≤1.设此时方程的两根分别为x 1,x 2,则x 1+x 2=-2a ,x 1x 2=1a, 当只有一个负实根时,⎩⎪⎨⎪⎧a ≤1,1a <0⇒a <0; 当有两个负实根时,⎩⎪⎨⎪⎧ a ≤1,-2a<0,⇒0<a ≤1.1a >0综上所述,a ≤1. 方法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.(2)命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A ={x |x >1或x <12}, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12, ∴0≤a ≤12. 题型三 命题的四种形式例3 (1)命题“若x ,y 都是偶数,则x +y 也是偶数“的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数(2)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 答案 (1)C (2)B解析 (1)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”.(2)先证原命题为真:当z 1,z 2互为共轭复数时,设z 1=a +b i(a ,b ∈R ),则z 2=a -b i ,则|z 1|=|z 2|=a 2+b 2, ∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z 1=1,z 2=i ,满足|z 1|=|z 2|,但是z 1,z 2不互为共轭复数,∴其逆命题为假,故其否命题也为假,故选B.思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q “形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若α=π3,则cos α=12”的逆命题是( ) A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)(2016·承德月考)已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③答案 (1)C (2)A解析 (1)命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”. (2)命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A.1.等价转化思想在充要条件中的应用典例 (1)已知p :(a -1)2≤1,q :∀x ∈R ,ax 2-ax +1≥0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析 (1)由(a -1)2≤1解得0≤a ≤2,∴p :0≤a ≤2.当a =0时,ax 2-ax +1≥0对∀x ∈R 恒成立;当a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4, ∴q :0≤a ≤4.∴p 是q 成立的充分不必要条件.(2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.∴{x |x >a }{x |x <-3或x >1},∴a ≥1.答案 (1)A (2)A温馨提醒 (1)本题用到的等价转化①将綈p ,綈q 之间的关系转化成p ,q 之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对一些复杂、生疏的问题,利用等价转化思想转化成简单、熟悉的问题,在解题中经常用到.[方法与技巧]1.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.2.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.[失误与防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.2.当一个命题有大前提而要写出命题的其他两种形式时,必须保留大前提.3.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.A 组 专项基础训练(时间:30分钟)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B解析 依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.(2015·天津)设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2,故选A.3.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.5.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为菱形的对角线互相垂直,所以“四边形ABCD 为菱形”⇒“AC ⊥BD ”,所以“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件;又因为对角线垂直的四边形不一定是菱形,所以“AC ⊥BD ”⇒“四边形ABCD 为菱形”,所以“四边形ABCD 为菱形”不是“AC ⊥BD ”的必要条件.综上,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.6.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要的条件B .必要不充分的条件C .充要条件D .既不充分也不必要的条件答案 C解析 由维恩图易知充分性成立.反之,A ∩B =∅时,由维恩图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.(2015·北京)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 m ⊂α,m ∥β⇒/ α∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故答案选A.9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________. 答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3}, ∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2. 11.给定两个命题p 、q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的________条件.答案 充分不必要解析 若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒/ q ,其逆否命题为p ⇒綈q 但綈q ⇒p ,所以p 是綈q 的充分不必要条件. 12.下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,所以a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③正确;④显然正确.B 组 专项能力提升(时间:15分钟)13.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 C解析先证“a>b”⇒“a|a|>b|b|”.若a>b≥0,则a2>b2,即a|a|>b|b|;若a≥0>b,则a|a|≥0>b|b|;若0>a>b,则a2<b2,即-a|a|<-b|b|,从而a|a|>b|b|.再证“a|a|>b|b|”⇒“a>b”.若a,b≥0,则由a|a|>b|b|,得a2>b2,故a>b;若a,b≤0,则由a|a|>b|b|,得-a2>-b2,即a2<b2,故a>b;若a≥0,b<0,则a>b.综上,“a>b”是“a|a|>b|b|”的充要条件.14.(2015·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)(a22+a23+…+a2n)=(a1a2+a2a3+…+a n-1a n)2,则()A.p是q的必要条件,但不是q的充分条件B.p是q的充分条件,但不是q的必要条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 B解析若p成立,设a1,a2,…,a n的公比为q,则(a21+a22+…+a2n-1)(a22+a23+…+a2n)=a21(1+q2+…+q2n -4)·a22(1+q2+…+q2n-4)=a21a22(1+q2+…+q2n-4)2,(a1a2+a2a3+…+a na n)2=(a1a2)2(1+q2+…+q2n-4)2,-1故q成立,故p是q的充分条件.取a1=a2=…=a n=0,则q成立,而p不成立,故p不是q的必要条件,故选B.15.(2015·浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A 中元素的个数,命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C),()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立答案 A解析命题①成立,若A≠B,则card(A∪B)>card(A∩B),所以d(A,B)=card(A∪B)-card(A∩B)>0.反之可以把上述过程逆推,故“A≠B”是“d(A,B)>0”的充分必要条件;命题②成立,由维恩图,知card(A∪B)=card(A)+card(B)-card(A∩B),d(A,C)=card(A)+card(C)-2card(A∩C),d(B,C)=card(B)+card(C)-2card(B∩C),∴d(A,B)+d(B,C)-d(A,C)=card(A)+card(B)-2card(A∩B)+card(B)+card(C)-2card(B∩C)-[card(A)+card(C)-2card(A∩C)]=2card(B)-2card(A∩B)-2card(B∩C)+2card(A∩C)=2card(B)+2card(A∩C)-2[card(A∩B)+card(B∩C)]≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )]=[2card(B )-2(card(A ∪C )∩B )]+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,∴d (A ,C )≤d (A ,B )+d (B ,C )得证.16.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.17.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立,反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”充分不必要条件.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确.由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确.由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,③不正确,④正确.。
02简易逻辑--命题的四种形式(中学课件201908)
![02简易逻辑--命题的四种形式(中学课件201908)](https://img.taocdn.com/s3/m/e92fa24f14791711cc791793.png)
1.命题 可Βιβλιοθήκη 判断真假的语句.2.逻辑联结词 “或”、“且”、 3.简单命题 不含“逻非辑”联. 结词的命题. 4.复合命题 含有逻辑联结词的命题.
5.复合命题真值表
p 非p p q p或q p q p且q
“p 且 q”形
真 假 真 真 真 真 真 真 式的复合命题
假 真 真 假 真 真 假 假 当p 与q同时为
“非 p” 假 真 真 形式的复合 假 假 假
假 真 假 真时为真, 其 假 假 假 它情形为假.
