东南大学模电实验报告-实验一-运算放大器的基本应用

合集下载

大学模电实验报告

大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。

2. 掌握模拟电路的搭建和调试方法。

3. 培养实验操作能力和数据分析能力。

二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。

本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。

2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。

3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。

- 调整偏置电阻,使晶体管工作在放大区。

- 使用函数信号发生器输入正弦波信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。

- 输入不同电压信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。

- 输入不同频率的信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。

- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。

2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。

- 同相比例放大电路:输入电压为1V,输出电压为2V。

- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。

- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。

3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。

- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。

2016东南大学模电实验1运算放大器的基本应用 (1)

2016东南大学模电实验1运算放大器的基本应用 (1)

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极转换速率(SlewRate)V/us运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。

极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流6mA输出电流的最大值最大电源电压3V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图反相输入比例运算电路 LM324 管脚图1)图中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

模电实验报告东南大学

模电实验报告东南大学

模电实验报告东南大学
《模电实验报告:东南大学》
模拟电子技术是电子工程中的重要分支,它涉及到模拟信号的处理和传输,是电子工程师必须掌握的重要知识之一。

为了帮助学生更好地理解和掌握模拟电子技术,东南大学开设了模拟电子技术实验课程,通过实验操作来加深学生对模拟电子技术的理解。

在这篇报告中,我们将介绍东南大学模拟电子技术实验的内容和实验结果。

东南大学模拟电子技术实验课程包括基本电路实验、放大电路实验、滤波电路实验等内容。

在基本电路实验中,学生将学习和掌握基本的电子元件的使用方法,包括电阻、电容、电感等元件的特性和应用。

在放大电路实验中,学生将学习和掌握放大电路的设计和调试方法,了解放大电路的工作原理和特性。

在滤波电路实验中,学生将学习和掌握滤波电路的设计和调试方法,了解滤波电路的工作原理和特性。

在实验过程中,学生将亲自动手搭建电路,调试电路,观察电路的工作状态,并记录实验结果。

通过实验操作,学生将更加深入地理解模拟电子技术的理论知识,提高实际操作能力和问题解决能力。

通过模拟电子技术实验,学生将获得以下几方面的收获:一是对模拟电子技术的理论知识有了更深入的理解;二是提高了实际操作能力和问题解决能力;三是培养了团队合作意识和沟通能力。

这些收获将对学生未来的学习和工作产生积极的影响。

总之,东南大学模拟电子技术实验课程为学生提供了一个良好的学习平台,通过实验操作来加深学生对模拟电子技术的理解,提高实际操作能力和问题解决
能力。

相信通过这门课程的学习,学生将更加深入地理解和掌握模拟电子技术,为未来的学习和工作打下坚实的基础。

模电实验报告——多级级联放大器的研究

模电实验报告——多级级联放大器的研究

实验报告 多级级联放大器的研究一、实验目的1、掌握用仿真软件研究多级负反馈放大电路;2、学习集成运算放大器的应用,掌握多级级联运放电路的工作特点;3、研究负反馈对放大电路性能影响,掌握负反馈放大器性能指标测试方法。

二、实验原理实验用电路图如下:实验原理图在电子电路中,将输出量的一部分或全部通过一定电路形式作用到输入回路,用来影响其输出量的措施称为反馈。

若反馈使得净输出量减小,称之为负反馈;反之,为征反馈。

引入交流负反馈之后,可以大大改善放大电路多方面性能:提高放大电路的稳定性、改变输入、输出阻抗、展宽通频带、减小非线性失真等。

实验电路图1由两级运放构成的反相比例运算器组成,在末级的输出端引入了反馈网络f C 、2f R 和1f R ,构成了交流电压串连负反馈。

放大器的基本参数开环参数:将反馈支路的A 点与P 点断开、与B 点连接,便可得到开环时的放大电路。

由此可测出开环时放大电路的电压放大倍数V A 、输入电阻i R 、输出电阻o R 、反馈网络的电压反馈系数V F 和通频带BW ,即1'(1)o Vii ii No o L of Vo H L V A V V R R V V V R R V V F V BW ff ⎧=⎪⎪⎪=⎪-⎪⎪⎪=-⎨⎪⎪⎪=⎪⎪=-⎪⎪⎩式中,N V 为N 点对地的交流电压;'o V 为负载开路时的输出电压;f V 为P 点对地的交流电压;H L f f 和分别为放大器的上下限频率。

闭环参数:通过开环时放大电路的电压放大系数V A 、输入电阻、输出电阻、反馈网络的电压反馈系数和上下限频率,可以计算求得多级级联负反馈放大电路的闭环电压放大倍数、输入电阻、输出电阻和通频带的理论值。

