常用的遥感卫星影像数据处理方法

合集下载

卫星测绘数据处理方法与软件推荐

卫星测绘数据处理方法与软件推荐

卫星测绘数据处理方法与软件推荐卫星测绘是指利用卫星遥感技术获取地球表面信息的方法,是现代测绘技术的重要组成部分。

卫星测绘的数据处理方法和软件选择对于后续数据分析与应用至关重要。

本文将介绍常用的卫星测绘数据处理方法,并推荐几款优秀的软件。

卫星测绘数据处理方法包括影像预处理、制图处理和数据分析三个主要环节。

影像预处理是指对卫星遥感影像进行几何定位、辐射校正和大气校正等处理,以确保影像质量和准确性。

制图处理是指利用预处理后的遥感影像进行地图制图,包括地物提取、地理栅格化和图像融合等操作。

数据分析是指对制图处理后的数据进行统计分析和模型建立,以获取更深入的信息。

在影像预处理环节,常用的方法包括几何校正、辐射校正和大气校正。

几何校正是指将影像与地球坐标系统对齐,通常使用地面控制点或数字高程模型进行校正。

辐射校正是指将遥感影像的辐射亮度值转换为物理亮度值,以消除大气和地表漫反射的影响。

大气校正是指对辐射进行大气散射和吸收的校正,以消除大气的影响。

常用的影像预处理软件包括ENVI、Erdas等。

制图处理环节主要包括地物提取、地理栅格化和图像融合。

地物提取是指从遥感影像中提取感兴趣的地物信息,常用的方法包括阈值分割、纹理分析和目标检测等。

地理栅格化是指将遥感影像转换为栅格地图,便于后续的数据分析和应用。

图像融合是指将多源遥感影像融合为一幅高分辨率的影像,常用的方法包括波段融合和分辨率融合。

常用的制图处理软件包括ArcGIS、QGIS等。

数据分析环节包括统计分析和模型建立两个方面。

统计分析是指对制图处理后的数据进行统计描述和推断,以获取地球表面特征的空间分布和变化情况。

常用的统计分析方法包括聚类分析、主成分分析和回归分析等。

模型建立是指根据已有数据建立数学模型,以预测和模拟地球表面特征的变化。

常用的模型建立方法包括决策树、人工神经网络和遗传算法等。

常用的数据分析软件包括R、Python等。

除了上述提到的软件,还有一些优秀的卫星测绘数据处理软件值得推荐。

常用的遥感卫星影像数据处理方法

常用的遥感卫星影像数据处理方法

北京揽宇方圆信息技术有限公司常用的遥感卫星影像数据处理方法1、常用遥感图像处理软件⏹ENVI:美国Exelis Visual Information Solutions公司的旗舰产品⏹PCI GEOMATICA:加拿大PCI公司旗下的四个主要产品系列之一⏹EDRAS imagine2、白色的光可以分解为系列单色的可见光;三种原色:红、绿、蓝;三种补色:黄、品、青黄=红+绿品=红+蓝青=绿+蓝任何一种颜色都可以用3原色或者3补色来组合3、常用的波段组合特点红绿蓝321真彩色:可见光组成,符合人眼对自然物体的观察习惯。

对于水体和人工地物表现突出。

432假彩色:城市地区,植被种类。

543假彩色:增强对植被的识别743假彩色:增强对植被的识别,以及矿物、岩石类别的区分。

4、共15个主功能模块,其中一般的遥感数字图像处理经常用到的是Viewer、Import、DataPrep、Interpreter、Classifier、Modeler等。

5、功能模块介绍:①该模块主要实现图形图像的显示,是人机对话的关键。

②数据输入输出模块,主要实现外部数据的导入、外部数据与ERDAS支持数据的转换及ERDAS内部数据的导出。

③数据预处理模块,主要实现图像拼接、校正、投影变换、分幅裁剪、重采样等功能。

④专题制图模块,主要实现专题地图的制作。

⑤启动图像解译模块,主要实现图像增强、傅里叶变换、地形分析及地理信息系统分析等功能。

⑥图像库管理模块,实现入库图像的统一管理,可方便地进行图像的存档与恢复。

⑦图像分类模块,实现监督分类、非监督分类及专家分类等功能。

⑧空间建模模块,主要是通过一组可以自行编制的指令集来实现地理信息和图像处理的操作功能。

⑨矢量功能模块,主要包括内置矢量模块及扩展矢量模块,该模块是基于ESRI的数据模型开发的,所以它直接支持coverage、shapfile、vector layer等格式数据。

