遥感的定义与分类

合集下载

遥感

遥感

第一章本章思考题:1.遥感概念2.遥感探测系统包括3.与传统对地探测手段比较,遥感的特点?举例说明4.遥感的分类?分类依据?遥感:不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布等特征的综合技术遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分遥感特点:1.大面积的同步观测——瞬时信息获取范围如一幅Landsat图像,覆盖面积185 km×185 km,在5~6 min内可完成扫描,实现对地的大面积同步观测。

所取得的数据可进行大面积资源和环境调查,并且不受地形阻隔等限制。

2.时效性——同一地区信息获取的重复周期遥感探测可以在短时间内对同一地区进行重复探测,监测地球上许多事物的动态变化。

一般地球资源卫星8~9天可重复一次,气象卫星每天两次,而传统的地面调查需要花费大量的人力和物力,且周期很长。

因此,遥感方法具有很好的时效性。

遥感在天气预报、火灾和水灾监测以及军事行动等领域的应用,反映了遥感方法的时效性优势。

3.信息的综合性和可比性遥感获得的地物电磁波特性数据综合地反映了地球上许多自然、人文信息,客观地记录了地面的实际状况,数据综合性很强。

同时,不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性。

4.经济性——与传统信息获取手段相比从投入的费用与所获取的效益看,遥感与传统的方法相比,可以大大地节省人力、物力、财力和时间,具有很高的经济效益和社会效益。

如Landsat卫星的投入与效益比估计为1:80 。

5.局限性——相对于整个电磁波谱段而言信息的提取方法不能满足遥感快速发展的要求。

数据的挖掘技术不完善,使得大量的遥感数据无法有效利用。

遥感分类:1)按遥感平台分类:地面遥感、航空遥感、航天遥感、航宇遥感2)按传感器的探测波段分类:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感3)按工作方式分类:主动遥感和被动遥感成像遥感和非成像遥感4)按应用领域分类:大的研究领域具体应用领域结论:电磁辐射理论是遥感的物理基础。

遥感

遥感
七、黄冈市遥感影像值计算
八、黄冈市遥感影像及其NDVI值对比和综合评价
(2)遥感原理
能源:太阳辐射能——大气传输,部分大气中微粒散射和吸收衰减。波长位于大气窗口的能量才能通过大气层,并经大气衰减后到达地表——与地表相互作用:不同波长的能量到达地表后,被选择性反射、吸收、透射、折射——再次通过大气层:包含不同地表特征波普响应能量,再次经大气吸收,散射衰减。不仅使传感器接收的地面辐射强度减弱,而且由于散射产生天空散射是遥感影像反差降低并引起遥感数据的辐射,几何畸变,图像模糊,直接影响到图像的清晰度、质量和解译精度-——遥感系统:通过遥感系统记录辐射值。
12、太阳同步轨道:卫星轨道面永远与当时的“地心——日心连线“保持恒定角度。
13、特征提取的概念:也可称为信息提取,也就是从多光谱数据中提取出能表示图像基本要素的主要成分,压缩多波段海量遥感数据
14、、影像配准概念:是将同一地区的两副影像重叠在一起,使其影像位置完全配准的处理过程。
15、密度分割概念:是指对单波段黑白遥感图像按灰度分层,对每层赋予不同的色彩,使之变为一幅彩色图像。
简答题
1、遥感的优势与局限:优势,探测范围大,采集数据快;获取资料速度快,周期短;受地面限制少;手段多,获取信息量大;具有很高的经济效益和社会效益;获取数据具有综合性;能动态反应地面事物变化。
局限,信息的提取方法不能满足遥感快速发展的要求;数据的挖掘技术不完善,使大量遥感数据无法有效利用。
判别航天遥感和航空遥感(航片和卫片)
3、遥感的现状与趋势:多分辨率多遥感平台并存,空间分辨率、时间分辨率及光谱分辨率普遍提高;微波遥感,高光谱遥感迅速发展;遥感综合应用不断深化;商业遥感的时代到来
4、监督分类与非监督分类的优缺点

遥感

遥感

遥感的定义:从不同高度的平台上,使用遥感器收集物体的电磁波信息,再将这些信息传输到地面并进行加工处理,从而达到对物体进行识别和监测的全过程。

遥感技术具有先进性、综合性和实用性。

构成遥感技术的4个必不可少的要素是对象、遥感器、信息传播媒介和平台。

遥感分类:按遥感对象分类宇宙遥感地球遥感按应用空间尺度分类全球遥感区域遥感城市遥感按平台高度分类地面遥感航空遥感航天遥感按成像波段分类可见光遥感紫外遥感红外遥感微波遥感多光谱遥感按传感器接收信号的来源和方式分类主动遥感被动遥感主动遥感(Active RS):也称有源遥感,是指从遥感平台上的人工辐射源向目标发射一定形式的电磁波,再由遥感器接收和记录其反射波的遥感系统。

被动遥感(Passive RS):也称无源遥感,是指用遥感器从远距离接收和记录物体自身发射或反射太阳辐射的电磁波信息的遥感系统。

按应用专业分类农业遥感林业遥感地质遥感环境遥感气象遥感……遥感的特性和优势:空间特性时间特性多普特性信息巨大受地面条件限制小经济效益高用途广发展迅速;遥感技术系统:空基系统地基系统研究技术支持系统;空基系统:完成遥感数据的采集和传输工作。

遥感平台,传输器,监控系统,数据传输系统地基系统:完成遥感数据的接收、处理存档、分发和应用开发工作。

研究技术支持系统:完成定标、地面试验、光谱数据测量等基础性工作以及与遥感发展和应用密切相关的高技术研究和开发任务。

电磁波的概念:在真空或物质中通过传播电磁场的振动而传输电磁能量的波。

电磁波谱定义;将电磁波在真空中按照波长或频率的大小依顺序划分成波段,排列成谱即称为电磁波谱大气对电磁波传输过程的影响:折射散射反射吸收;对遥感数据最主要的影响因素是散射和吸收。