命题与 p 的 真假相反;
“p 或 q”形式的复合命题当 时为假, 其它情形为真;
p
与
q
同时为假
;新视觉影院 https:// 新视觉影院 ;
宜奔秦州 营中水三尺 迍邅栖伏 朕当相资 卫尉伊力延曰 窃用耻焉 不敢窃攻 徙二千馀户于郑城 于是遂称廪君 未知计之所出 威化末著 跃马金山 虽众寡不敌 时既留镇冀州 熙弗从 足为一时之杰 乾归乃与没奕于攻大兜于安阳城 众火俱起 新平羌雷恶地等尽应之 虚襟访道 尚惧 三河 猛士 为当专以孝敬为母屈也 四隅陈设 部分详平 平地三尺 跋与二弟乘车 黄门郎段章 叱干他斗伏送勃勃于魏 奴迦及首级四千七百 相持久之 惑于信受 未可图 三军大饑 收纳旧臣之胄 群臣皆泣 宏图壮节 终则弗成 由此克举 则三载之间未应便成贤后 前元完阵 深自陈谢 安危休戚 《春秋》之义也 苌曰 扬威彭蚝皆惧而降恢 宝进师济河 盛屡进奇策于宝 京兆杜挻以仆射齐难无匡辅之益 业遂杀之 诸将皆曰 俱曰 同移者阎式 许之 岂是汉祖河山之义乎 承制封拜 季龙累召之 公父子好存小仁 故能杜豪竞之门 犹鄙鸿都之费 吾曹今日可谓休戚是同 何不表闻 臣向潼 关为诸军节度 结权死 皇帝之号 履寒霜而逾荣 乃以勃勃为安远将军 守死乐都 吕超出
1.3.2_命题的四种形式
![1.3.2_命题的四种形式](https://img.taocdn.com/s3/m/96419f62a45177232f60a273.png)
C充分不必要
D不充分不必要
练习4、
注、等价法 1.已知p是q的必要而不充分条件, 充分不必要条件 那么┐p是┐q的_______________. (转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充要条件,则A为C的 ( A )条件 A.充要 B必要不充分 C充分不必要 D不充分不必要
结论2:(1)“或”的否定为“且”,
(2)“且”的否定为“或”, (3)“都”的否定为“不都”。
充分条件与必要条件
练习: 1.设p是q的充分不必要条件,则 p是 q 的 必要不充分 条件.
2.已知p是q的必要而不充分条件, 充分不必要条件 那么┐p是┐q的_______________.
3:若┐A是┐B的充要条件,┐C是┐B的充 要条 A 件,则A为C的( )条件 A.充要 B必要不充分
2.写出“若x2+y2=0,则x=0且y=0”的逆否 命题: ;
3.写出命题“若a和b都是偶数,则a+b是
偶数”的否命题和逆否命题. 4.判断命题“若x+y≤5,则x≤2或y≤3”的 真假.
5. 下列四个命题中真命题是 ①“若xy=1,则x、y互为倒数”的逆命题 ②“面积相等的三角形全等”的否命题 ③“若m≤1,则方程x2-2x+m=0有实根” 的逆否命题 ④“若A∩B=B,则A B”的逆否命题 A.①② C.①②③ B.②③ D.③④
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.
高中数学常用逻辑用语:命题及其关系
![高中数学常用逻辑用语:命题及其关系](https://img.taocdn.com/s3/m/c4ffae37d5bbfd0a78567328.png)
常用逻辑用语:命题及其关系要求层次重难点 “若p ,则q ”形式的命题及其逆命题、否命题与逆否命题A 理解四种命题的相互关系;掌握充要条件的判定四种命题的相互关系B 充要条件C(一) 知识内容1.对于“如果p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.定理:经过证明为真的命题.当命题“如果p ,则q ”经过推理证明断定是真命题时,我们就说则p 可以推出q ,记作p q ,读作“p 推出q ”.2.命题的四种形式:命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题. ⑴原命题:如果p ,则q ; ⑵原命题的逆命题:如果q ,则p ; ⑶原命题的否命题:如果非p ,则非q ; ⑷原命题的逆否命题:如果非q ,则非p .否逆为互逆为互否互否互逆互否互逆如果非q ,则非p如果非p ,则非q如果 q,则 p如果 p,则 q3.命题“如果p ,则q ”的四种形式之间有如下关系:⑴互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以改证它的逆否命题.例题精讲高考要求常用逻辑用语:命题及其关系板块一:命题的四种形式⑵互逆或互否的两个命题不等价.<教师备案>注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.(二)典例分析【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交; ⑵垂直于同一个平面的两个平面互相垂直; ⑶每一个周期函数都有最小正周期; ⑷两个无理数的乘积一定是无理数; ⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根. ⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+; ⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个【例5】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ② 如果两个三角形不全等,那么它们的面积不相等; ③ 如果两个三角形的面积不相等,那么它们不全等; ④ 命题②、③、④与命题①有何关系?【例6】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”; ⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”; ⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”; ⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例7】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例8】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例9】 ⑴命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠ B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠ C .若0(),a b a b =≠∈R ,则220a b +≠ D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠ ⑵有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例10】 ⑴ “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为;⑵(2007重庆)命题:“若21x <,则11x -<<”的逆否命题是( ) A .若21≥x ,则1≥x 或1≤x - B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1≥x 或1≤x -,则21≥x【例11】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例12】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例13】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列; ⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例14】 ⑴命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( )A .p 真q 真B . p 真q 假C . p 假q 真D . p 假q 假 ⑵设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例16】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例20】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( ) A .1 B .2 C .3 D .4【例21】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例22】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象.⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例23】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例24】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例25】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例26】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【例27】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例28】 已知三个不等式:000,,c dab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( ) A .0 B .1 C .2 D .3【例29】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例30】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥ B .若αγβγ⊥⊥,,则αβ∥ C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例31】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3。
数学中的四种命题
![数学中的四种命题](https://img.taocdn.com/s3/m/59c6f92acfc789eb172dc8c2.png)
真命题 真命题 假命题 假命题 真命题
练习
1,将命题"a>0时,函数 ,将命题" 的值随x值的增 时 函数y=ax+b的值随 值的增 的值随 加而增加"改写成" 则 的形式 的形式, 加而增加"改写成"p则q"的形式,并判断命题的 真假. 真假. 解答:a>0时,若x增加,则函数 增加, 解答 时 增加 则函数y=ax+b的值也随之 的值也随之 增加,它是真命题. 增加,它是真命题.