⑩雷达图像处理模块,主要针对雷达影像进行图像处理、图像校正等操作。

测绘技术中的遥感数据的获取与处理方法

测绘技术中的遥感数据的获取与处理方法

测绘技术中的遥感数据的获取与处理方法遥感技术在测绘领域的应用日益广泛,其能够获取大范围、高分辨率的地表信息,为地理空间数据的获取和处理提供了有力支持。

本文将探讨测绘技术中遥感数据的获取与处理方法。

一、遥感数据的获取遥感数据的获取主要通过卫星、飞机等载体,采集地球表面的电磁辐射信息。

卫星遥感数据具有广覆盖、周期性获取、持续监测等优势,而航空遥感数据则具有高分辨率、重复性强等特点。

1. 卫星遥感数据的获取卫星遥感数据的获取通常分为光学遥感和微波遥感两类。

光学遥感通过装载在卫星上的传感器,记录地表反射、发射和散射的光谱信息,推测出地表特征。

而微波遥感则利用微波辐射与地表物质的相互作用,获取地表的散射、吸收和反射等信息。

2. 航空遥感数据的获取航空遥感通过飞机搭载的传感器,采集地表的高分辨率影像数据。

航空遥感数据获取灵活,能够根据需要选取特定区域进行拍摄,获取更精确的地理信息。

二、遥感数据的处理方法遥感数据处理是对获取的原始遥感数据进行预处理、分类、提取等工作,以获得具有科学和实用价值的产品和信息。

1. 遥感数据的预处理遥感数据的预处理主要包括几何校正、辐射校正和大气校正等。

几何校正校正了数据获取过程中的几何变形,使其与地球表面实际对应;辐射校正消除了传感器自身的误差和对地球表面的辐射强度;大气校正则通过模型和反演方法消除大气对遥感数据的扰动。