散射形式有三种:瑞利散射、米氏散射和无选择性反射。

大气窗口定义:电磁波辐射在大气传输中透过率比较高的波段。

在遥感中测量从目标反射或目标本身发射的电磁波的能量的过程称为辐射量的测定。

辐射量的测定方式:辐射测量和光度测量不同温度的物体具有不同的辐射能量,记录它们的辐射能量差别就为区别它们提供了基础。

遥感学

遥感学

第一章1、遥感的基本概念是什么?答:广义理解,泛指一切无接触的远距离探测,包括对磁场、力场、机械波(声波、地震波)等的探测。

狭义理解,遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2、遥感探测系统包括哪几个部分?答:物理基础、技术系统、成像原理、遥感应用。

※3、遥感如何分类?答:遥感的分类方法有很多,主要有下列几种。

(1)按遥感平台分为地面遥感,传感器设置在地面平台上,如车载、船载、手提、固定等;航空遥感,传感器设置于航空器上,主要是飞机、气球等;航天遥感,传感器设置于环地球的航天器上,如人造卫星、航天飞机、空间站、火箭等;航宇遥感,传感器设置于星际飞船上,指对地月系统外的目标的探测。

(2)按传感器的探测波段分为紫外遥感,探测波段在0.05-0.38μm之间;可见光遥感,探测波段在0.38-0.76μm之间;红外遥感,探测波段在0.76-1000μm之间;微波遥感,探测波段在1mm-1m之间;多波段遥感,指探测波段在可见光波段和红外波段范围内,在分成若干窄波段来探测目标。

(3)按工作方式分为主动遥感和被动遥感、成像波段和非成像波段。

(4)按遥感的应用领域分,从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感、海洋遥感;从具体应用领域珂分为资源遥感、环境遥感、农业遥感等,还以划分为更细的研究对象进行各种专题应用。

※4、遥感有何特点?答:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。

第二章※1、简述大气窗口对于遥感探测的重要意义。

答:对遥感传感器而言,只能选择透过率高的波段,才对观测有意义。

通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。

大气窗口的光谱段主要有:0.3-1.3μm,即紫外光、可见光、近红外波段,这一波段是摄影成像的最佳波段,也是许多卫星传感器扫描成像的常用波段;1.5-1.8μm和2.0-3.5μm,即近、中红外波段,是白天日照条件好时扫描成像的常用波段;3.5-5.5μm,即中红外波段,该波段除了反射外,地面物体也可以自身发射热辐射能量;8-14μm,即远红外波段,主要通透来自地物热辐射的能量,适于夜间成像;0.8-2.5cm,即微波波段,由于微波穿云透雾能力强,这一区间可以全天候观测,而且是主动遥感方式,如侧视雷达。

遥感知识点

遥感知识点

一、遥感的概念1、遥感(Remote Sensing):不接触地物,从远处把目标地物的电磁波特征记录下来,通过分析揭示地物的特征性质及其变化的综合性探测技术。

2、遥感的定义广义遥感——无接触的远距离探测狭义遥感——不与探测目标接触,记录目标的电磁波特性遥感不同于遥测(telemetry)和遥控(remote control),但需要综合运用遥测和遥控技术。

3、几个重要的概念传感器:又名遥感器,是指远距离感测地物环境辐射或反射电磁波的仪器。

遥感平台:遥感中搭载传感器的工具称为遥感平台,按高度可分为地面平台、航空平台、航天平台。

二、遥感技术的特点宏观性、综合性、多波段性(全天候)、多时相性(动态分析)三、遥感的分类按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等按照资料的记录方式:成像方式、非成像方式按照传感器工作方式分类:主动遥感、被动遥感四、遥感技术系统1、定义:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。

包括被测目标的信息特征、信息的获取、信息的记录与传输、信息的处理和信息的应用五大部分2、遥感技术系统的组成遥感试验:对电磁波特性、信息获取、传输和处理技术的试验。

遥感信息获取:中心工作。

遥感平台和传感器。

信息的记录与传输:遥感信息处理:处理的原因遥感信息应用四、遥感技术系统1、遥感发展概况与展望Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,1961年正式通过。

遥感发展的三个阶段:萌芽阶段、航空遥感阶段、航天遥感阶段(气球、风筝、信鸽姿态不定,均不是理想的遥感平台)航空遥感阶段1903年航天遥感阶段1957年2、我国遥感发展概况50年代航空摄影和应用工作。

60年代,航空摄影工作初具规模,应用范围不断扩大。

遥感原理与应用总结

遥感原理与应用总结

第一章:1. 遥感的定义遥感是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息的记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。