测量负反馈电路的闭环特性时,应将负反馈电路的A 点与B 点断开、与P 点相连以构成反馈网络。

此时需适当增大输入信号,使输出电压达到开环时的测量值,然后分别测出各量值的大小并与理论值比较找出误差的原因。

2016东南大学模电实验1运算放大器的基本应用

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用multisim 仿真。

其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图 1.1 反相输入比例运算电路 LM324 管脚图1)图 1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

按图连接电路,输入直流信号 Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。

东南大学模电实验报告-实验一-运算放大器的基本应用

东南大学模电实验报告-实验一-运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第一次实验实验名称:运算放大器的基本应用院(系):自动化学院专业:自动化姓名:某某学号:*****实验室: 101实验组别:同组人员:无实验时间:2017年3月29日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、熟练掌握运算放大电路的增益、幅频特性传输曲线测量方法。

二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

参数转换速率S R TYP0.5V/μS该参数指输出电压的变化量与发生这个变化所需的时间之比极限参数最大差模输入电压U IOR±30V反向和同相输入端能承受的最大电压值。

超过这个电压值运放的功能会受到影响。

最大共模输入电压U ICRTYP±13VNIN±12V同相端与反相输入端承受的最大共模信号电压值。

超过这个值运放的共模抑制比会显著下降,放大功能会受到影响。

最大输出电流I OSTYP±30mA;MAX±40 mA运放所能输出的电流峰值。

最大电源电压U SR±22V 运放最大电源电压。

2、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,R L=100 KΩ,并用Multisim仿真;(1)仿真原理图(2)参数选择计算因为要求|A v|=10,即|V0/V i|= |-R F/R1|=10,故取R F=10R1,输入电阻尽量大些,取:R1=15kΩ,R F=150 kΩ, R L=100 kΩ(3)仿真结果当输入电压为427.083mV时,输出电压为4.263V,放大倍数为9.982,与理论值10接近。

东南大学模拟电子线路实验报告运算放大器的基本应用

东南大学模拟电子线路实验报告运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:电路与电子线路实验Ⅱ第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:工科试验班姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年4月11 日评定成绩:审阅教师:了解运放的基本特性,以运放构成的同相比例放大电路为例,研究运算放大器的转换速率和增益带宽积性能。

二、 实验原理1. 实验一 同相比例放大电路根据运算放大器基本原理及性质,可得00u u i i +-+-====11o F i u R u R =+ 2. 实验二 减法电路的设计3211231(1)F F o R R Ru u u R R R R =+-+ 3. 实验三 波形转换电路的设计1O i u u dt RC=-⎰1.实验内容(补充实验):(1)设计一个同相输入比例运算电路,放大倍数为11,且 RF=100 kΩ。

输入信号保持Ui=0.1Vpp不变,改变输入信号的频率,在输出不失真的情况下,并记录此时的输入输出波形,测量两者的相位差,并做简单测出上限频率fH分析。

/°图像14.032.042.647.9(b )(c )实验结果分析: 由上表可得,当*0.1*110.778O U AuU V === 时,输出波形已经失真,此时fH=78.86kHz ,φ=47.9°,可以看出相位差与理论值45°存在较小差距,基本吻合。

(2)输入信号为占空比为50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。

(a )双踪显示输入输出波形图(c ) 实验结果分析:7.84/0.501/1/(32*2)dV SR V s V s dt μμ===由SR 的计算公式可得SR ≈0.5V/μs ,与理论值近似(3)将输入正弦交流信号频率调到前面测得的fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不像正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。