2. 遥感数据的分类遥感数据的分类是将遥感图像中的像元分成不同的类别,常用的分类方法包括有监督分类和无监督分类。

有监督分类通过已知的训练样本进行分类器训练,然后将分类器应用于整个图像;无监督分类则不需要先验知识,通过聚类方法将图像像元自动分类。

3. 遥感数据的特征提取遥感数据的特征提取是从遥感图像中提取出地物的特征属性,如形状、纹理、光谱等。

特征提取可以利用像元级的单一特征或多特征组合进行,常用的方法有主成分分析、小波变换、纹理分析等。

4. 遥感数据的信息提取遥感数据的信息提取是根据特定的需求,通过应用特定的算法,提取出地物的相关信息。

使用卫星遥感数据进行测绘的数据处理方法

使用卫星遥感数据进行测绘的数据处理方法

使用卫星遥感数据进行测绘的数据处理方法导言:随着现代测绘技术的不断发展,卫星遥感数据成为了测绘领域中不可或缺的重要数据源。

卫星遥感数据能够提供高分辨率、大范围的地理信息,帮助测绘工作更加精准、高效。

然而,卫星遥感数据常常需要经过一系列的数据处理方法,以提取有效的地理信息。

本文将介绍一些常用的卫星遥感数据处理方法,以助于更好地利用卫星遥感数据进行测绘。

一、数据预处理1. 图像预处理卫星遥感数据通常经过传感器、通道、大气等多种因素的影响,需要进行图像预处理以去除噪声、纠正图像偏移、增强图像对比度等。

常用的图像预处理方法包括平滑滤波、直方图均衡化、大气校正等。

2. 高程数据处理卫星遥感数据中常包含高程信息,如数字高程模型(DEM)数据。

为了得到地形的准确表达,需要对DEM数据进行降噪、插值、拟合等处理。

常见的方法包括小波降噪、三角网剖分插值等。

二、特征提取1. 目标提取卫星遥感数据可以用于提取地物目标,如道路、建筑、植被等。

常见的目标提取方法包括阈值分割、特征分类、形态学处理等。

这些方法可以帮助测绘工作者有效地在遥感图像中提取出感兴趣的地物目标,并进行后续的测绘工作。

2. 变化检测卫星遥感数据可以用于检测地理环境的变化,如土地利用变化、海岸线变化等。

常用的变化检测方法包括监督分类、无监督分类、基于图像差异的方法等。

通过变化检测,可以了解地理环境的演变情况,为后续的测绘工作提供更准确的数据支持。

三、精度评定与校正1. 精度评定在进行测绘工作时,需要对卫星遥感数据的精度进行评定。

常见的精度评定方法包括地物提取精度评定、高程数据精度评定等。

通过精度评定,可以客观地评价卫星遥感数据的可靠性,为后续的测绘工作提供参考依据。

2. 数据校正卫星遥感数据在获取过程中可能存在校正问题,如几何校正、辐射校正等。

为了获得更准确的地理信息,需要进行相应的数据校正工作。

常见的数据校正方法包括基于地面控制点的几何校正、大气校正等。

遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用

遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。

特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。

本文将介绍遥感影像处理中常用的特征提取方法及其应用。

一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。

常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。

常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。

(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。

常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。

(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。

常用的方法包括链码、Hu不变矩、区域面积等。

2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。

常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。

常用的方法包括面积、周长、伸长率等。

(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。

常用的方法包括纹理能量、纹理熵、纹理对比度等。

(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。

常用的方法包括边界连接、邻居分析、局部空间关系等。

二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。

通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。

特征提取方法可以通过训练分类器来实现自动分类。

2. 土地利用监测特征提取可以应用于土地利用监测。

通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。

3. 城市规划特征提取在城市规划中具有重要意义。

通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。

卫星遥感数据处理方法综述与比较

卫星遥感数据处理方法综述与比较

卫星遥感数据处理方法综述与比较卫星遥感是一种通过卫星获取地球表面信息的技术。

遥感数据处理方法是将获取的原始数据转化为有用的信息的过程。

本文将对常见的卫星遥感数据处理方法进行综述与比较。

一、数据预处理数据预处理是数据处理的第一步,包括数据获取、数据校正和数据栅格化。

数据获取是指从卫星获取遥感数据的过程,可以通过直接下载、申请或购买数据。

数据校正是为了消除数据中的系统误差,例如大气校正、几何校正等。

数据栅格化是将遥感数据转化为栅格数据格式,如像元(pixel)或网格(grid)。

二、数据分类与特征提取数据分类是将遥感图像中的像元分为不同类别的过程,通常使用像元级分类和对象级分类。

像元级分类是将每一个像元分为具体的类别,例如水体、植被、建筑等;对象级分类是将连续的像元组合成一个对象,例如湖泊、森林、城市等。

特征提取是在分类之前对数据进行特征提取,常用的特征包括光谱特征、纹理特征、形状特征等。

三、数据融合数据融合是将不同传感器或不同波段的遥感数据进行融合,以提高数据的空间分辨率、光谱分辨率和时间分辨率。

常见的数据融合方法包括图像融合、数据融合和特征融合。

图像融合是将多幅图像融合为一幅图像,常用的方法有PCA、Brovey变换等;数据融合是将不同波段的遥感数据进行融合,例如多光谱和高光谱数据的融合;特征融合是将不同特征的遥感数据融合,以提取更多的信息。