2. 遥感的分类(1)按遥感平台分类:地面遥感、航空遥感、航天遥感(2)按工作方式:主动式遥感、被动式遥感(3)按工作波段:紫外遥感、可见光遥感、红外遥感、微波遥感、多光谱和高光谱遥感(4)按记录方式:成像遥感、非成像遥感(5)按遥感应用领域分类:从大的研究领域:外层空间遥感、大气遥感、陆地遥感、海洋遥感),从具体应用领域(城市遥感、环境遥感、农业遥感和林业遥感、地质遥感、气象遥感、军事遥感)3. 遥感技术系统的组成部分:信息获取、信息记录与传输、信息处理、信息应用第二章:1.电磁波谱:将电磁波按波长或频率递增或递减顺序排列红外波段:0.76-1000um(近红外(识别植物类型,分析植物长势,监测植被的病虫害) (热红外遥感主要使用3-15um的红外线,探测地下热源、火山、森林火灾、热岛效应)2.辐射通量:电磁辐射单位时间内通过某一表面的能量辐射通量密度:通过单位面积的辐射通量辐射出射度:单位面积发射出的辐射通量辐射照度(辐照度):投射到单位面积上的辐射通量3.绝对黑体:如果一个物体对任何波长的电磁辐射都全部吸收而毫无反射和透射,则称这个物体为绝对黑体(黑体辐射与温度成正相关)4.(1)太阳辐射的特性:1地球上的能源来源于太阳,太阳是被动遥感最主要的辐射源2在距离地球一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度称为太阳常数3地球大气层以外的太阳光谱辐照度曲线为平滑的连续曲线(2)地球辐射特性:1地球上的能源来源于太阳的直射能量与天空漫入射的能量2被地表吸收的太阳辐射能,又重新被地表辐射(3)比辐射率:单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比,又称发射率6.电磁辐射能与地表的相互作用有三种基本物理过程:反射、吸收和透射(1)物体对电磁波的反射可表现的三种形式:镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角漫反射:当入射能量在所有方向均匀反射,即入射能量以入射点为中心在整个半球空间内向四周各向同性反射能量的现象(即伯朗反射)一个完全的漫反射体称为伯朗体方向反射:介于伯朗表面和镜面之间的,其反射方向各不相同,而具有明显的方向性,即在某些方向上反射最强烈的现象7.光谱反射率:地物在某波段的反射通量与该波段的入射通量之比地物的反射波谱特性:地物波谱反射率随波长变化而改变的特性8.水体的反射主要在蓝绿光波段,在近红外、中红外有很强的吸收带植物在绿光附近有一个反射波峰,两侧的蓝光和红光有两个吸收带9.影像地物反射光谱特性的因素:1太阳位置即太阳高度和方位角2传感器位置即观测角和方位角3不同的地理位置、太阳位置、地理景观、海拔高度大气透明度4地物本身性质的变异5时间的变化、季节的变化10.大气对电磁辐射传输作用大气对电磁辐射传输的作用过程的影响包括:散射、吸收、反射、扰动、折射和偏振,对遥感数据,主要是散射和吸收(1)大气吸收:将电磁波辐射能量转换成分子的热运动,使能量减少,主要吸收水蒸气、二氧化碳和臭氧电磁波辐射在大气传输中透过率较高的波段称为大气窗口(2)大气散射:电磁波在传播过程中遇到微粒而使传播方向发生改变,并向各个方向散开瑞利散射:引起散射的大气粒子直径远小于入射电磁波波长(蓝天)米氏散射:。

遥感考点总结

遥感考点总结

第一章遥感概述一、遥感概念遥感(Remote Sensing)泛指对地表事物的遥远感知。

遥感定义:是从远处探测感知物体,也就是不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获取信息进行提取、判定、加工处理及解译应用的综合性技术。

二、遥感的分类按遥感平台分类:近地面遥感;航空遥感;航天遥感。

按传感器的探测波段分类:紫外0.05-0.38;可见光0.38-0.76;红外0.76-1000微米;微波1mm-10m;多波段遥感按传感器工作方式分类:主动遥感;被动遥感。

按遥感资料获取方式:成像遥感;非成像遥感获得信号是曲线、数据。

按波段宽度及波谱的连续性:高光谱遥感;常规遥感。

按应用领域分类:陆地遥感、海洋遥感;农业遥感;城市遥感……三、遥感的特点宏观观测,大范围获取数据(…)。

动态监测,更新快(…)。

技术手段多样,信息量大(…)。

应用领域广,经济效益高(…)。

局限性(…)。

四、遥感数据的应用领域林业:清查森林资源、监测森林火灾和病虫害。

农业:作物估产、作物长势及病虫害预报。

水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业。

国土资源:国土资源调查、规划和政府决策。

气象:天气预报、气候预报、全球气候演变研究。

环境监测:水污染、海洋油污染、大气污染、固体垃圾等及其预报。

测绘:航空摄影测量测绘地形图、编制各种类型的专题地图和影像地图。

城市:城市综合调查、规划及发展。

考古:遗址调查、预报。

地理信息系统:基础数据、更新数据。

五、遥感技术系统组成1、遥感平台;遥感平台(Remote Platform)是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。

按遥感平台的高度不同,遥感分为近地遥感(150m以下)、航空遥感(80 km以下的平台,包括飞机和气球)和航天遥感等。

2、遥感器;遥感器或传感器( Remote Sensor)是接收与记录地表物体辐射、反射与散射信息的仪器。

遥感的概念

遥感的概念

遥感的概念:从不同高度的平台上,使用各种传感器,接受来自地球表层各类电磁波的信息,并对这信息进行加工处理,从而对不同的地物及其特征进行远距离的探测和识别的一门科学技术。

遥感的特点:宏观性、综合性、可比性,多波段性,时效性,客观性,经济性,局限性(信息的提取方法不能满足遥感快速发展的要求)遥感的类型:按机理划分:被动遥感(传感器不向目标发射电磁波,仅被动的接收目标物的自身发射和对自然辐射的反射能量)主动遥感(传感器主动发射一定电磁波能量并接受标反射回来的信号)按平台划分:地面遥感:如车载,船载,手提,固定或活动高架平台等航空遥感: 传感器设置在航空器上(小于80km),主要为飞机,气球等航天遥感:传感器设置在航天器上(大于80km),如人造地球卫星、航天飞机,空间站,火箭等,以卫星为平台的遥感叫做卫星遥感按电磁波段划分:可见光遥感(电磁波波长范围:0.38~0.76μm)红外遥感(电磁波波长范围:0.76~1000μm)微波遥感(电磁波波长范围:1mm~10m)按大的研究领域划分:陆地遥感;大气遥感;海洋遥感。