模电知识集成电路实训报告

模电知识集成电路实训报告

一、实训背景随着电子技术的飞速发展,模拟电子技术(简称模电)在电子工程领域扮演着至关重要的角色。

为了更好地理解和应用模电知识,我们选择了集成电路实训作为实践学习的重要环节。

本次实训旨在通过实际操作,加深对模拟电路基本原理、集成电路工作原理及电路设计方法的理解。

二、实训目的1. 理解模拟电子技术的基本原理,包括放大、滤波、稳压等。

2. 掌握常用集成电路的应用,如运算放大器、比较器、整流器等。

3. 培养电路设计与调试能力,提高动手实践能力。

4. 增强团队合作精神,提高沟通协调能力。

三、实训内容1. 基本放大电路实训内容:搭建基本放大电路,包括共射、共集、共基等放大电路,观察并分析电路性能。

实训过程:首先,根据设计要求,选用合适的放大电路类型;然后,进行电路元件的选择和连接;最后,通过示波器观察输出波形,分析电路性能。

2. 运算放大器电路实训内容:利用运算放大器搭建非反相放大器、反相放大器、加法器、减法器等电路。

实训过程:选择合适的运算放大器型号,设计电路图,进行元件选择和连接;通过示波器观察输出波形,验证电路功能。

3. 滤波电路实训内容:搭建低通、高通、带通滤波电路,观察滤波效果。

实训过程:根据滤波需求,选择合适的滤波电路类型;进行元件选择和连接;通过示波器观察滤波效果,验证电路性能。

4. 整流电路实训内容:搭建全波整流、半波整流电路,观察整流效果。

实训过程:选择合适的整流元件,进行电路设计;通过示波器观察整流效果,验证电路性能。

5. 集成稳压器实训内容:搭建集成稳压器电路,观察稳压效果。

实训过程:选择合适的集成稳压器型号,进行电路设计;通过示波器观察稳压效果,验证电路性能。

四、实训结果与分析1. 基本放大电路实训结果表明,基本放大电路能够实现对输入信号的放大,但放大倍数和带宽受到电路元件的影响。

2. 运算放大器电路实训结果表明,运算放大器电路具有高输入阻抗、低输出阻抗、高增益等特点,能够实现多种功能。

201x东南大学模电实验1运算放大器的基本应用

201x东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

增益带宽积(GBW) 1.2MHz 增益带宽积是用来简单衡量放大器的性能的一个参数。

这个参数表示增益和带宽的乘积。

转换速率(Slew Rate)0.5V/us 运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。

极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流60mA输出电流的最大值最大电源电压30V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

模电实验报告思考题

模电实验报告思考题

一、实验目的1. 了解模拟电子技术的基本概念和基本电路。

2. 掌握常用模拟电子器件的特性及应用。

3. 熟悉模拟电子电路的测试方法及分析方法。

二、实验原理1. 请简要说明放大电路的基本组成及工作原理。

2. 请解释三极管放大电路中,晶体管的偏置电路的作用及偏置方式。

3. 请分析共射、共集、共基放大电路的特点及适用范围。

4. 请说明运算放大器的基本特性及工作原理。

5. 请解释滤波电路的基本原理及分类。

三、实验内容及思考1. 请简要说明实验一:共射放大电路实验的目的、原理及实验步骤。

(1)实验目的:验证共射放大电路的工作原理,掌握放大电路的基本调试方法。

(2)实验原理:通过改变晶体管的偏置电压,使晶体管工作在放大状态,从而实现信号放大。

(3)实验步骤:搭建共射放大电路,调整偏置电路,观察输出波形,分析放大倍数、输入电阻、输出电阻等参数。

2. 请简要说明实验二:运算放大器实验的目的、原理及实验步骤。

(1)实验目的:验证运算放大器的基本特性,掌握运算放大器电路的设计及调试方法。

(2)实验原理:利用运算放大器的开环增益高、输入阻抗高、输出阻抗低等特点,实现信号的运算处理。

(3)实验步骤:搭建运算放大器电路,调整电路参数,观察输出波形,分析电路的运算功能。

3. 请简要说明实验三:滤波电路实验的目的、原理及实验步骤。

(1)实验目的:验证滤波电路的基本原理,掌握滤波电路的设计及调试方法。

(2)实验原理:利用电容、电感等元件的特性,对信号进行滤波处理,达到抑制噪声、平滑波形等目的。

(3)实验步骤:搭建滤波电路,调整电路参数,观察输出波形,分析滤波效果。

4. 请简要说明实验四:稳压电源实验的目的、原理及实验步骤。

(1)实验目的:验证稳压电源的工作原理,掌握稳压电源的设计及调试方法。

(2)实验原理:利用稳压二极管、稳压电路等元件,实现对输入电压的稳定输出。

(3)实验步骤:搭建稳压电源电路,调整电路参数,观察输出电压稳定性,分析稳压效果。

模电实验报告(一)

模电实验报告(一)

模电实验报告(一)模电实验报告背景介绍电子科学与技术专业的学生通常会在模电实验课程中进行各种实验。

这些实验旨在帮助学生了解和掌握模拟电子电路的基本原理和设计方法。

模电实验报告是对实验结果进行总结和分析的重要环节,为了满足实验报告的要求,以下是一些编写报告的建议和规则。

实验目的在每份实验报告中,首先应明确实验的目的。

可以简要描述实验所涉及的主题、问题或目标。

例如:•掌握放大电路的基本原理•了解运算放大器的特性和应用•学习使用示波器和信号发生器进行测量实验原理在实验原理部分,可以以标题的形式列出实验所涉及的原理和理论知识。

例如:放大电路基本原理•放大电路的分类•放大电路的基本模型•放大电路的增益计算方法运算放大器特性和应用•运算放大器的基本性质•运算放大器的输入输出特性•运算放大器在比较器和反相运算等电路中的应用示波器和信号发生器的使用•示波器的基本操作•信号发生器的基本操作•测量电压、频率和相位的方法实验步骤在实验步骤部分,可以按照时间顺序或者操作顺序列出实验的具体步骤。

可以使用有序列表来清晰地呈现每个步骤。

例如:1.连接电路板上的电路元件2.打开示波器和信号发生器并进行基本设置3.测量电路的输入输出特性4.记录实验数据和观察结果实验结果与分析在实验结果与分析部分,可以使用无序列表或表格的形式来呈现实验的结果和数据。