四、数据压缩与存储遥感数据通常具有较大的体积,因此需要进行数据压缩与存储。

数据压缩可以减小数据量并提高数据传输速度,常见的压缩方法包括无损压缩和有损压缩。

无损压缩是保留原始数据的全部信息,例如Huffman编码、LZW编码等;有损压缩是通过舍弃部分数据来减小数据量,例如JPEG、JPEG2000等。

数据存储是将压缩后的数据存储到硬盘或其他存储介质中,常见的格式有TIFF、JPEG、GeoTIFF等。

五、数据处理与分析数据处理与分析是对遥感数据进行进一步的处理和分析,以提取目标信息。

卫星遥感数据处理技术的使用方法

卫星遥感数据处理技术的使用方法

卫星遥感数据处理技术的使用方法卫星遥感是通过卫星搭载的传感器获取地球表面信息的一种技术手段。

借助卫星遥感数据处理技术,我们能够有效地处理和分析海量的遥感图像数据,从而获得对地球表面特征和变化的详细了解。

本文将为您介绍卫星遥感数据处理技术的使用方法。

第一步:获取卫星遥感数据要进行卫星遥感数据处理,首先需要获取适用于您研究领域的卫星遥感数据。

通常情况下,这些数据可以通过各类数据共享平台、卫星数据提供商或地球观测卫星的官方网站获得。

一旦您获取到了需要的卫星遥感数据,将其下载到您的计算机中备用。

第二步:数据预处理在进行卫星遥感数据处理之前,通常需要对数据进行预处理,以去除可能的噪声、纠正影像几何形变等。

预处理的具体步骤包括:1.空间参考校正:将遥感数据的像元与地理坐标系统对应起来,以使其能够准确表示地球表面的位置。

2.大气校正:由于大气对卫星遥感数据的影响,需要进行校正以减少大气造成的误差。

3.影像校正:包括几何校正和辐射校正,以纠正影像的形变和辐射度。

第三步:影像分类与解译卫星遥感数据处理的重要一步是对遥感影像进行分类与解译,以提取出感兴趣的地物类型和特征。

常用的影像分类方法包括:1.基于统计的分类方法:根据遥感数据的统计特征,如像素的散布规律、光谱参数等,进行分类分析。

2.基于机器学习的分类方法:利用机器学习算法,通过训练样本对遥感影像进行分类预测。

3.基于专家判读的分类方法:由专家根据经验和知识对遥感影像进行目视解译和标注。

第四步:地理信息系统(GIS)分析卫星遥感数据处理的另一个重要应用领域是地理信息系统(GIS)分析。

借助GIS软件,我们可以对处理后的遥感数据进行进一步分析和可视化。

常见的GIS分析包括:1.空间分析:通过空间叠加、缓冲区分析等方式,从遥感数据中提取出地理空间上的关系和特征。

2.地形分析:根据地形数据和高程信息,对地表的高程特征进行分析和可视化。

3.变化检测:通过比较不同时期的遥感影像,检测地球表面的变化情况,如土地覆盖变化、城市扩张等。

测绘技术中的遥感数据处理方法与分析技巧

测绘技术中的遥感数据处理方法与分析技巧

测绘技术中的遥感数据处理方法与分析技巧遥感技术作为测绘技术的一种重要手段,已经在地理信息系统(GIS)和地理空间信息科学(GIScience)等领域得到广泛应用。