按应用范围划分:资源环境遥感;灾害遥感;农业遥感;地质遥感;渔业遥感....遥感技术系统的概念:是一个从地面到空中直至空间,从信息的收集、存储、传输处理到分析判读、应用的完整技术系统;它能够实现对全球范围的多层次、多视角、多领域的立体观测,是获取地球资源的现代高科技的重要手段电磁波谱:按各种电磁波在真空中的波长或频率,递增或递减排列制成的图表电磁波谱的波段和遥感常用的电磁波波段:按波长由小到大依次为:γ射线—X射线—紫外线—可见光—红外线—微波—无线电波。

常用的是:紫外(0.01-0.38um)可见光(0.38-0.76um)红外(0.76-1000um)微波遥感器(1mm-1m) 辐射亮度:辐射亮度L: 面辐射源,在某一方向,单位投影表面、单位立体角内的辐射通量。

单位是瓦/ 米²•球面度(W/m²•Sr)黑体辐射的三个特征;辐射出射度随波长连续变化,每条曲线只有一个最大值;温度越高,辐射出射度越大,不同温度的曲线不相交;随着温度的升高,辐射最大值所对应的波长向短波方向移动。

《遥感导论》考试重点【复习版】

《遥感导论》考试重点【复习版】

第一章绪论第一节遥感概述一、遥感的概念及特点1、概念2、特点①感测范围大②信息量大③获取信息快④其他特点:用途广、效益高、全天候、全方位、资料性二、遥感的分类1、根据遥感平台的高度和类型分类①地面遥感:1.5~300m,车、船、塔,主要用于究地物光谱特征②航空遥感:9~50km,飞机、气球,较微观地面资源调查③航天遥感:100~36000km,卫星、飞船、火箭、天飞机、空间站2、根据传感器的工作方式分类①主动遥感:雷达②被动遥感:被动接受地物反射、发射的电磁波:摄影机、扫描仪3、根据遥感信息的记录方式分类①成像遥感:以图象方式记录:航空性片、卫星图象②非成像遥感:图形、电子数据:数字磁带、光盘4、根据遥感使用的探测波段分类①紫外遥遥:0.3~0.4μm②可见光遥感:0.4~0.76μm③红外遥感:0.76~14μm④微波遥感:1000μm ~30cm⑤多波段遥感:0.5-0.6,0.6-0.7,0.7-0.8,0.8-0.95、根据遥感的应用领域分类:气象、海洋、地质、军事三、遥感过程及其技术系统1、遥感实验:前期工作,主要获得地物的光谱特性。

2、遥感信息的获取:中心工作。

传感器3、遥感信息的接受和处理:利用各种技术手段4、遥感信息的应用:最终目的。

遥感信息的认识(判读、解译)第二节遥感的发展与应用一、遥感的发展1、国外遥感的发展概况“遥感”:①无记录的地面遥感阶段(1608-1838)望远镜的产生:②有记录的地面遥感阶段(1839-1857)摄影技术的发明:③空中摄影的遥感阶段(1858-1956)系留气球、飞机、彩色摄影技术产生④航天遥感阶段(1957-)人造地球卫星产生、计算机技术的应用、GIS⑤遥感的发展趋势:platform:气球-飞机-卫星-飞船-航天飞机-空间站传感器:分辨率变高、稳定性变好、手段变多遥感信息的接收和处理:自动解译、自动分类遥感的应用:广、深入2、我国遥感的发展概况起步晚、发展快①20世纪60年代末设立遥感学科②20世纪70年代,航空测量应用③20世纪70年代末,引进美国卫星技术和卫星资料、设备仪器,促进我国遥感技术与国际领先水平接近。

遥感原理与应用复习重点整理

遥感原理与应用复习重点整理

绪论1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。

遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。

按照资料的记录方式:成像方式、非成像方式。

按照传感器工作方式分类:主动遥感、被动遥感。

3、遥感起源于航空摄影、摄影测量等。

第一章1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相互联系传播的过程。

电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒子性。

2、波长最长的是无线电波,最短的是γ射线。

3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。

4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。

反射率随入射波长变化而变化。

反射类型:漫反射、镜面反射、方向反射。

5、影响地物反射率的3个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。

附:影响地物光谱反射率变化的因素:a太阳的高度角和方位角。

B传感器的观测角和方位角c不同的地理位置d地物本身的变异e时间、季节的变化6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。

1.不同地物在不同波段反射率存在差异2. 同类地物的反射光谱具有相似性,但也有差异性。

不同植物;植物病虫害3. 地物的光谱特性具有时间特性和空间特性。

(同物异谱,同谱异物)。

7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照标准。

8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。

遥感知识

遥感知识

遥感知识集锦一. 遥感的基本概念1. 遥感的基本知识“遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。

顾名思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。

实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因此,只有电磁波探测属于遥感的范畴。

根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用这五大部分。

1. 目标物的电磁波特性任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。

2. 信息的获取接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。

如:雷达、扫描仪、摄影机、辐射计等。

3. 信息的接收传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。

胶片由人或回收舱送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收站。

4. 信息的处理地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。

5. 信息的应用遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学以及诸多应用领域,它的发展与这些科学紧密相关。