对于每个实验结果,应给出相应的分析和解释。

例如:•测量电路的输入电压为3V时,输出电压为6V,增益为2倍。

说明该放大电路为2倍放大电路。

•在反相运算电路中,输入电压为正时,输出电压为负,反之亦然。

这是因为运算放大器的反相输入端与非反相输入端的特性决定的。

实验总结在实验总结部分,可以对整个实验进行总结和评价。

可以描述实验所达到的目标,总结实验结果和分析的重点,并提出一些改进的建议。

例如:通过本次模电实验,我对放大电路的基本原理有了更深入的了解,并学会了使用示波器和信号发生器进行测量。

然而,对于某些实验步骤或数据处理方法还有一些疑惑,希望在之后的实验中能够进一步探索和学习。

【东南大学模电实验】实验七运算放大器及应用电路

【东南大学模电实验】实验七运算放大器及应用电路

实验七运算放大器及应用电路实验目的:1.认识运放的基本特性,通过仿真测试了解运放的基本参数,学会根据实际情况选择运放2.了解由运放构成的基本电路,并掌握分析方法。

实验内容:一、仿真实验。

1.运放基本参数电压传输特性如图,用DC Sweep给出LM358P线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd0.DC Sweep仿真结果:A vd0=V(3)/V3=dy/dx=99.599k将扫描电压范围设为-500μV~500μV,当斜率为99.5987k时,测得线性工作区输入电压范围为-14.369V~12.9402V。

思考:A.当输入差模电压为0时,输出电压为多少?若要求输出电压为0,如何施加输入信号?为什么?输入差模电压为0时,输出电压为-3.3536V。

若要求输出电压为0,应将输入电压V3置为33.604μV。

B.观察运放输出电压的最高和最低电压,结合LM358P内部原理图所示电路分析该仿真结果的合理性。

最低电压:-14.369V,最高电压:12.9402V。

最低电压的绝对值大于最高电压的绝对值。

IN+可对OUT下边的PNP管射级电流造成影响。

IN+在很小的正电位时,输出为0,这导致了最低电压的绝对值大于最高电压的绝对值。

输入失调电压根据下图所示电路,仿真得到LM358P的输入失调电压V IO。

R1=1kΩ,R2=10Ω,进行直流工作点仿真,并完成表1R1=10kΩ,R2=100Ω,进行直流工作点仿真,并完成表2R1=100kΩ,R2=1kΩ,进行直流工作点仿真,并完成表3表1V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3416.60 -33.6312 0 33.6312 -34.16687表2V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -3596.2 -33.6325 0 33.6325 -35.962表3V3(μV) V4(μV) V5(μV) V5-V4(μV) -V3/(-R1/R2)(μV) -5388.47 -33.6148 0 33.6148 -53.8847根据上述仿真结果,给出运放的输入失调电压V IO。

大学模电实验报告答案

大学模电实验报告答案

大学模电实验报告答案I. 实验目的通过本次实验,研究者将会掌握模拟电子线路设计及测量的基本技能,深刻理解模拟电路中运算放大器(OP-AMP)的基本特性,以及对集成电路(IC)的基本认识。

II. 实验原理在本次实验中,运用实验所需的器材与元器件进行模电实验。

实验中涉及到OP-AMP的基本特性参数、本应用的典型拓扑结构、前置放大器、微小信号测量技术等多方面的内容。

本次实验主要利用模电实验箱为控制端、集成运算放大器OP-AMP和变换器等多种元器件来完成各种小规模的电子电气 circuit运算。

主要测试首先不同的输入封装的运放在不同工作状态下的电压转换率,以及在同一工作温度下的温度变化引起的电流变化。

同时,还可以通过前置放大器、微小信号测量技术等设计并实现电路的信号增益及输入阻抗等特性。

III. 实验步骤1.对于研究者1,首先选择不同参数的运放电路建立灵敏度测试平台,接着以不同的方式通电来调整每个电路的输入和输出。

2.对于研究者2,在相同的工作温度下设置不同的运放输入封装,同样针对每种不同的封装,测量每个电路中的功率放大值和电流变化率。

3.对于研究者3,在前置放大器和微小信号测量技术的基础上,设计一种类似传感器的电路,并实现信号增益的产生并依次测量输入阻抗,从而评估设计的稳定性和可靠性。

IV. 实验结果与分析通过本次实验,研究者可以很便捷地了解并掌握了模拟电路设计与测量的基本技能,对于OP-AMP的基本特性有了更系统的了解。

实验结果显示,输入封装不同的OP-AMP,在其工作状态改变的情况下,其电压转换率也会产生一定的变化趋势,有时会导致其功率输出失真或测量结果不准确的情况发生。

在同一工作温度下的温度变化引起的电流变化也会影响电路的稳定性和信号的精度。

但是,通过前置放大器及微小信号测量技术的设计和测试可以有效地减小误差并增强信号强度,从而达到更为优良的信号处理效果。

V. 实验结论本次实验完全达成了预期目标,进一步深传研究者对模拟电路设计与测量基本技能所需掌握的知识点,让研究者更加科学地理解运算放大器的特性参数及其与集成电路相互作用的特性。

模电实验报告

模电实验报告

模拟电子技术基础实验报告:钊哲学号:2014300446日期:2015.12.21实验1:单极共射放大器实验目的:对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。