遥感数据处理方法和分析技巧的应用不仅可以提供高质量的地理空间数据,还能支持地理空间分析和决策制定。

本文将介绍一些常见的遥感数据处理方法和分析技巧,并探讨它们在测绘技术中的应用。

一、遥感数据处理方法1. 遥感数据获取与预处理遥感数据获取包括卫星、航空和无人机遥感数据的收集与获取。

该过程中需要考虑分辨率、波段、时序等因素,并进行数据预处理,包括辐射定标、几何校正等,以确保数据的准确性和一致性。

2. 影像增强与融合影像增强是指通过调整图像的对比度、亮度、锐度等来提高遥感影像的图像质量。

常用的方法包括直方图均衡化、线性和非线性滤波等。

影像融合是将来自多个传感器的遥感影像融合为一幅影像,以提供更全面、更准确的信息。

融合方法包括像元级融合、特征级融合和决策级融合等。

3. 特征提取与分类特征提取是从遥感影像中提取出与目标有关的信息。

常用的特征包括纹理、形状、颜色等。

特征提取可以通过人工、半自动和自动的方法来实现。

分类是将遥感影像分为不同的类别,常用的分类方法包括最大似然分类、支持向量机分类和决策树分类等。

二、遥感数据分析技巧1. 地物变化检测与监测地物变化检测是指通过对多时相的遥感影像进行比较和分析,来检测地表上的变化。

常用的方法包括改变向量分析、差异图像法和变化向量分析等。

地物变化监测是指通过连续监测遥感影像的变化,来了解和研究地表的变化趋势和规律。

常用的方法包括时间序列分析和时空模型等。

2. 地表覆盖分类与制图地表覆盖分类是将遥感影像中的地物进行分类,并进一步制作地表覆盖图。

该过程中需要选择适当的分类方法,并参考地面真实数据进行验证和校正,以提高分类的准确性。

地表覆盖制图是将分类结果转化为地图,常用的方法包括像素级合成和对象级合成等。

3. 地形表面建模与分析地形表面建模是指通过遥感数据生成数字高程模型(DEM)和三维地形模型。

遥感卫星数据处理与分析的常用方法与技巧

遥感卫星数据处理与分析的常用方法与技巧

遥感卫星数据处理与分析的常用方法与技巧引言:遥感技术是一种通过获取地球表面信息的非接触式手段,被广泛应用于农业、资源环境管理、城市规划等领域。

而遥感卫星数据处理和分析是利用遥感数据来提取和分析有用信息的重要环节。

本文将探讨遥感卫星数据处理与分析的常用方法与技巧,以帮助读者更好地应用和理解这一科技。

一、遥感卫星数据处理1. 数据获取首先要获取到遥感卫星数据,常见的途径有:从遥感卫星数据网站下载、购买有关数据、利用遥感卫星数据开放接口等。

在选择数据源时,应根据研究目标和需求来确定,同时要了解数据的时间、分辨率、波段等信息。

2. 数据预处理遥感卫星数据由于各种因素的影响可能存在噪声、云状物等问题,需要进行预处理。

常见的预处理步骤包括:辐射校正、大气校正、几何校正、云检测等。

这些步骤的目的是减少数据中的干扰因素,保证后续分析的准确性。

3. 数据融合数据融合是指将来自不同源的遥感数据融合成一幅图像,以便更好地获取信息。

数据融合可以通过图像融合算法来实现,如:像元级融合、特征级融合等。

数据融合后的图像能够同时具备多种波段和分辨率的信息,有助于更全面地分析研究对象。

二、遥感卫星数据分析1. 监测地表变化遥感卫星数据可以帮助我们监测和分析地表的变化情况。

通过对同一地区不同时期的遥感影像进行对比,可以观察到土地利用、植被覆盖、水域变化等的变化趋势。

这对于环境保护、土地利用规划等具有重要意义。

2. 提取地表信息利用遥感卫星数据,可以提取出许多有用的地表信息。

例如,通过光谱分析技术,可以提取出植被指数,进而评估植被的生长状态;通过纹理分析技术,可以提取出地表纹理以进行地貌分析。

这些信息对于农作物监测、资源调查等方面非常有用。

3. 航迹识别通过遥感卫星数据,我们可以进行航迹识别,即追踪某一对象在地表的活动轨迹。

利用目标识别算法和时序遥感数据,可以对航迹进行提取和分析。

这对于交通管理、物流追踪等应用具有重要意义。

结论:遥感卫星数据的处理与分析是利用遥感数据进行科学研究和实际应用的关键环节。

如何进行遥感影像处理

如何进行遥感影像处理

如何进行遥感影像处理遥感影像处理是一门涉及图像处理和地理信息科学的重要学科,它通过获取和分析卫星、航空相机等传感器获取的遥感影像数据,为地理研究和资源利用提供了强大的支持。

本文将为读者介绍如何进行遥感影像处理的基本流程和一些常用的工具和方法。

一、数据获取遥感影像处理的第一步是获取遥感影像数据。

目前,遥感影像多采用卫星数据,如Landsat、MODIS等数据。

这些数据可通过美国地质调查局(USGS)等机构的网站进行下载。

此外,一些商业高分辨率卫星如SPOT、QuickBird和WorldView也提供了遥感影像数据的购买或租赁服务。

二、数据预处理在进行遥感影像处理之前,通常需要对数据进行预处理,以消除噪声、校正影像几何偏差等。

首先,可以使用图像拼接技术将多幅遥感影像拼接成一幅大图。

其次,可以进行大气校正,即校正由大气因素引起的亮度差异。

最后,还可以进行影像几何校正,使得影像的地理坐标能够与实际地理坐标一致。

三、影像分类影像分类是遥感影像处理的重要环节之一,它将遥感影像像素分为不同的类别,以便进行地物识别、土地覆盖分析等应用。

常见的影像分类方法包括:无监督分类、监督分类和混合分类。

无监督分类是基于像素的统计特征进行分类,例如聚类算法。

监督分类则需要先人工标记一些训练样本,然后使用分类器进行分类,例如支持向量机(SVM)和随机森林(Random Forest)等。

混合分类是将无监督分类和监督分类结合起来,以充分利用两种方法的优势。

四、影像变化检测遥感影像变化检测是通过对多个时间点的遥感影像进行比较和分析,以探测和分析地表的变化情况。

这对于城市扩张、自然灾害监测等应用具有重要意义。

常用的影像变化检测方法包括像素级变化检测和目标级变化检测。

像素级变化检测通过对像素亮度和颜色等特征的比较来判断变化情况。

目标级变化检测则通过对预先提取的目标进行比较,例如建筑物、道路等。

五、影像融合影像融合是将多个来源或多个波段的遥感影像进行融合,以获得更高分辨率或更多的信息。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤在遥感领域,影像预处理是遥感数据处理的重要环节,对于提高遥感影像的质量和后续分析具有重要意义。