2. 遥感的分类1)按遥感平台分地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。

航空遥感:传感器设置在航空器上,如:飞机、气球等。

航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。

2)按传感器的探测波段分紫外遥感:探测波段在0.05~0.38μm之间。

可见光遥感:探测波段在0.38~0.76μm之间。

红外遥感:探测波段在0.76~1000μm之间。

微波遥感:探测波段在1mm~10m之间。

遥感概论复习重点

遥感概论复习重点

遥感概论复习重点第⼀章⼀、遥感:⼀种远离⽬标,不与探测⽬标相接触,通过某种平台上装载的传感器获取其特征信息,然后对所获取的信息进⾏提取、判定、加⼯处理及应⽤分析的综合性技术⼆、遥感技术系统是⼀个地⾯到空中,乃⾄空间,从信息收集、存储、处理到判读分析和应⽤的完整技术体系三、遥感技术系统的组成信息源;信息的获取;传感器;遥感平台;信息的记录和传输四、遥感的分类①按遥感平台分类:航天、航空、地⾯遥感②按传感器探测波段分类:紫外遥感(0.05-0.38µm)可见光遥感(0.38-0.76µm)红外遥感(0.76-1000µm)微波遥感(1mm-1m)③按传感器的⼯作原理分:主动遥感,被动遥感④按数据获取⽅式:成像遥感;⾮成像遥感五、遥感的特点宏观性;动态性;技术⼿段多,信息海量六、当前遥感发展的主要特点和趋势⾼分遥感发展迅速,多种传感器并存:⾼空间分辨率、⾼光谱分辨率、⾼时间分辨遥感从定性到定量分析:遥感从“定性”向“定量”转变,定量遥感成为遥感应⽤的发展热点遥感信息提取逐步⾃动化:建⽴适⽤于遥感图像⾃动解释的专家系统,逐步实现遥感图像专题信息提取⾃动化遥感商业化第⼆章⼀、电磁波的性质波动性:①是横波②在真空以光速传播③满⾜C=λ*?粒⼦性:光电效应波粒⼆象性:E= h*?;P=h/λ波粒⼆象性的程度与电磁波的波长有关:波长愈短,辐射的粒⼦性愈明显;波长愈长,辐射的波动特性愈明显。

⼆、电磁波与物体相互作⽤过程中,会出现三种情况:反射、吸收、透射,遵守能量守恒定律(如果是不透明的物体,物体的反射率⼤,发射率就⼩)四、电磁辐射定义①反射:电磁辐射与物体作⽤后产⽣的次级波返回原来的介质,这种现象称反射。

该次级波便称之为反射波(辐射)。

反射率:物体的反射辐射通量与⼊射辐射通量之⽐。

②透射:电磁辐射与介质作⽤后,穿过该介质到达另⼀种介质的现象或过程。

透射率:透射能量与⼊射总能量之⽐。

遥感导论知识点总结完整

遥感导论知识点总结完整

遥感导论知识点总结完整引言遥感作为一种先进的信息获取技术,已经在各个领域得到广泛的应用。

随着科学技术的不断发展,遥感技术也在不断进步,为人类提供了更多更精确的信息。

本文将从遥感的基本概念、发展历程、原理与分类、遥感数据的获取与处理、遥感在环境监测、资源调查、地质勘查等领域的应用以及遥感技术的未来发展方向等方面对遥感进行全面的介绍和总结。

一、遥感的基本概念遥感(Remote Sensing)是指利用卫星、飞机等远距离的传感器对地球表面和大气的特定区域进行观测和记录,然后通过数据处理和分析来获取地球表面和大气的信息的一种技术。

遥感技术的基本原理是利用电磁波在大气中传播的特性,通过感应器对地球表面和大气进行观测,然后对获取的数据进行处理,得到地表特征和大气物理参数等信息。

二、遥感的发展历程遥感技术的起源可以追溯到19世纪中叶,当时法国科学家对地球表面采用长焦距照相术进行观测。

20世纪初,随着航空摄影术的发明,遥感技术得到了迅速发展。

随着卫星技术的进步,遥感技术得到了更大的发展,不仅可以进行大范围的观测,还可以获取更多更精确的信息。

在遥感技术发展的过程中,人们不断提出了各种遥感技术和方法,比如红外遥感、微波遥感、激光雷达遥感等,这些新技术和方法的应用,使遥感技术更加全面和精确。

三、遥感的原理与分类1. 遥感的原理遥感技术基于物体对电磁波的反射、散射、辐射和吸收等特性,通过感应器对地球表面和大气进行观测,进而获取地表特征和大气物理参数等信息。

遥感技术的原理可以简要概括为:电磁波的发射和接收、电磁波与地表物体的相互作用、数据获取与处理。

2. 遥感的分类遥感根据不同的波段和传感器,可以分为光学遥感、红外遥感、微波遥感等。

根据不同的平台,可以分为航空遥感和卫星遥感。

根据不同的目的和应用,可以分为地质勘查、环境监测、农业资源调查等。

四、遥感数据的获取与处理1. 遥感数据的获取遥感数据的获取包括传感器的观测、数据的传输和处理。

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点

遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。

2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。

二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。

2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。

3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。

三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。

2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。

3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。

4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。

5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。

四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。

2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。

3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。

4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。

5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。

遥感复习资料

遥感复习资料

遥感复习资料第⼀章绪论1、遥感的定义⼴义的概念:⽆接触远距离探测(磁场、⼒场、机械波)狭义的概念:在遥感平台的⽀持下,不与⽬标地物相接触,利⽤传感器从远处将⽬标地物的地磁波信息记录下来,通过处理和分析,揭⽰出地物性质及其变化的综合性探测技术我们通常理解的遥感,主要是指空对地的遥感,对地⾯进⾏探测,为地球科学提供具有全球性、周期性、数字化的第⼀⼿资料,它是对地观测系统的重要组成部分。

2、遥感的分类按遥感平台分:地⾯遥感、航空遥感、航天遥感、航宇遥感按探测波段分:紫外遥感、可见光遥感、红外遥感、(发射红外遥感、热红外遥感)微波遥感、多光谱遥感、⾼光谱遥感按⼯作⽅式分:主动遥感、被动遥感按是否成像分:成像遥感、⾮成像遥感按覆盖区域分:全球遥感、区域遥感、城市遥感按研究领域分:陆地遥感、海洋遥感、⼤⽓层遥感、外空间遥感按应⽤领域分:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、⽓象遥感、⽔⽂遥感、⼯程遥感、灾害遥感、军事遥感等3、遥感的特点⼤⾯积同步观测、时效性、数据的综合性和可⽐性、经济性、局限性第⼆章遥感的电磁辐射原理1、⿊体:对任何波长的电磁辐射都全吸收的假想的辐射体。