原结论 是 都是 大于 小于 反设词 不是 不都是 原结论 至少有一个 反设词 一个也没有
至少有两个 至多有一个 至少有n个 至多有(n-1)个 至少有n 至多有( 不大于 个 大于或等于 至多有n个 至少有(n+1)个 至多有n 至少有( 个 存在某x, 存在某 , 成立
对Байду номын сангаас有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 不成立 成立 不成立
"若p则q"形式的命题 若 则 形式的命题
命题"若整数 是质数 是质数, 是奇数. 命题"若整数a是质数,则a是奇数."具 是奇数 q 的形式. 有"若p则q"的形式. p 则 的形式
通常,我们把这种形式的命题中的 叫做 通常 我们把这种形式的命题中的p叫做 我们把这种形式的命题中的 命题的条件 叫做命题的结论 条件,q叫做命题的结论. 命题的条件 叫做命题的结论. "若p则q"形式的命题是命题的一种形 则 形式的命题是命题的一种形 式而不是唯一的形式,也可写成 如果p, 也可写成" 式而不是唯一的形式 也可写成"如果 那么q" 只要 就有q"等形式 只要p,就有 等形式. 那么 "只要 就有 等形式. 其中p和 可以是命题也可以不是命题 可以是命题也可以不是命题. 其中 和q可以是命题也可以不是命题
21-22版:1.3.2 命题的四种形式(步步高)
![21-22版:1.3.2 命题的四种形式(步步高)](https://img.taocdn.com/s3/m/7df86755cd7931b765ce0508763231126edb7794.png)
1.3.2命题的四种形式学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题.2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.知识点一四种命题的概念命题“如果p,则(那么)q”是由条件p和结论q组成的,对p,q进行“换位”和“换质”,一共可以构成四种不同形式的命题.(1)原命题:如果p,则q;(2)条件和结论“换位”:如果q,则p,这称为原命题的逆命题;(3)条件和结论“换质”(分别否定):如果綈p,则綈q,这称为原命题的否命题.(4)条件和结论“换位”又“换质”:如果綈q,则綈p,这称为原命题的逆否命题.知识点二四种命题间的相互关系(1)四种命题间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性,即两命题等价;②两个命题为互逆命题或互否命题,它们的真假性没有关系,即两个命题不等价.1.有的命题没有逆命题.(×)2.两个互逆命题的真假性相同.(×)3.对于一个命题的四种命题,可以一个真命题也没有.(√)4.一个命题的四种命题中,真命题的个数一定为偶数.(√)一、四种命题的结构形式例1把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解(1)原命题:若a是正数,则a的平方根不等于0.逆命题:若a的平方根不等于0,则a是正数.否命题:若a不是正数,则a的平方根等于0.逆否命题:若a的平方根等于0,则a不是正数.(2)原命题:若x=2,则x2+x-6=0.逆命题:若x2+x-6=0,则x=2.否命题:若x≠2,则x2+x-6≠0.逆否命题:若x2+x-6≠0,则x≠2.(3)原命题:若两个角是对顶角,则它们相等.逆命题:若两个角相等,则它们是对顶角.否命题:若两个角不是对顶角,则它们不相等.逆否命题:若两个角不相等,则它们不是对顶角.反思感悟由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.二、四种命题的真假判断例2 写出下列命题的逆命题、否命题、逆否命题,并判断其真假. (1)若a >b ,则ac 2>bc 2;(2)若四边形的对角互补,则该四边形是圆的内接四边形. 解 (1)逆命题:若ac 2>bc 2,则a >b .真命题. 否命题:若a ≤b ,则ac 2≤bc 2.真命题. 逆否命题:若ac 2≤bc 2,则a ≤b .假命题.(2)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补.真命题. 否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形.真命题. 逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.真命题. 反思感悟 若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假命题. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0,要么是2,要么是4. 跟踪训练2 下列命题中为真命题的是( ) ①“若x 2+y 2≠0,则x ,y 不全为零”的否命题; ②“正三角形都相似”的逆命题;③“若m >0,则x 2+x -m =0有实根”的逆否命题; ④“若x -2是有理数,则x 是无理数”的逆否命题. A .①②③④ B .①③④ C .②③④ D .①④ 答案 B解析 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.故为真命题.②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.故为假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程无实根,∴判别式Δ=1+4m <0,∴m <-14<0.故为真命题.④原命题的逆否命题为“若x 不是无理数,则x -2不是有理数”. ∵x 不是无理数,∴x 是有理数.又2是无理数,∴x -2是无理数,不是有理数.故为真命题. 故正确的命题为①③④,故选B. 三、等价命题的应用例3 证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明 原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0, 则f (a )+f (b )<f (-a )+f (-b )”. 若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数,∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题.∴原命题为真命题.反思感悟 因为原命题与其逆否命题是等价的,可以证明一个命题的逆否命题成立,从而证明原命题也是成立的.正确写出原命题的逆否命题是证题的关键.跟踪训练3 判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假. 解 先判断原命题的真假.因为a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集, 所以Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,a ≥74⇒a ≥1, 所以原命题为真,又因为原命题与其逆否命题等价,所以逆否命题为真.命题的等价性典例 主人邀请张三、李四、王五三个人吃饭,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能去了.”主人听了,随口说了句:“该来的没有来.”张三听了脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人离去的原因.解 张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因是:“不该走的又走了”的逆否命题是“没走的应该走”,李四觉得自己是应该走的.[素养提升] 逻辑推理是在数学活动中进行交流的基本思维品质,本例是利用原命题与其逆否命题的等价性的逻辑原理,得出相应的合理解释.1.命题“如果a ∉A ,则b ∈B ”的否命题是( ) A .如果a ∉A ,则b ∉B B .如果a ∈A ,则b ∉B C .如果b ∈B ,则a ∉A D .如果b ∉B ,则a ∉A答案 B解析命题“如果p,则q”的否命题是“如果綈p,则綈q”,“∈”与“∉”互为否定形式.2.命题“若綈p,则q”的逆否命题为()A.若p,则綈q B.若綈q,则綈pC.若綈q,则p D.若q,则p答案 C3.下列命题为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x=1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题答案 A解析对A,即判断:若x>|y|,则x>y的真假,显然是真命题.4.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.答案 4解析逆命题为“若A∩B≠A,则A∪B≠B”;否命题为“若A∪B=B,则A∩B=A”;逆否命题为“若A∩B=A,则A∪B=B”,全为真命题.5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.解(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明即可.。
02简易逻辑--命题的四种形式
![02简易逻辑--命题的四种形式](https://img.taocdn.com/s3/m/30cabad8941ea76e58fa0456.png)
例1 写出由下述各命题构成的“p 或 q”形式的复合命题: (2) p: 方程 x2-1=0 的解是 x=1, q: 方程 x2-1=0 的解是 x=-1; (3) p: 实数的平方是正数, q: 实数的平方是 0. (2)方程 x2-1=0 的解都是 x=1, 或方程 x2-1=0 的解都是 x=-1; (3)实数的平方都是正数或实数的平方都是 0. 注: 由简单命题构成复合命题, 一定要检验是否 符合“真值 表”, 如果不符要作语言上的调整. 例2 写出由下述各命题构成的“p 且 q”形式的复合命题: (1) p: 四条边相等的四边形是正方形, q: 四个角相等的四边形是正方形; (2) p: 菱形的对角线互相平分, q: 菱形的对角线互相垂直; (3) p: 实数的平方是正数, q: 实数的平方是 0. (1)四条边相等的四边形是正方形且四个角相等的四边形是 正方形; (2)菱形的对角线互相垂直平分; (3)实数的平方都是正数且实数的平方都是 0.