以下是遥感影像预处理的正确步骤:一、数据获取与预处理1.数据获取:遥感影像数据来源于各种遥感卫星、航空遥感等,需要根据研究目的选择合适的数据源。

2.预处理:数据获取后,需要对数据进行预处理,以消除原始数据中的噪声、异常值等问题。

预处理方法包括去除噪声、裁剪、缩放等。

二、几何校正与图像配准1.几何校正:由于遥感影像在采集过程中可能受到传感器本身、地球曲率、大气折射等因素的影响,导致影像几何变形。

几何校正旨在消除这些变形,提高影像质量。

常见的方法有传感器模型校正、基于控制点的几何校正等。

2.图像配准:图像配准是将多幅遥感影像(如多光谱影像和单波段高分辨率影像)进行空间对齐,使其在同一坐标系统下。

配准方法有基于像素的配准、基于变换的配准等。

三、图像融合1.图像融合是将不同分辨率、不同光谱的遥感影像融合为高分辨率、多光谱的影像。

常见的图像融合方法有:(1)IHS变换融合:将高分辨率全色影像与亮度进行直方图匹配,然后去掉亮度,用预处理的高分辨率全色影像代替。

与色度H、饱和度S一起,利用逆变换式变换至RGB系统,得到融合后的影像。

(2)小波变换融合:利用人眼对局部对比度变化敏感的特性,根据一定的融合规则,在多幅原图像中选择最显著的特征(如边缘、线段等),并将这些特征保留在融合后的图像中。

四、影像增强与分割1.影像增强:通过调整亮度、对比度、色彩平衡等参数,提高遥感影像的视觉效果。

常见的增强方法有:直方图均衡化、自适应直方图均衡化、色彩空间转换等。

2.影像分割:将融合后的遥感影像划分为不同的区域,以便进行后续分析。

常见的分割方法有:基于阈值的分割、基于区域的分割、基于边缘的分割、基于深度学习的分割等。

五、特征提取与分析1.特征提取:从遥感影像中提取有意义的特征,如纹理、颜色、形状等。

常见的特征提取方法有:灰度共生矩阵、局部二值模式(LBP)、HOG特征等。

卫星遥感影像处理的常用方法

卫星遥感影像处理的常用方法

卫星遥感影像处理的常用方法随着卫星遥感技术的不断发展和应用,卫星遥感影像处理已经成为了解地球表面特征和环境变化的重要手段。

在这个过程中,常用的方法及算法起到至关重要的作用。

本文将介绍几种常见的卫星遥感影像处理方法,包括图像增强、分类与识别、变化检测、目标提取等。

一、图像增强图像增强是改进和优化遥感影像质量的一种方法。

常用的图像增强方法包括直方图均衡化、滤波、拉普拉斯变换等。

直方图均衡化通过对图像的灰度直方图进行调整,使得图像的灰度分布更加均匀,从而增强图像的对比度。

滤波方法通过对图像的像素值进行平滑或增强,使图像更加清晰和易于分析。

拉普拉斯变换则用于边缘检测,通过计算图像中像素灰度的二阶导数,实现对图像边缘的提取。

二、分类与识别分类与识别是卫星遥感影像处理中的一个重要环节。

它可以将遥感影像中的像素分为不同的类别,从而实现对地面特征的解译和分析。

常用的分类与识别方法包括监督分类、非监督分类和目标识别等。

监督分类是根据已知类别的训练样本进行分类,其分类准确度较高。

非监督分类是根据像素之间的相似性进行分类,但需要人工干预进行分类结果的解释。

目标识别则是通过特定的算法和规则,自动提取出遥感影像中的目标对象。

三、变化检测变化检测是比较两幅或多幅遥感影像之间的差异,以检测出地表特征和环境变化的方法。

常用的变化检测方法包括基于差异图的像素级差异检测、基于时间序列的统计分析以及基于分类方法的变化检测等。

像素级差异检测是通过计算两幅影像中像素灰度的差异值,来获得地表特征的变化信息。

时间序列分析则是基于多幅影像的时间序列数据进行统计分析,以检测出地表特征的长期变化趋势。

基于分类方法的变化检测则是通过对两幅影像进行分类,从而实现对影像中的变化区域的提取。

四、目标提取目标提取是将图像中的目标对象从背景中分割和提取出来的方法。

常用的目标提取方法包括基于阈值分割、基于纹理分析和基于形态学运算等。

阈值分割是通过设定不同的阈值来将影像中的目标与背景分离,但其结果受噪声的影响较大。

遥感影像处理的使用方法与技巧

遥感影像处理的使用方法与技巧

遥感影像处理的使用方法与技巧遥感影像处理是一种通过遥感技术获取地球表面信息并加以分析的方法。

利用遥感影像处理技术,可以对地表进行监测、分析和解译,为农业、林业、环境保护和城市规划等领域提供了有效的工具和支持。

一、遥感影像的获取遥感影像的获取主要通过卫星、飞机和无人机等载具进行,这些载具搭载的传感器可以感知地表的各种信息并将其转化为图像数据。