α (λ,T)≡1 α与λ⽆关普朗克辐射定律(Plank):描述了⿊体辐射源的辐射出射度与波长、温度的关系(Plank公式) 玻尔兹曼定律(Stefan-Boltzmann):描述了⿊体的总辐射出射度与温度的定量关系:M =∫M λ(λ)dλ—— M =σ T4维恩位移定律(Wien’s):描述了⿊体的辐射峰值与温度的定量关系λmax · T = b⿊体辐射性质:(1)⿊体辐射出射度随波长连续变化。

每条曲线只有⼀个最⼤值。

(普朗克定律)(2)温度愈⾼,⿊体的辐射出射度也愈⼤。

不同温度的曲线是不相交的。

绝对⿊体的总辐射出射度与⿊体温度的4次⽅成正⽐。

(斯玻定律)(3)⿊体辐射光谱中,最强辐射的波长与⿊体绝对温度成反⽐。

遥感导论知识要点

遥感导论知识要点
航天遥感阶段 (1957年至今)
电磁波谱:波长从小到大:ϒ射线、X射线、紫外线、可见光、红外线、无线电波
可见光波谱在0.38~0.76µm,
紫色:0.38~0.43µm;蓝色:0.43~0.47µm;青色:0.47~0.50µm;
绿色:0.50~0.56µm;黄色:0.56~0.59µm;橙色:0.59~0.62µm;红色:0.62~0.76µ。
公式:
基尔霍夫定律:
定义:实际物体辐射与黑体辐射之比,也称比辐射率或发射功率。
公式:
被动遥感主要利用电磁波谱哪些波段?
答:被动遥感主要利用可见光、红外等稳定辐射。
太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳辐射方向上,单位面积单位时间黑体所接受的太阳辐射能量。可以看作大气顶端接受的太阳辐射。(I0=1.360*103W/m2)
思考题:
1、无云的晴天,天空为什么呈现蓝色?
这是由于散射原理,因为无云的晴天,天空是由气体原子和分子组成,它比可见光的波长小得多,发生了瑞利散射。散射强度与波长的四次方成反比,所以波长较短的可见光,蓝光和紫光先散射出来,所以天空呈现蓝色。
2、朝霞和夕阳为什么都是橘红色?
这是由于散射原理,天空是由气体原子和分子组成,它比可见光的波长小得多,发生了瑞利散射。散射强度与波长的四次方成反比,由于朝霞和夕阳穿过大气层的距离比白天的长,所以波长较短的可见光都被散射殆尽,只剩下波长长的橘红色和红色散射出来,所以是橘红色。
电磁辐射的度量:
辐射能量(W):电磁辐射的能量,单位J
辐射通量Φ:单位时间内通过某一面积的辐射能量,是波长的函数,单位W
辐射通量密度(E):单位时间内通过单位面积的辐射能量,单位W/m2
辐照度(I):被辐射物体表面上的辐射通量密度,单位W/m2

《遥感概论绪论》课件

《遥感概论绪论》课件
地物的形状、大小、空间排列等特征 ,影响图像的分辨率和可识别性。
时间特征
地物随时间的变化,如季节变化、生 长周期等,有助于动态监测。
辐射特征
地物反射或发射的电磁波能量大小, 决定了图像的亮度。
遥感图像的解译方法
目视解译
通过观察遥感图像,结合专业知识和经验,识别和解 译地物。
计算机解译
利用计算机算法和人工智能技术,自动识别和解译遥 感图像。
现对目标物的识别、分类和监测。
遥感技术广泛应用于地理信息系统、环境监测、城市规划、农
03
业管理等领域。
遥感的分类
按平台高度
可分为航天遥感、航空遥感和地面遥感。
按波段范围
可分为可见光遥感、红外遥感、微波遥感等。
按工作方式
可分为被动遥感、主动遥感等。
按应用领域
可分为气象遥感、地球资源遥感、军事遥感等。
随着高光谱、多光谱和超光谱技术的发展,遥感数据的分辨率 和精度得到了进一步提高,遥感技术的应用领域也更加广泛。
遥感技术的未来发展趋势
随着人工智能和机器学习技术的发展,遥感数 据的处理和分析将更加智能化和自动化。
遥感技术将与GIS、GPS等技术进一步融合,形成更 加综合的地球观测系统,为人类提供更加全面、准确
森林资源调查
总结词
遥感技术能够快速、准确地调查森林资源分布、面积和生长状况,为森林资源保护和管 理提供科学依据。
详细描述
通过卫星遥感影像,可以获取森林覆盖范围、树种组成、生长状况等信息,同时结合地 理信息系统技术,能够实现森林资源的动态监测和管理,为森林保护和可持续发展提供
支持。
水环境监测
总结词
04
遥感图像的成像原理
电磁波与电磁波谱

遥感的概念、特点、类型

遥感的概念、特点、类型

1、遥感的概念、特点、类型遥感:遥感是通过不接触被探测目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息。