实验原理:静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。

其中集电极电流有两种测量方法。

直接法:将万用表传到集电极回路中。

间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。

输出波底失真为饱和失真,输出波顶失真为截止失真。

电压放大倍数即输出电压与输入电压之比。

输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。

输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。

实验电路:实验仪器:(1)双路直流稳压电源一台。

(2)函数信号发生器一台。

(3)示波器一台。

(4)毫伏表一台。

(5)万用表一台。

(6)三极管一个。

(7)电阻各种组织若干。

(8)电解电容10uF两个,100uF一个。

(9)模拟电路试验箱一个。

实验结果:经软件模拟与实验测试,在误差允许围,结果基本一致。

实验2:共射放大器的幅频相频实验目的:测量放大电路的频率特性。

实验原理:放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。

但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。

放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。

在一端频率围,曲线平坦,放大倍数基本不变,叫作中频区。

在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。

通频带为: f BW=f H-f L实验电路:实验结果:理论估算值实际计算值参考f L f H f L f H R L=2k欧17.98H Z53.13MH Z17.88H Z53.09MH ZBW=A V(f h-f l)=4.5*107实验3:反向加法器实验目的:(1)加深对集成运算放大器的基本应用电路和性能参数的理解(2)掌握反向比例电路,反向加法电路。

最新实验五(模电实验报告)

最新实验五(模电实验报告)

最新实验五(模电实验报告)实验目的:1. 熟悉模拟电路的基本测试方法和实验流程。

2. 掌握运算放大器的基本应用和性能参数的测量。

3. 学习并实现常见模拟电路的设计与搭建,如放大器、滤波器等。

4. 提高分析和解决模拟电路问题的能力。

实验设备:1. 双踪示波器2. 函数信号发生器3. 直流电源4. 交流电源5. 多用表6. 面包板及跳线7. 运算放大器LM7418. 电阻、电容等被动元件实验原理:运算放大器是一种高增益、高输入阻抗、低输出阻抗的直流耦合放大器。

它可以用于模拟信号的放大、滤波、积分、微分等多种功能。

本次实验主要围绕运算放大器的特性和应用进行。

实验内容:1. 搭建基本的非反向放大器电路,并测量其增益。

2. 设计并实现一个反向放大器电路,计算并验证其增益。

3. 构建一个低通滤波器,并使用示波器观察其频率响应。

4. 搭建一个高通滤波器,并测试其对不同频率信号的响应。

5. 对运算放大器的性能参数进行测试,如输入偏置电流、输入偏置电压等。

实验步骤:1. 根据实验原理图,使用面包板和跳线搭建非反向放大器电路。

2. 调整函数信号发生器,产生适当频率和幅度的正弦波信号。

3. 将信号输入到非反向放大器的输入端,使用示波器观察输出端的波形,并计算增益。

4. 重复步骤1-3,搭建并测试反向放大器电路。

5. 设计并搭建低通滤波器,调整交流电源频率,记录不同频率下的输出波形,绘制频率响应曲线。

6. 搭建高通滤波器,重复步骤5的测试和记录。

7. 测量运算放大器的输入偏置电流和输入偏置电压,并记录数据。

实验数据与分析:1. 记录非反向放大器和反向放大器的增益,并与理论值进行比较分析。

2. 绘制低通和高通滤波器的频率响应曲线,并分析其特性。

3. 整理运算放大器性能参数的测量结果,并与数据手册中的规格进行对比。

实验结论:通过本次实验,我们成功搭建并测试了基于运算放大器的放大器和滤波器电路。

实验数据与理论预期相符,验证了运算放大器在模拟电路设计中的应用。

东南大学模电实验报告模拟运算放大电路

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心实 验 报 告课程名称: 模拟电路实验第 一 次实验实验名称: 模拟运算放大电路(一) 院 (系): 专 业: 姓 名:学 号:实 验 室: 实验组别: 同组人员: 实验时间: 评定成绩: 审阅教师:实验一 模拟运算放大电路(一)一、实验目的:1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