例3 写出由下述各命题构成的“非 p” 形式的复合命题: (1) p: 有些质数是奇数; (2) p: 方程 x2-5x+6=0 有两个相等的实 根; (3) p: 四条边相等的四边形是正方形. (1)非 p: 所有的质数都是奇数或都不是奇数; ( p 即: 质数中既有奇数又有不是奇数的数)
(2)非 p: 方程 x2-5x+6=0 没有两个相等的实根;
非p 真 假 假 真
p
p
q p或q 真 真 假 真 真 真 假 假
p
q p且q 真 真 假 假 真 假 假 假
“p 且 q”形 式的复合命题 当p 与q同时为 真时为真, 其 它情形为假.
6.注意 ①由简单命题构成复合命题时, 不一定是简单地加“或、且、 非”等逻辑联结词; 另外应注意含“或、且、非”等词汇的命 题也不一定是复合命题, 在进行命题的合成或分解时一定要检 验是否符合复合命题的“真值表”, 如果不符要作语言上的调 整②命题的“否定”是学习上的重点 . , 因为这是“反证法”证 明的第一步. 必须注意, 命题的“否定”与一个命题的“否命 题”是两个不同的概念: 对命题 p 的否定(即非 p )是否定命题 p 所作的判断; 而“否命题”是对“若 p 则 q”形式的命题而言, 要同时否定它的条件与结论.
2021年高中数学第一章常用逻辑用语1.3.2命题的四种形式课件7新人教B版选修2_1
![2021年高中数学第一章常用逻辑用语1.3.2命题的四种形式课件7新人教B版选修2_1](https://img.taocdn.com/s3/m/95741e76bceb19e8b9f6ba97.png)
(4)假设x2+y2=0,那么x,y全为0.
逆命题:假设x,y全为0,那么x2+y2 =0; 否命题:假设x2+y2≠0,那么x,y不全为0; 逆否命题:假设x,y不全为0,那么x2+y2≠0
(5)假设a+b是偶数,那么a,b都是 偶数
逆命题:假设a,b都是偶数,那么a+b是偶数; 否命题:假设a+b不是偶数,那么a,b不都是偶数; 逆否命题:假设a,b不都是偶数,那么a+b不是偶数.
命题的四种形式
命题的四种形式
命题 原命题 逆命题 否命题 逆否命题
表述形式
若p,则q 若q ,则 p
若p,则 q 若q,则 p
关于原命题的逆命题、否命题和逆否命题的写法: 首先:把原命题整理成“假设p,那么q〞. 其次: (1)“换位〞得到“假设q,那么p〞,即为逆命题; (2)“换质〞(分别否认)得到“假设非p,那么非q
(3)原命题:若 m>14,则 mx2-x+1=0 无实根.(真)
否命题:若 m≤14,则 mx2-x+1=0 有实根.(真)
逆否命题:若 mx2-x+1=0 有实根,则 m≤14.(真)
(4)原命题:假设abc=0,那么a=0或b=0或c= 0.(真)
否命题:假设abc≠0,那么a≠0且b≠0且 c≠0.(真)
A.逆命题 B.逆否命题 D.以上判断都不对
C.否命题
[答案] B
逆否命题:假设a≠0且b≠0且c≠0,那么
(5)原命题:假设x2-2x-3=0,那么x=3或x=-1.(真)
否命题:假设x2-2x-3≠0,那么x≠3且x≠-1.(真)
逆否命题:假设x≠3且x≠-1,那么x2-2x- 3≠0.(真)
▪ 2.写出以下命题的否命题及命题的否认形式,并 判断真假.
命题的四种形式举例
![命题的四种形式举例](https://img.taocdn.com/s3/m/65203376f011f18583d049649b6648d7c1c7088b.png)
命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。
命题可以是直言命题、条件命题、模态命题和复合命题。
下面分别介绍这四种形式的命题,并给出相应的例子。
1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。
例如:“所有猫都是哺乳动物。
”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。
2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。
条件命题通常由两个部分组成:前件和后件。
前件是条件,后件是结果。
例如:“如果天下雨,那么地会湿。
”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。
3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。
例如:“明天可能会下雨。
”这个命题就是一个模态命题,表达了明天下雨的可能性。
4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。
复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。
例如:“如果天下雨,那么地会湿,但是今天没下雨。
”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。
以上就是四种形式的命题及其举例。
在逻辑学中,这些命题形式被广泛用于推理和论证。
第2讲 简易逻辑
![第2讲 简易逻辑](https://img.taocdn.com/s3/m/fd6ef528227916888486d7ec.png)
第2讲简易逻辑一、命题(一)知识归纳:1.可以判断真假的语句叫命题。
①含有逻辑联结词,如“p或q”、“p且q”、“非p”形式的命题称复合命题。
②复合命题的真值表:“非p”形式的复合命题与p的真假相反;“p或q”形式的复合命题当p与q同时为假时为假,其它情况时为真;“p且q“形式的复合命题当p与q同时为真时为真,其它情况时为假。
2.命题的四种形式:①原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q 则p。
②一个命题与它的逆否命题是等价的。
③(p或q)= p且q,(p且q)= (p或q)。
(二)学习要点:1.复合命题真假的判断提学习上的难点,应从“真值表”、“集合”、“逆命题”等多个角度进行分析。