获取到的遥感影像数据具有多光谱、高分辨率和大范围等特点,为后续的影像处理提供了基础数据。

二、遥感影像预处理在进行影像分析之前,需要对遥感影像进行预处理。

常见的预处理方法包括噪声去除、辐射校正、几何校正和大气校正等。

这些预处理步骤可以提高影像质量,减少数据误差,并使得后续的影像处理更加有效和准确。

三、遥感影像分类遥感影像分类是将遥感影像中的像素根据其特征进行分类,并划分出不同的地物类型。

常用的分类方法包括有监督分类和无监督分类。

有监督分类需要提前标注一部分样本数据,并利用这些样本数据进行分类;无监督分类则是通过计算机自动解析影像数据的统计特性进行分类。

遥感影像分类可以帮助用户快速获取地表特定地物的空间分布信息,为资源调查和环境监测提供定量依据。

四、遥感影像变化检测遥感影像变化检测是通过对不同时间获取的影像进行比较,来检测地表的变化情况。

变化检测可以用于监测土地利用变化、自然灾害的评估等。

常用的变化检测方法包括基于像素的差异检测和基于对象的差异检测。

前者是通过对影像像素值的比较来判断变化的发生;后者是先提取出地物对象,然后对对象属性进行比较来判断变化。

变化检测的结果可以为相关领域的研究提供重要依据。

五、遥感影像融合遥感影像融合是将不同传感器获取的多源遥感影像进行融合,以获取更为全面和准确的信息。

常见的融合方法包括基于像素的融合和基于特征的融合。

基于像素的融合是将不同分辨率的遥感影像像素进行融合;基于特征的融合是将影像中的特征进行提取和融合。

遥感影像融合可以提高影像的空间、光谱和时间分辨率,为用户提供更为细致准确的地表信息。

遥感卫星影像数据预处理一般流程介绍

遥感卫星影像数据预处理一般流程介绍
图:三次卷积内插法示意图 一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。 后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路 网、水系、地物边界等。 (二) 图像融合 将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成成一副高分辨率多光谱 影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特 征。 (三)图像镶嵌与裁剪

镶嵌

当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形 成一幅或一系列覆盖全区的较大的图像。
在进行图像的镶嵌时,需要确定一幅参考图像,参考图像将作为输出镶嵌图像的基 准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或 多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大 时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻 图像的色调不允许平滑,避免信息变异。
1、GCP 在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。
GCP 均匀分布在整幅图像内,且要有一定的数量保证,不同纠正模型对控制点个数的 需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需 9 个控制点即可; 对于有理多项式模型,一般每景要求不少于 30 个控制点,困难地区适当增加点位;几何 多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在 30-50 个左右,尤其对于山区应适当增加控制点。
的辐射值在不同时相遥感图像上一致,从而完成地物动态变化的遥感动态监测。
北京揽宇方圆信息技术有限公司
(3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行 列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对 原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插 方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原 来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成 输出图像中某些地物的不连贯。