2、 熟练掌握运算放大电路的故障检查与排除方法,以及增益、传输特性曲线的测量方法。

3、 了解运放调零与相位补偿的基本概念。

二、实验原理:1、反向比例放大器反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。

R 的取值则应远大于信号源v i 的内阻。

若R F = R ,则为倒相器,可作为信号的极性转换电路。

2、电压传输特性曲线F V R A =-R双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。

电压传输特性在实验中一般采用两种方法进行测量。

一种就是手工逐点测量法,另一种就是采用示波器X-Y方式进行直接观察。

示波器X-Y方式直接观察法:就是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X通道,电路的输出信号加到示波器的Y通道,利用示波器X-Y图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以测量相关参数。

具体测量步骤如下:(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。

(2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察与读数。

一般取50~500Hz 即可。

(3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的就是在X-Y 方式下,X 通道的耦合方式就是通过触发耦合按钮来设定的,同样也要设成DC。

(4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。

东南大学 模电实验 吴健雄 实验二增益放大电路报告

东南大学  模电实验  吴健雄 实验二增益放大电路报告
1.仿真电路图:
2、仿真结果:
1)0.1倍增益:
2)1倍增益:
3)10倍增益:
二、精密全波整流电路
1.仿真电路:
2.仿真结果:
实际电路无法达成要求
五、注意事项:
1.注意模拟开关 CD4052 的电压匹配问题。
2.对于交流信号的峰值采样如果仅用一个二极管和一个电容做,在信号大时结果较好,但在输入小信号时误差明显增大。
1)放大器能够具有0.1、1、10三档不同的增益,可以用连线改变增益,或者以拨动开关切换增益,或者用模拟电子开关切换增益。
2)输入一个幅度为0.1~10V的可调直流信号,要求放大器输出信号电压在0.5~5V范围内,设计电路根据输入信号的幅值自动切换调整增益值。
2. 提高要求
1)输入一个交流信号,频率10kHz,幅值范围为0.1~10V(峰峰值Vpp),要求输出信号电压控制在0.5~5V(峰峰值Vpp)的范围内。
东南大学电工电子实验中心
实验报告
课程名称:电子电路实践
第三次实验
实验名称:增益自动切换电压放大电路的设计
院(系):专业:
姓名:学号:
实验室:实验时间:2017年5月5日
评定成绩:审阅教师:
实验二增益自动切换电压放大电路的设计
一、实验目的:
1、进一步熟悉 Multisim 软件仿真功能;
2、掌握利用运算放大器构成单门限比较器、迟滞比较器和窗口比较器电路各元件参数的计算方法;
3、掌握峰值检波的电路,二极管检波电路和精密整流电路的工作原理和基本电路结构;
4、掌握数字信号与模拟信号的级联、切换的方法。
二、实验内容
用运算放大器设计一个电压放大电路,其输入阻抗不小于100kΩ,输出阻抗不大于1kΩ,并能够根据输入信号幅值切换调整增益。电路应实指标:

模电实验报告[1]

模电实验报告[1]

实验八比例求和运算电路实验目的1掌握集成运算放大器的特点,性能及使用方法。

2掌握比例求和电路的测试和分析方法。

3掌握各电路的工作原理和理论计算方法。

实验仪器1数字万用表2直流稳压电源3双踪示波器4交流信号发生器5交流毫伏表实验原理及测试原理集成运算放大器是高电压放大倍数,高收入阻抗,低输出阻抗的多级直接耦合放大器,具有两个输入端和一个输出端,可对交流或直流信号进行放大,外接负反馈电路后,输出电压Uo与输入电压Ui的运算关系仅取决于外接反馈网络和输入端的外接阻抗,而与运算放大器本身无关。

1 —1,5运放调零端2 —反相输入端3 —同相输入端4—电源负端6 —运放输出端7—直流电源正端2电压跟随器当输入信号满足集成运放对输入信号的要求时,输出信号跟随输入信号的变化,此电路经常用在多级放大器的第一级,起阻抗匹配作用。

3反相比例电路UiR R U 1FO 为输出与输入的运算关系4同相比例放大器⎪⎪⎭⎫⎝⎛+=1F O R R 1-U 为输出与输入的运算关系5反相求和放大器⎪⎪⎭⎫ ⎝⎛+=2i 2F1i 1F O U R R U R R -U 为输出与输入的运算关系6加减运算电路()1i 2i 1FO U U R R U -=为输出与输入的运算关系实验内容及步骤1搭接电压跟随器并验证其跟随特性由图可知其跟随特性良好2测量反相比例电路的比例系数当输入交流信号时,其波形如下图所示当输入直流信号时仿真结果实验结果理论值输入电压100mv 100mv输出电压-987.222mv -988mv比例系数-9.87 -9.88 -103测量同相比例放大器的比例系数及上限截止频率当输入交流信号时,其波形如下图所示当输入直流信号时仿真结果实验结果理论值输入电压100mv 100mv输出电压 1.112v 1.098v比例系数11.12 10.98 114测量反相求和电路的求和特性当输入交流信号时,其波形如下图所示当输入直流信号时仿真结果实验结果 理论值 输入电压ui1 输入电压ui2 100mv 50mv 100mv 50mv输出电压 -1.483v -1.47v 比例系数-9.88-9.8-105验证双端输入求和电路的运算关系 当输入交流信号时当输入直流信号是仿真结果 实验结果 理论值 输入电压ui1 输入电压ui2 50mv 100mv 50mv 100mv输出电压512.897mv 498mv 1F R R .2F R R10.259.9610。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第一次实验实验名称:运算放大器的基本应用院(系):自动化学院专业:自动化姓名:某某学号:*****实验室: 101实验组别:同组人员:无实验时间:2017年3月29日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、熟练掌握运算放大电路的增益、幅频特性传输曲线测量方法。