2.由简单命题构成复合命题,不一定是简单地加是“或、且、非”等逻辑联结词,另外应注意含“或、且、非”等词汇的命题也不一定是复合命题,在进行命题的合成或分解时一定要检验是否符合复合命题的“真值表”,如果不符要作语言上的调整。
3.命题的“否定”是学习上的重点,因为这是“反证法”证明的第一步,必须注意,命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题p的否定(即非p)是否定命题p所作的判断,而“否命题”是对“若p则q“形式的命题而言,同时否定它的条件与结论。
但应注意,关于命题的学习只需作一般性的了解,不必过分钻牛角尖,高考基本上没有要求。
【例1】写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。
{解析}由简单命题构成复合命题,一定要检验是否符合“真值表”如果不符要作语言上的调整。
(1)p:9是144的约数,q:9是225的约数.(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1,(3)p:实数的平方是正数,q:实数的平方是0.{解析}(1)p或q:9是144或225的约数;p且q:9是144与225的公约数,(或写成:9是144的约数,且9是225的约数);非p:9不是144的约数.∵p真,q真,∴“p或q”为真,“p且q”为真,而“非p”为假.(2)p或q:方程x2-1=0的解是x=1,或方程x2-1=0的解是x=-1(注意,不能写成“方程x2-1=0的解是x=±1”,这与真值表不符);p且q:方程x2-1=0的解是x=1,且方程x2-1=0的解是x=-1;非p:方程x2-1=0的解不都是x=1(注意,在命题p中的“是”应理解为“都是”的意思);∵p假,q假,∴“p或q”与,“p且q”均为假,而“非p”为真.(3)p或q:实数的平方都是正数或实数的平方都是0;p且q:实数的平方都是正数且实数的平方都是0;非p:实数的平方不都是正数,(或:存在实数,其平方不是正数);∵p假,q假,∴“p或q”与“p且q”均为假,而“非p”为真.{评析}在命题p或命题q的语句中,由于中文表达的习惯常常会有些省略,这种情况下应作词语上的调整。
高中数学第18讲:命题与量词、命题的四种形式(教师版)
![高中数学第18讲:命题与量词、命题的四种形式(教师版)](https://img.taocdn.com/s3/m/034d9d930b4e767f5acfce83.png)
第18讲命题与量词、命题的四种形式知识点一:命题:1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n 等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.例如:“不一定等于3”不能判定真假,它不是命题.知识点二:四种命题1. 四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.2. 四种命题的关系:①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.四种命题及其关系:关于逆命题、否命题、逆否命题,也可以有如下表述:第一:交换原命题的条件和结论,所得的命题为逆命题;第二:同时否定原命题的条件和结论,所得的命题为否命题;第三:交换原命题的条件和结论,并且同时否定,所得的命题为逆否命题;知识点三:全称量词与存在量词:1. 全称量词与存在量词:全称量词及表示:表示全体的量词称为全称量词。
表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。
含有全称量词的命题,叫做全称命题。
全称命题“对M中任意一个x,有p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.(II)存在量词及表示:表示部分的量称为存在量词。
表示形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。
课件6:1.3 充分条件、必要条件与命题的四种形式
![课件6:1.3 充分条件、必要条件与命题的四种形式](https://img.taocdn.com/s3/m/996c36347ed5360cba1aa8114431b90d6d858942.png)
课前自修
解析:对于①,因为原命题等价于逆否命题,所以①是真命题; 对于②,由充分、必要条件的定义知②是真命题;对于③,由充 要条件的意义知,③是真命题;对于④,“若 p,则 q”的否命题是 “若綈 p,则綈 q”,所以④是假命题.
考点探究
考点探究
考点1 四种命题及其真假
【例1】(2013·济南模拟)在命题p的四种形式(原命题、逆 命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知 命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a2x+b2y+c2= 0平行,则a1b2-a2b1=0”.那么f(p)=( )
考点探究
∴a2-ab+b2=a-b22+34b2>0. ∴a+b-1=0,即 a+b=1. 综上可知,当 ab≠0 时,a+b=1 的充要 条件是 a3+b3+ab-a2-b2=0.
考点探究
点评:有关充要条件的证明问题,要分清哪个是条件,哪 个是结论,由“条件” “结论”是证明命题的充分性,由 “结论” “条件”是证明命题的必要性.证明要分两个环 节:一是充分性,二是必要性.对于充要条件问题,我们不仅 要会利用定义进行证明,而且要掌握充要条件的探求.
第一章 集合与常用逻辑用语
§1.3 充分条件、必要条件与命题的 四种形式
考纲要求
考纲要求
1.理解命题的概念. 2.了解“若p,则q”形式命题的逆命题、否命题与逆否命 题,会分析四种命题的相互关系. 3.理解充分条件、必要条件与充要条件的意义. 4.会用反证法证明命题.
课前自修
课前自修
基础回顾
考点探究
考点3 充要条件的证明
【例 3】已知 ab≠0,求证:a+b=1 的充要条件是 a3 +b3+ab-a2-b2=0.