基本特征:利用地物对电磁波的辐射和反射特性,通过接收电磁波的辐射或反射信息获取地物的特性。

地物特性:分为几何特征和物理特征两种。

几何特征:如土壤的粗糙度,房屋的轮廓、各种植被的形状和长势等;物理特征:如地物的介电常数、土壤湿度等,是物质本身的性质所决定的。

遥感目的:就是通过接收到的电磁波信息反推出地物的几何特征和物理特征的反演过程。

类型:可见光遥感、反射红外遥感、微波遥感、热红外遥感。

特点:覆盖范围广、信息量大、具有连续观测的特点。

象元:遥感系统的空间分辨率确定遥感图象识别的最基本的信息单元2、遥感系统的组成3、遥感系统的分类按平台高度:航空、航天与地面测量。

按遥感波段分:光学与微波。

按成像信号能量来源:被动与主动,被动式分为反射式、发射式,主动式分为反射式与受激发式。

按应用:空间尺度分为全球、区域、局地遥感;地表分为海洋、大气、陆地遥感;行业分类环境、农业、林业、水文、地址遥感。

4、电磁波谱与电磁辐射电磁波:交互变化的电磁场在空间的传播。

电磁波的特性:电磁波是横波,传播速度为3×108 m/s,不需要媒质也能传播,与物质发生作用时会有反射、吸收、透射、散射等,并遵循同一规律。

电磁波普:按电磁波波长的长短,依次排列制成的图表叫电磁波谱。

γ线、x线、紫外线、可见光、红外线、无线电波。

常用的:紫外线的一部分(0.3-0.4μm),可见光线(0.4-0.7μm),红外线的一部分(0.7-14μm),以及微波(约lmm-1m)。

紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。

可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 彩色增强处理与彩色变换
• 人眼对黑白图像灰级、彩色差异的分辨率 有较大的差异。彩色分辨能力可达到灰度 分辨能力的百倍以上。
7 彩色增强处理与彩色变换
• 图像颜色
– 视觉三基色假说:
• 三基色是这样的三种颜色,它们相互独立,其中任 一色均不能由其他二色混合产生。它们又是完备的, 即所有其它颜色都可以由三基色按不同的比例组合 而得到。
2 几何校正
• 下图是一种畸变情形,如何校正呢?
2 几何校正
设f(x,y)是无失真的原始图像,g(x’,y’)是f(x,y)畸变的结果 两幅图像几何畸变的关系能用解析式来描述。
x h1(x, y)
y h2 (x, y)
分两种情况: 1、h1(x,y),h2(x,y)已知 2、h1(x,y),h2(x,y)未知
• 几何精校正是指消除图像中的几何变形, 产生一幅符合某种地图投影的新图像的过 程。几何精校正需要利用地面控制点和适 当的数学模型。
2 几何校正
• 几何精校正分两个过程
– 空间插值:建立图像像元坐标和地面控制点之 间的数学模型,利用数学模型把待校正图像的 坐标校正到输出图像中。
– 亮度插值:确定输出图像像元亮度值。
• 光学摄影机内部辐射误差
– 使用透镜的光学系统存在边缘减光现象,摄像 面存在边缘部分比中心部分发暗。
– 原因:镜头中心和边缘透射光的强度不一致, 造成图像上不同位置的同一类地物有不同的灰 度值。
– 校正方法:在这类光学系统中,一幅图像上各 像点光的强度分布符合以下规律: Ep=Eo cos4θ, θ为光轴到摄影面边缘部的视场角。
n
ni
aij xi y j
i0 j0
y
h2 ( x,
y)
n i0
ni
bij xi y j
j 0
2 几何校正
• 由(x,y)通过函数关系推算出各格网点在已知畸 变图像上的坐标(x‘,y’)。 – (α,β) =[h1(x,y),h2(x,y)]。
• 由于(α,β)通常不一定是整数,所以α,β不会与 g(x’,y’)中的任何点重合,找出g(x’,y’)中与(α,β) 最靠近的点(x1’,y1’),并且令f(x,y)= g(x1’,y1’),即 把g(x1’,y1’)的灰度赋予f(x,y)。逐点做下去,直到 整个图像,几何畸变得到校正。
2 几何校正
在函数关系未知情况下,通常h1(x,y)和h2(x,y)可用 多项式来近似:
n ni
x
aij xi y j
i0 j0
n ni
y
bij x i y j
i0 j0
2 几何校正
• 在函数h1(x,y)和h2(x,y)未知的情况下,通 常用基准图像和几何畸变图像上多对同名 像素的坐标来确定函数h1(x,y)和h2(x,y)
案例
案例
案例
6 遥感图像应用技术
• 土地资源退化遥感调查
– 土地沙漠化、土壤盐碱化、土壤侵蚀、风蚀等。 – 工矿区土地损毁与治理。
• SAR图像检测地面沉降 • 光学图像监测土地煤矸石土地占用。
案例
6 遥感图像应用技术
• 水资源调查
– 河流湖泊动态监测 – 冰雪覆盖 – 地下水监测 – 水质管理 – 土壤水分监测
• 图像的增强是综合和一般性地改善图像质量,解 决图像由于噪声、模糊退化和对比度降低等三类 问题,图像增强并不是去估计图像实际退化的过 程和实际退化的因素而加以矫正,只是考虑图像 退化的一般性质,加以修正,以求得一般的或平 均的图像质量的改善,提高解像力。
1 遥感图像增强处理
• 点运算:通过改变图像像元的亮度值来改 变图像像元对比度,从而改善图像质量的 图像处理方法。因为亮度值是辐射强度的 反映,所以也称之为辐射增强。
• 邻域运算:如果每次参与运算是根据每一 个像元周围的若干个像元值来修改当前像 元的亮度值,称为邻域处理。
– 邻域处理又分为窗口处理和模板处理。