二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

参数转换速率S R TYP0.5V/μS该参数指输出电压的变化量与发生这个变化所需的时间之比极限参数最大差模输入电压U IOR±30V反向和同相输入端能承受的最大电压值。

超过这个电压值运放的功能会受到影响。

最大共模输入电压U ICRTYP±13VNIN±12V同相端与反相输入端承受的最大共模信号电压值。

超过这个值运放的共模抑制比会显著下降,放大功能会受到影响。

最大输出电流I OSTYP±30mA;MAX±40 mA运放所能输出的电流峰值。

最大电源电压U SR±22V 运放最大电源电压。

2、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,R L=100 KΩ,并用Multisim仿真;(1)仿真原理图(2)参数选择计算因为要求|A v|=10,即|V0/V i|= |-R F/R1|=10,故取R F=10R1,输入电阻尽量大些,取:R1=15kΩ,R F=150 kΩ, R L=100 kΩ(3)仿真结果当输入电压为427.083mV时,输出电压为4.263V,放大倍数为9.982,与理论值10接近。

3、设计一个同相比例放大器,要求:|A V|=11,Ri>10KΩ,R L=100 KΩ,并用Multisim仿真。

(1)仿真原理图(2)参数选择计算因为要求|A v|=11,即|V0/V i|=1+|-R F/R1|=11,故取R F=10R1,输入电阻尽量大些,取:R1=15kΩ,R F=150 kΩ, R L=100 kΩ;(3)仿真结果当输入电压为30.640mV时,输出电压为341.094mV,放大倍数为11.132,与理论值11接近。

三、实验内容:1、内容一:反相输入比例运算电路各项参数测量数据(1)下图图1.1中电源电压±15V,R1=10kΩ,R F=100 kΩ,R L=100 kΩ,R P=10k//100kΩ。

按图连接电路,输入直流信号U i分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同U i时的U o值,列表计算A u并和理论值相比较。

其中U i通过电阻分压电路产生。

Ui/V U O/VA u测量值理论值-1.995 14.04 -7.038 -10 -0.504 4.997 -9.875 -100.505 -4.967 -9.836 -101.992 -12.67 -6.354 -10实验结果分析:由运放的基本性质可知,当输出电压Uo>Uom时,输出电压为Uom,由数据手册,V CC=±15V时,输出电压摆幅U OM≈±12V~±14V。

故当|Ui|>1.5V时,|Uo|=12~14V; |Ui|<1.5V 时,|Uo|=10|Ui|,实验结果与理论相符。

观察数据发现,在输入电压的绝对值一定时,运放输出的正电压高于负电压,在输出电压接近电源电压时尤为明显,由于放大器及电路本身结构具有不对称性,可推断这样的结果是合理的。

(2)Ui输入0.2V(有效值)、1kHz的正弦交流信号,在双踪示波器上观察并记录输入输出波形,在输出不失真的情况下测量交流电压增益,并和理论值相比较。

注意此时不需要接电阻分压电路。

(a)双踪显示输入输出波形图CH1输入信号数据显示:CH2输出信号数据显示:(b)交流反相放大电路实验测量数据输入信号有效值(V)输出信号有效值(V)信号频率电压增益测量值理论值0.14 1.33 1kHz 9.50 -10交流反相放大电路实验测量数据实验结果分析:由于本人的失误,将输入的0.2V有效值看成峰值,是的真正的输入有效值为0.14V,通过对有效值为0.14V的输入的输入输出波形的分析不难发现,放大倍数9.5在10倍左右,而输入输出的波形相位差为180°,构成一个反向比例放大器,与理论结果符合;(3)输入信号频率为1kHz的正弦交流信号,增加输入信号的幅度,测量最大不失真输出电压值。

实验过程以及波形记录:不断增大输入电压值,直到输出信号出现失真,此时,输入电压峰峰值为2.6V,输入输出波形如下:实验结果分析:通过查阅数据手册可知,当电源电压为±15V时,运放的最大输出摆幅范围为±12V 到±14V。