四种命题
![四种命题](https://img.taocdn.com/s3/m/3d2397052af90242a895e553.png)
四种命题1.命题及其概念(1)判断一个语句是不是命题,首先应明确它是否符合“是陈述句”和“可以判断真假”两个条件,只有能判断真假的陈述句才是命题.一个命题要么是真的,要么是假的,不能既是真命题又是假命题,也不能模棱两可,无法判断其真假.(2)数学中的定义、公理、公式、定理都是命题,但命题不一定都是定理,因为命题有真假之分,而定理是真命题.2.命题的结构形式(1)数学中的命题大多是:“若p,则q”的形式,其中p叫做命题的条件,q叫做命题的结论.而数学中的有些命题从形式上看,不是“若p,则q”的形式,但是将它的表述作适当改变,也可以写成“若p,则q”的形式,因此,在研究命题时,不要受其形式的影响.(2)“若p,则q”形式的命题中,p和q本身也可为一个简单命题.(3)并非所有的命题都可写成“若p,则q”型,如“13是有理数”,“5>3”.3.命题真假的判断(1)一个命题的真假与命题所在环境有关.对其进行判断时,要注意命题的前提条件,如“若a⊥c,b⊥c,则a∥b”在平面几何中是真命题,而在立体几何中却是假命题.(2)关于“若p,则q”型的命题许多命题都可写成“若p,则q”的形式.其中p为条件,q为结论,p和q 本身也可为一个简单命题,这种命题形式明确、简洁,是我们研究命题的主要形式之一.很多命题表面上不是“若p,则q”型的,但是,可以改写成“若p,则q”型,当一个命题改写成“若p则q”的形式之后,判断这种命题的真假的办法:①若由“p”经过逻辑推理得出“q”,则可确定“若p,则q”是真;确定“若p,则q”为假,则只需举一个反例说明即可.②从集合的观点看,我们建立集合A、B与命题中的p、q之间的一种联系:设集合A={x|p(x)成立},B={x|q(x)成立},就是说,A是能使条件p成立的全体对象x所构成的集合,B是能使条件q成立的全体对象x所构成的集合,此时,命题“若p,则q”为真,当且仅当A⊆B时满足.1.一般地,我们把用语言、符号或式子表达的,可以判断真假________的陈述句叫做命题.2.判断为真的语句叫真命题_______,判断为假的语句叫假命题______.3.命题常写成“若p,则q__________”的形式,其中命题中的p叫做命题的条件______,q叫做命题的结论________.考点一命题概念的理解例1判断下列语句是否是命题,并说明理由.(1)求证:3是无理数;(2)x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.[分析]由题目可获取以下主要信息:①给定一个语句,②判定其是否为命题并说明理由.解答本题要严格验证该语句是否符合命题的概念.[解析](1)祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,它包括x2+4x+4>0,或x2+4x+4=0,对于x ∈R,可以判断真假,它是命题.(3)是疑问句,不涉及真假,不是命题.(4)是命题,人群中有的人喜欢苹果,也存在着不喜欢苹果的人.[点评] 判定一个语句是否为命题,主要把握以下两点:(1)必须是陈述语句.祈使句、疑问句、感叹句都不是命题.(2)其结论可以判定真或假.含义模糊不清,不能辨其真假的语句,不是命题.另外,并非所有的陈述语句都是命题,凡是在陈述语句中含有比喻、形容等词的词义模糊不清的,都不是命题.跟踪练习:判断下列语句是否为命题,并说明理由.(1)若x <2,则x <1;(2)x 2+2x -1=0;(3)存在实数x ,使得不等式x 2-3x +1<0成立.[解析] (1)是命题.因为由x <2不能推出x <1,可以作出判断.(2)不是命题.因为字母的性质不明确,所以不是命题.(3)是命题.因为根据不等式的解法我们可以求得不等式x 2-3x +1<0的解,所以是命题.考点二 命题真假的判断例2 判断下列命题的真假:①AB →+BC →=AC →;②log 2x 2=2log 2x ;③若m >1,则方程x 2-2x +m =0无实根;④直线x+y=0的倾斜角是π4;⑤若α=3π4,则sinα=22;⑥若x∈A,则x∈(A∩B).[分析]运用数学中的定义、定理、公理、公式等知识进行判断.[解析]①是真命题;②是假命题.如x=-1时,log2x2=0,而2log2x=2log2(-1)无意义;③是真命题.若m>1,则Δ=4-4m<0;④是假命题.直线x+y=0的倾斜角是3π4;⑤是真命题;⑥是假命题.如A={1,2,3},B={2,3,4}时,1∈A,但1∉A∩B.[点评](1)真命题的判定方法真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.另外,一些命题的真假也可以依据客观事实作出判断.跟踪练习:给出下列几个命题:(1)若x,y互为相反数,则x+y=0;(2)若a>b,则a2>b2;(3)若x>-3,则x2+x-6≤0;(4)若a,b是无理数,则a b也是无理数.其中的真命题有________个.[答案] 1[解析](1)是真命题.(2)设a=1>b=-2,a>b,但a2<b2,假命题.(3)设x =4,显然x>-3,但x2+x-6=14>0,假命题.(4)设a=(2)2,b=2,则a b=(2)2=2是有理数,假命题.考点三命题结构分析例3指出下列命题的条件与结论.(1)负数的平方是正数;(2)正方形的四条边相等.[分析]由题目可获取以下主要信息:①给出了命题的一般简略形式.②找出命题的条件和结论.解答本题的关键是正确改变命题的表述形式.[解析](1)可表述为“若一个数是负数,则这个数的平方是正数”条件为:“一个数是负数”;结论为:“这个数的平方是正数”.(2)可表述为:“若一个四边形是正方形,则这个四边形的四条边相等”.条件为:“一个四边形是正方形”;结论为:“这个四边形的四条边相等”.[点评]一个命题总存在条件和结论两个部分,但是,有的时候条件和结论不是很明显,这时可以把它的表述作适当的改变,写成“若p,则q”的形式,其中p为条件,q为结论.跟踪练习:写出下列命题的条件与结论.(1)质数是奇数;(2)矩形是两条对角线相等的四边形.[解析](1)可表述为:“若一个自然数是质数,则它是奇数”.条件为:“一个自然数是质数”;结论为:“这个自然数是奇数”.(2)可表述为:“若一个四边形是矩形,则它的两条对角线相等.”条件为:“若一个四边形是矩形”;结论为:“这个四边形的两条对角线相等”.例4将下面的命题写成“若p,则q”的形式.当a>0时,函数y=ax+b的值随x的增加而增加.[错解]“若p,则q”的形式为:如果a>0,则函数y=ax+b的值随x的增加而增加.[辨析]原命题有两个条件:a>0和x增加,其中a>0是大前提,x增加是条件.[正解]“若p,则q”的形式为:当a>0时,若x的值增加,则函数y=ax +b的值也增加.第2课时四种命题及其相互关系1.四种命题的概念关于原命题的逆命题、否命题和逆否命题的写法:首先:把原命题整理成“若p,则q”的形式.其次:(1)“换位”(即交换命题的条件与结论)得到“若q,则p”,即为逆命题;(2)“换质”(即将原命题的条件与结论分别否定后作为条件和结论)得到“若非p,则非q”即为否命题;(3)既“换位”又“换质”(即把原命题的结论否定后作为新命题的条件,条件否定后作为新命题的结论)得到“若非q,则非p”即为逆否命题.注意:①非p常记作⌝p.②只有“若p,则q”形式的命题才研究它的逆命题、否命题、逆否命题.2.要注意否命题与命题的否定是不同的,“命题的否定”只否定结论,而否命题要对条件和结论分别进行否定.“若p,则q”形式的命题其否命题为“若⌝p,则⌝q”.在写一个命题的否定或否命题时要注意一些关键词的否定,后面学习逻辑联结词时还要详加讨论.3.命题的四种形式间的关系(1)命题的四种形式中,哪个是原命题是相对的,不是绝对的;(2)四种命题间有两对互逆关系,两对互否关系,两对互为逆否的关系,互为逆否的两命题同真同假,在判断和证明中要注意它们之间的相互转化.要通过实例去发现四种命题间的关系,并能用命题间的关系去验证写出的命题是否正确.4.间接证明有关问题由于原命题和它的逆否命题有相同的真假性,所以在直接证明一个命题有困难时,可以通过证明它的逆否命题为真来间接证明原命题为真,即正难则反的思想.1.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题__________,其中一个命题叫做原命题________,另一个叫做原命题的逆命题________.2.一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题_________,其中一个命题叫做原命题_______,另一个叫做原命题的否命题_________.3.