2 对比度增强
• 对比度增强的理论基础
– 每一幅图像都可以求出其像元亮度值的直方图,观察 直方图的形态,可以粗略地分析图像的质量。
– 一般来说,一幅包含大量像元的图像,其像元亮度值 应符合统计分布规律,即假定像元亮度随机分布时, 直方图应是正态分布的。实际工作中,若图像的直方 图接近正态分布,则说明图像中像元的亮度接近随机 分布,是一幅适合用统计方法分析的图像。
– 低频、中频、高频的划分是人为的。
3 空间域滤波
• 图像信息的频率特征
– 可通过改变图像的空间频率构成来对图像进行 增强处理。
– 滤波是图像增强技术之一,是通过增强或抑制 某些图像频率实现的。
– 图像滤波又分为空间域滤波与频率域滤波两种 方法。
• 空间域滤波在空间域实现。 • 频率域滤波在频率域实现。
• 对比度增强可调整图像的灰度动态范围或图像对 比度,使得图像清晰、特征明显,是图像增强的 重要手段之一。
• 对比度增强:线性变换(含分段线性变换)、非 线性灰度变换、直方图调整
2 对比度增强---线性变换
• 线性变换是将图像亮度值范围按线性关系 式扩展或压缩至指定范围,提高图像对比 度。
2 对比度增强---线性变换
2 几何校正
函数关系已知下,间接法几何校正:设f(x,y)是无 失真的原始图像,g(x’,y’)是f(x,y)畸变的结果,这 一失真过程已知且可以用函数h1(x,y)和h2(x,y)定
义。设恢复的图像像素在基准坐标系统为等距网 格的交叉点,从网格交叉点的坐标(x,y)出发, 根据:
x h1(x, y)
3 辐射校正
• 理想的遥感系统并不存在,有各种因素影响传感 器接收到的辐射值。
– 日地距离 – 太阳入射光的几何条件 – 太阳上行和下行辐射 – 地形因素 – 传感器误差
• 在利用遥感图像进行地表遥感研究中,可能需要 对这些干扰因素进行辐射校正,使得遥感图像尽 可能反映地物目标的差异。
3 辐射校正
m 2
1 sr
3 辐射校正-大气校正
• 大气校正
– 传感器接收的信息中,可以分为两个部分。一 是程辐射信息,一般认为是无用信息;另一部 分是太阳下行辐射到达地表后,受到地面反射, 部分辐射上行穿越大气层,到达传感器,携带 有目标物的有效信息。
– 程辐射:在太阳辐射下行穿越大气层的过程中, 受到大气分子、气溶胶和粒子等的散射作用, 部分散射辐射直接到达传感器,这部分辐射就 是程辐射。
C C B
A
A
B
排放污 水
油污和浮游物
6 遥感图像应用技术
• 遥感在灾害监测中的应用
– 水灾监测 – 旱灾监测 – 雪灾监测 – 地震监测 – 地质灾害
案例
案例
6 遥感图像应用技术
• 遥感与城市研究
– 城市空间信息提取
• 水体 • 建筑物 • 城市绿地 • 城市道路网
– 城市规划
• 城市空间布局分析
3 辐射校正
• 传感器端的辐射校正
– 在遥感应用中,一般采用下式把DN值图像转 换为具有物理意义的辐亮度图像。
Lt
Lmax DNmax
Lmin DNmin
DN DNmin
Lmin
Lt:图像辐亮度,W
m 2
1 sr
Lmin:图像中DNmin的图像辐亮度,W m2 sr1
Lmax:图像中DN max的图像辐亮度,W
• 几何粗校正用于系统误差校正,需要传感器的校 准数据、卫星运行姿态参数、传感器位置等代入 理论校正公式。
– 几何粗校正一般由数据提供商或地面接收站进行校正 处理。遥感应用上使用的图像一般是经过几何粗校正 处理的。
2 几何校正
• 经几何粗校正处理后的遥感图像还存在随 机误差和某些未知的系统误差,需要进行 几何精校正处理。
– 对曝光不足的图像采用线性变换对图像每一个像素 灰度作线性拉伸。可有效地改善图像视觉效果。
3 空间域滤波
• 图像成像过程中,受各种因素影响,可能 存在噪声或图像不清晰现象,可以利用当 前像元和周围像元的对比度关系来增强图 像,即空间域滤波。
3 空间域滤波
• 图像成像过程中,受各种因素影响,可能 存在噪声或图像不清晰现象,可以利用当 前像元和周围像元的对比度关系来增强图 像,即空间域滤波。
3 空间域滤波
• 图像信息的频率特征
– 图像的空间频率定义为图像的任一部分单位距 离内亮度值的变化数量。
– 如果区域内图像亮度值变化小,则为低频区域; 如果区域内图像亮度值变化大,则为高频区域; 否则为中频区域。
– 低频信息代表图像背景,代表地物的主题信息; 高频区域代表地物的结构和轮廓。低频表示图 像结构平滑,高频变化图像结构粗糙。
• 任何颜色均可由红、绿、蓝三色产生,RGB称为色 光的三基色。
7 彩色增强处理与彩色变换
• 彩色增强技术是利用人眼的视觉特性,将 灰度图像变成彩色图像或改变彩色图像已 有彩色的分布,改善图像的可分辨性。彩 色增强方法可分为伪彩色增强和假彩色增 强两类。
7 彩色增强处理-伪彩色增强
• 伪彩色增强:是把黑白图像的各个不同灰 度级按照线性或非线性的映射函数变换成 不同的彩色,得到一幅彩色图像的技术。
3 辐射校正-大气校正
• 太阳辐射在下行穿越大气层到达地表和经 地表反射上行到达传感器的过程中,受到 大气吸收和散射的影响。
• 大气校正:就是从传感器接收的信号中, 消除大气效应的影响,提取有用的地表反 射辐射的信息。
1 遥感图像增强处理
• 图像增强是采用一系列技术去改善图像的视觉效 果,或将图像转换成一种更适合于人或机器进行分 析和处理的形式。
• 原始图像f(i,j)的灰度 范围为[a,b],线性变 换后图像g(i,j)的范围 为[a´,b´],存在以下 关系:
相关文档
最新文档