实验结果表明,RL=100KΩ时,最大不失真输出电压峰值为12.20V位于12V~14V 之间符合理论值。

(4)用示波器X-Y方式,测量电路的传输特性曲线,计算传输特性的斜率和转折点值。

(a)传输特性曲线图(b)实验结果分析:由上图,可知两转折点分别为(-1.24,12.10)和(1.38,-13.50),∆x =2.62V,∆Y=-25.60V,放大倍数为∆Y /∆x=9.77,与理论值10接近。

(5)电源电压改为±12V,重复(3)、(4),并对实验结果结果进行分析比较。

(a)最大不失真输出电压值A.实验过程以及波形记录:不断增大输入电压值,直到输出信号出现失真,此时,输入电压峰峰值为1.96V,输入输出波形如下:B.实验结果分析:R L=100kΩ,由于V cc=12V,运算放大器的输出电压摆幅相应降低,故最大不失真输出电压峰值也降低为9.2V,与理论结果符合;(b)电路的传输特性曲线A.传输特性曲线图:B.实验结果分析:由上图,可知两转折点分别为(0.970,9.00)和(1.04,-10.80),∆x =2.01V,∆Y=-19.80V,放大倍数为∆Y /∆x=9.85,与理论值10接近。

(6)重加负载(减小负载电阻R L),使R L=220Ω,测量最大不失真输出电压,并和R L=100 kΩ数据进行比较,分析数据不同的原因。

(提示:考虑运算放大器的最大输出电流)(a)实验过程以及波形记录:不断增大输入电压值,直到输出信号出现失真,此时,输入电压峰峰值为1.01V,输入输出波形如下:(b)实验结果分析:负载RL=100KΩR L=220Ω电源电压(V)15 15最大不失真输出电压峰值(V)12.2 4.64当RL=100KΩ时,最大不失真输出电压峰值为12.20V位于12V~14V之间符合理论值。

而当RL=220Ω时,则最大不失真输出电压为4.64V,考虑运放的最大输出电流为±30mA,负载上的最大电压为6.6V,实验结果与理论值相符合。

1、内容二:(1)设计一个同相输入比例运算电路,放大倍数为21,(由于从实验中心网站下错实验讲义,我下的16年的讲义要求放大倍数为21,后来做完实验才得知17年的讲义要求放大倍数为11,姑且为21)且RF=100 kΩ。

输入信号保持Ui=0.1V 不变,改变输入信号的频率,在输出不失真的情况下,测出上限频率fH并记录此时的输入输出波形,测量两者的相位差,并做简单分析。

(a)同相输入比例运算电路设计上图中电源电压±15V,R1=10kΩ,RF=200 kΩ,RL=100 kΩ,RP=10k//200kΩ。

(b)上限频率的测量逐渐增加输入信号的频率,当输入信号频率为30.44KHZ时,达到上限频率,波形如下如:整理数据到如下表格中:上限频率f H (KHz)相位差t(μs)T(μs)Φ=t/T×360 o30.30 4.40 33.00 48°(C)实验结果分析:输入电压为0.2V,取输出电压为0.2*21/√2=2.97V左右时作为失真的临界值。

增益带宽积为0.7~1.6MHz,实验值G.BW=(21/√2)*0.030MHz=0.45MHZ,与理论值有差距,可能的原因是实际放大电路的放大倍数不是21,或者是输入电压的取值不当。

当频率达到上限频率时,输入输出信号的相位差也发生了变化,这是由于当达到上限频率运放中的阻抗元件滤除了部分高次谐波。

(2)输入信号改为占空比为50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。

(a)实验数据获取:当输入的双极性方波信号的频率为12.9KHZ,电压值为1VPP时,输出波形刚好是三角波,此时的输入输出波形如下:(b)实验数据处理:由上图将数据整理如下:频率输入信号U iPP输出信号U OPP dU O/dt12.9kHz 1 V 17.4V 0.445(c)实验结果分析:由于输出信号近似为三角波,所以dUO/dt的计算就近似用电压差值处以半周期(38.4μs)的时间。

理论值为0.25-0.5V/μS,计算结果为0.445μS,在理论的范围内,符合理论值。

(3)将输入正弦交流信号频率调到前面测得的fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不象正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。

(a)实验数据获取:当输入的频率为30.44KHZ的正弦信号时,逐渐增加信号幅度,当峰峰值为1.1V 时,输出的波形开始变形,此时的输入输出波形如下:(b)实验数据处理:频率输入信号U iPP输出信号U OPP dU O/dt30.3kHz 1 .1 V 6.84V 0.409(c)实验结果分析:由于输出信号近似为三角波,所以dUO/dt的计算就近似用电压差值处以半周期(16.6μs)的时间。

理论值为0.25-0.5V/μS,计算结果为0.409μS,在理论的范围内,符合理论。

(4)R F改为10 kΩ,自己计算R P的阻值,重复内容二(1)(2)。

列表比较前后两组数据的差别,从反相比例放大器增益计算、增益带宽积等角度对之进行分析。

相关文档
最新文档