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题_____________,其中一个命题叫做原命题________,另一个叫做原命题的逆否命题_________.4.原命题为真,它的逆命题不一定________为真.5.原命题为真,它的否命题不一定_______为真.6.原命题为真,它的逆否命题一定______为真.即互为逆否的命题是等价命题,它们同真____同假____,同一个命题的逆命题和否命题是一对互为逆否______的命题,它们同真____同假_____.考点一命题的四种形式之间的转换例1写出下列命题的逆命题、否命题与逆否命题.(1)负数的平方是正数;(2)正方形的四条边相等.[分析]此题的题设和结论不很明显,因此首先将命题改写成“若p,则q”的形式,然后再写出它的逆命题、否命题与逆否命题.[解析](1)改写成“若一个数是负数,则它的平方是正数”.逆命题:若一个数的平方是正数,则它是负数.否命题:若一个数不是负数,则它的平方不是正数.逆否命题:若一个数的平方不是正数,则它不是负数.(2)原命题可以写成:若一个四边形是正方形,则它的四条边相等.逆命题:若一个四边形的四条边相等,则它是正方形.否命题:若一个四边形不是正方形,则它的四条边不相等.逆否命题:若一个四边形的四条边不相等,则它不是正方形.[点评]写出一个命题的逆命题、否命题、逆否命题的关键是分清原命题的条件和结论,然后按定义来写.在判断原命题及逆命题的真假时,常借助原命题与其逆否命题同真假,逆命题和否命题同真假进行判断.跟踪练习:写出下列命题的逆命题、否命题、逆否命题.(1)若x2+y2=0,则x,y全为0.(2)若a+b是偶数,则a,b都是偶数.[解析](1)逆命题:若x,y全为0,则x2+y2=0;否命题:若x2+y2≠0,则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0.(2)逆命题:若a,b都是偶数,则a+b是偶数;否命题:若a+b不是偶数,则a,b不都是偶数;逆否命题:若a,b不都是偶数,则a+b不是偶数.考点二四种命题的关系及真假判断例2写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.[解析](1)逆命题:若一个四边形的对角线互相垂直,则它是菱形.是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直.是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形.是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高.是真命题.否命题:若两个三角形不等高,则这两个三角形不全等.是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高.是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的孤.是假命题.逆否命题:若一条直线不平分弦所对的孤,则这条直线不是弦的垂直平分线.是真命题.[点评]①四种命题具有两对互为逆否的关系,所以,判断四种命题的真假时,只需判断出原命题与其逆命题的真假,即可得其他命题的真假.②当一个命题是否定性命题且不易判断真假时,可通过判断其逆否命题的真假以达到目的.跟踪练习:已知一个命题与它的逆命题、否命题、逆否命题,在这四个命题中()A.真命题个数一定是奇数B.真命题个数一定是偶数C.真命题个数可能是奇数,也可能是偶数D.以上判断都不对[答案] B[解析]因为原命题是真命题,则它的逆否命题一定是真命题,一个命题的逆命题是真命题,则它的否命题一定是真命题,故选B.考点三互为逆否命题同真同假的应用例3判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.[分析]解答本题可以直接进行逻辑推理判断;可以从逆否命题直接判断;也可以先判断原命题的真假,然后利用等价命题的同真同假判断.[解析]解法一:∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.解法二:原命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为“若方程x2+2x-3m=0无实数根,则m≤0”.方程x2+2x-3m=0无实数根,∴Δ=4+12m<0.∴m<-13≤0.∴“若方程x2+2x-3m=0无实数根,则m≤0”为真.[点评]本题中解法一利用了原命题与它的逆否命题同真同假的方法解决;解法二是先写出原命题的逆否命题,再判断其真假.跟踪练习:有下列四个命题:(1)“若x+y=0,则x、y互为相反数”的否命题;(2)“对顶角相等”的逆命题;(3)“若x≤-3,则x2-x-6>0”的否命题;(4)“直角三角形的两锐角互为余角”的逆命题.其中真命题的个数是()A.0B.1C.2D.[答案] B[解析](1)“若x+y≠0,则x与y不是相反数”是真命题.(2)“对顶角相等”的逆命题是“相等的角是对顶角”是假命题.(3)“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,当x=4时,x>-3而x2-x-6=6>0,故是假命题.(4)“若一个三角形的两锐角互为余角,则这个三角形是直角三角形”,真命题.[点评]本题的解法中运用了举反例的办法,如(2)、(3)的解法.举出一个反例说明一个命题不正确是以后经常用到的方法.例4写出命题“已知a、b、c、d是实数,如果a=b,c=d,则a+c=b +d”的逆命题、否命题,并证明它们的真假.[错解]逆命题:如果a+c=b+d,则a、b、c、d是实数,且a=b,c=d.假命题.否命题:如果a、b、c、d不是实数,a≠b,c≠d,则a+c≠b+d.假命题.[辨析]上述解法没有弄清命题的条件,将大前提“a、b、c、d是实数”充当了条件.[正解]逆命题:已知a、b、c、d是实数,如果a+c=b+d,则a=b,c =d.假命题.否命题:已知a、b、c、d是实数,如果a≠b,或c≠d,则a+c≠b+d.假命题.。
命题的四种形式
![命题的四种形式](https://img.taocdn.com/s3/m/c480547950e2524de4187e47.png)
学习目标
• 1.理解命题的逆、否、逆否命题,会分析四种 命题的相互关系,提高逻辑推理能力.
• 2.独立思考,合作学习,探究命题的四种形式 的写法.
• 3.激情投入,高效学习,养成扎实严谨的科学 态度。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
基础知识点拨:
)个。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
课堂评价
学科班长:1.优秀小组: 2.优秀个人:
课后完成训练学案并整理巩固
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
2021
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
课堂小结
1.知识方面: 命题的四种形式、四种命题的关系、 四种命题的真假判断
2.思想方法:
化归与转化
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
整理巩固
要求:整理巩固探究问题
落实基础知识 完成知识结构图
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
(2) 若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。
想一想? 由以上三例及总结我们能发现什么? 即:原命题与逆否命题的真假是等价的。 逆命题与否命题的真假是等价的。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
合作探究 8分钟
内容及目标: 内容及目标: 例1——命题四种形式 例2拓展——含“且”的命题四种形式的书写 要求:
课件2:1.3.2 命题的四种形式
![课件2:1.3.2 命题的四种形式](https://img.taocdn.com/s3/m/626c55fefc0a79563c1ec5da50e2524de518d0a4.png)
1.3.2 命题的四种形式
复习引入
1.命题的定义 (要点:能判断真假的陈述句).
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。判断为假的语句叫做假 命题。 理解:
1)命题定义的核心是判断,切记:判断的标准必须 确定,判断的结果可真可假,但真假必居其一。 2)含有变量且在未给定变量的值之前无法确定语句 的真假。
否命题:当c >0 时,若a ≤b ,则ac ≤ bc . 否命题为真.
逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.
事例:主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只 有张三和李四两人准时赶到,王五打来电话说:“临时有急事, 不能来了。”主人听了随口说了句:“你看看,该来的没有来。” 张三听了,脸色一沉,起来一声不吭地走了;主人愣了片刻,又 道:“哎,不该走 的又走了。”李四听了大怒,拂袖而去。请你用逻辑学原理解释 这两人离去的原因。
否命题: 若x1且x2, 则x2-3x+2 0。
逆否命题: 若x2-3x+2 0, 则x1且x 2 。
例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写 出它的逆命题、否命题、逆否命题,并分别判断它们 的真假:
解:
逆命题:当c >0 时,若ac >bc ,则a >b.
逆命题为真.
(真命题) (真命题)
例2.原命题:若a > b, 则 ac2>bc2。 若逆否命题:若ac2≤bc2,则a≤b。
(假命题) (假命题)
原命题是真命题,它的逆否命题一定是真命题. 原命题是假命题,它的逆否命题一定是假命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法点拨:
(1)要实现四种命题的转化关键找出原命题的条件和结论。 若原命题不是“若P则q”的形式,先把原命题写成“若 P则q”的形式,再分清命题的题设和结论。 (2)若原命题含有大前提,在写各个命题时,注意大前提不变。 (3)注意词的否定 “或”的否定为“且” “且”的否定为“或” “都”的否定为“不都”。
2.判断命题真假的方法
2 2 x y 例2.试判断命题“若 ,则 x y ”的真假
方法点拨:判断命题真假的方法:直接法和间接法(判断逆
否命题的真假)
自我校对并改正
当堂检测答案: 1.B 2.B 3.B 4.C 5. 逆命题:当c>0时,若a≤b,则ac bc. 否命题:当c>0时,若ac<bc,则a>b. 逆否命题:当c>0时,若a>b,则ac<bc. 命题的否定:当c>0时,若ac bc,则a>b.
1、判断下列说法是否正确: (1)一个命题的逆命题为真, 它的逆否命题不一定为真。 (2)一个命题的否命题为真, 它的逆命题一定为真。 T
T
2、如果一个命题的逆命题为假命题,则它的否命题(A)
A. 一定是假命题
C. 一定是真命题
B. 不一定是假命题
D. 有可能是真命题
1.命题的否定和否命题的区别?
课堂小结
知识方面:
1、四种命题形式: 原命题:若p则q. 否命题: 若¬ p则 ¬ q. 逆命题: 若q则p.
逆否命题: 若¬ q则 ¬ p.
2、四种命题间的相互关系及其真假性的关系 3、命题的否定与否命题的区别
思想方法方面:
由特殊到一般的思想
课后作业
课本:P23练习A组
2.判断命题真假的方法有几种?
2 2 x y 例2.试判断命题“若 ,则 x y ”的真假
1.命题的否定和否命题的区别?
(1)定义
命题的否定只否定结论; 否命题既否定条件又否定结论
(2)适用的命题
命题的否定适用于所有的命题; 否命题只适用于“若P,则q”的形式
(3)真假性
命题的否定与原命题真假性相反; 否命题与原命题的真假性无关
若原命题为“若p,则q”的形式,则它的逆命题、 否命题、逆否命题应分别写成什么形式?
四种命题形式:
原命题: 若p,则q. 逆命题: 若q,则p. 否命题: 若¬ p,则¬ q. q,则¬ p. 逆否命题: 若¬
注意命题的否定与否命题的区别: 一般命题都有其否定,只否定结论;而只有“如果p,则q” 形式的命题才有否命题,它即否定条件又否定结论。
有些命题可改写成:“若p,则q”的形式
其中p叫做命题的条件,q叫做命题的结论.
2.命题的否定(非)
命题的否定是只否定原命题的结论
情境引入
• 阿凡提之《金币和毛驴的故事》 有一天,财主想要阿凡提的毛驴但又不想 给金币,就对阿凡提说:"你给我毛驴,我就给 你金币."阿凡提回答道:"你给我金币,我就给 你毛驴."狡猾的财主说:"你不给我毛驴,我就 不给你金币."阿凡提想了想说:"你不给我金 币,我就不给你毛驴."
二、四种命题的真假判断
四种命题的真假性间有什么规律呢? 题号 原命题 逆命题 否命题 逆否命题 真 假 真 假 真 假 假 真 真 假
( 1)
( 2) ( 3) 检测
小结:
假 真 真 假
真 假
(1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系。
1.3.2
命题的四种形式
课前一题
1.对于 x, y R ,“ xy 0 ”是“ x2 y 2 0” 的 条件 2.P:若 xy 0 ,则 x y 0 写出 P
2 2
优秀学生
刘璇、张晓玲、杜洪楠、张婷婷、
李东君、逄琳、陈平、张园园、
栾学超、董娜
知识回顾
1. 命题的条件和结论
一、新授概念
下列四个命题中,命题(1)与命题(2)(3)(4)的条
件和结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
原命题
x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数;
互 否
逆否命题 若¬ q则¬ p
否命题 若¬ p则¬ q
互逆
注:换位后的两个命题互为逆命题,换质后的两个命题互为否命题,既 换位又换质后的两个命题互为逆否命题。
例1.写出下列命题的逆命题、否命题与逆否命题,并 判断它们的真假. (1)x, y R, 若 xy 0,则x 0
(2)若a=0,则ab=0
换位
换质
换位且 换质
说出下列命题的逆命题、否命题与逆 否命题,并判断真假
若 a b , 则a>b.
2 2
假 假 假 假
逆命题: 若a>b,则a2>b2. 否命题:若a2≤b2,则a≤b. 逆否命题:若a≤b,则a2≤b2.
四种命题间的相互关系:
原命题 若 p则 q 互 否
互逆
逆命题 若q则p