如何进行卫星遥感数据的处理与分析

如何进行卫星遥感数据的处理与分析

如何进行卫星遥感数据的处理与分析近年来,随着卫星技术的快速发展,卫星遥感数据的应用越来越广泛。

卫星遥感数据的处理与分析是利用卫星图像进行地理信息提取和环境监测的重要手段。

本文将从数据获取、预处理、特征提取和分析四个方面,探讨如何进行卫星遥感数据的处理与分析。

1. 数据获取卫星遥感数据的获取是进行处理与分析的前提。

目前,常用的数据获取方式有两种:购买和免费下载。

购买卫星遥感数据可以获得高质量和高分辨率的数据,但成本较高。

购买数据时需要选择合适的卫星、传感器和影像类型,根据需求购买合适的数据产品。

另一种方式是免费下载,如Landsat、MODIS等卫星的数据可在美国地质调查局(USGS)和国家航空航天局(NASA)的网站上获取。

获取数据时需要注册账号,并了解数据的获取政策和使用要求。

2. 预处理卫星遥感数据的预处理是为了将原始数据转化为可用的数据,并消除一些干扰因素。

常见的预处理方法包括:大气矫正、辐射定标、几何矫正、镶嵌拼接和数据格式转换等。

大气矫正是根据某些模型或方法,校正卫星图像中大气散射和吸收的影响,以减少大气光的影响,获得更真实的地表反射率。

辐射定标是将卫星图像中的数字值转换为辐射亮度值,使其具有物理量度,以方便后续的数据分析和处理。

几何矫正是通过与地面控制点的对应关系,进行地面形状、尺寸和位置的矫正,以消除由于卫星自身的运动、地球曲率和地形等因素造成的变形和偏移。

镶嵌拼接是将多幅卫星图像拼接在一起,形成无缝衔接的大范围图像,以满足大面积的遥感分析需求。

数据格式转换是将原始数据格式转化为常用的栅格或矢量格式,以便于后续分析和处理。

3. 特征提取卫星遥感数据的特征提取是获取地物信息的关键步骤。

特征提取常用的方法包括:监督分类、非监督分类、目标检测和变化检测等。

监督分类是根据训练样本的特征和类别标签,通过预先训练的分类器对图像进行分类,以提取目标地物的信息。

常用的监督分类算法有最大似然分类、支持向量机和人工神经网络等。

遥感数据处理与分析方法研究

遥感数据处理与分析方法研究

遥感数据处理与分析方法研究遥感技术是一种通过获取地面物体的电磁波辐射信息并进行解译、处理与分析的方法。

利用遥感数据,我们可以获取并分析地表、大气、海洋等不同领域的信息,为资源管理、环境监测、灾害评估等提供有力支持。

在遥感数据处理与分析方法的研究中,各种数据处理和分析技术被广泛应用。

本文将介绍几种常用的遥感数据处理与分析方法,包括数据获取与处理、影像分类与特征提取、时空分析与模型构建。

首先,数据获取与处理是遥感数据处理与分析的基础。

遥感数据的获取可以通过遥感卫星、航空摄影以及无人机等多种途径进行。

其中,卫星遥感是最常见和广泛应用的方法之一。

获取到的遥感数据往往需要进行预处理,包括辐射定标、几何纠正、大气校正等,以提高数据的质量和精度。

在影像分类与特征提取方面,最常用的方法是基于统计学的分类方法和机器学习方法。

统计学的分类方法包括最大似然法、最小距离法和最大后验概率法等,它们通过对不同类别的样本进行统计学分析,来实现对遥感影像的分类。

机器学习方法则利用训练样本进行模型训练,然后利用训练好的模型对遥感影像进行分类。

常用的机器学习方法包括支持向量机、人工神经网络和决策树等。

此外,基于对象的分类方法也得到了广泛应用,它将遥感影像分割成不同的对象,然后利用对象的形状、纹理和光谱等特征进行分类。

时空分析与模型构建是遥感数据处理与分析的另一个重要方面。

时空分析利用多时相遥感数据,对地表变化进行监测和分析。

例如,可以通过时序遥感影像对城市扩展、农田变化以及湖泊水位等进行定量分析。

模型构建则是利用遥感数据构建地表或大气的模型,以模拟或预测地表或大气的变化。

例如,可以基于遥感数据构建气象模型,对气温、湿度和风速等进行预测。

除了上述方法,还有一些特殊的遥感数据处理与分析方法被用于特定领域的研究。

例如,在植被遥感领域,可以使用植被指数(如NDVI)来评估和监测植被生长状态。

在海洋遥感领域,可以利用海表温度数据进行海洋环流和气候变化研究。

卫星遥感数据处理的时空分析方法与应用案例

卫星遥感数据处理的时空分析方法与应用案例

卫星遥感数据处理的时空分析方法与应用案例近年来,随着遥感技术的发展和卫星观测能力的不断提升,卫星遥感数据的时空分析方法在环境监测、资源管理、城市规划等领域中得到了广泛的应用。

本文将介绍一些常用的卫星遥感数据处理的时空分析方法,并结合实际案例进行讲解。

一、时空分析方法1. 遥感影像预处理遥感影像预处理是卫星遥感数据处理的起始阶段,主要包括辐射校正、大气校正、几何校正等过程。

辐射校正是将图像的数字值转换为具有物理意义的辐射通量值,大气校正则是消除大气对图像的影响,而几何校正则是去除图像畸变,使之符合地球表面实际形态。

2. 遥感数据的分类与识别遥感数据的分类与识别是卫星遥感数据处理中的重要环节。

常用的方法包括基于像元的分类方法和基于对象的分类方法。

基于像元的分类方法是根据像元的光谱特征进行分类,而基于对象的分类方法则是利用图像中的空间信息进行分类。

此外,还可以通过机器学习算法、人工神经网络等方法实现遥感数据的自动分类与识别。

3. 遥感图像的变化检测遥感图像的变化检测是利用多时相的遥感影像进行时空分析的主要方法之一。

变化检测可以在不同时间段内比较同一地区的遥感影像,识别出地表特征的变化情况,如城市建设、植被覆盖等。

常用的变化检测方法包括像素级变化检测、目标级变化检测和语义级变化检测等。

4. 遥感数据的时空插值与模拟遥感数据的时空插值与模拟是为了填补数据缺失或扩展数据覆盖范围而采用的方法。

时空插值可以通过已有的遥感数据推算出缺失的数据,使得数据的连续性得到保证。

而时空模拟则是利用已有的遥感数据拟合出地球表面特征的时空变化规律,从而预测未来的遥感数据。

二、应用案例1. 环境监测与资源管理卫星遥感数据的时空分析在环境监测与资源管理领域中发挥着重要作用。

例如,通过监测和分析遥感影像中的水体变化,可以实现对水资源的管理和保护。

同时,结合地形、土壤、植被等遥感影像数据,可以进行精准的土地利用规划和农作物生长监测。

2. 城市规划与交通管理卫星遥感数据的时空分析也被广泛应用于城市规划和交通管理。

测绘技术中的遥感影像处理方法详解

测绘技术中的遥感影像处理方法详解

测绘技术中的遥感影像处理方法详解遥感技术是当今测绘领域中不可或缺的一项重要技术,通过利用卫星、飞机等遥感平台获取的地球表面影像,可以为地质勘探、环境监测、城市规划等领域提供丰富、准确的地理信息数据。

遥感影像处理是遥感技术中的一种核心技术,本文将对其中的几种常用的处理方法进行详解。

1. 影像预处理遥感影像预处理是指在进行后续处理之前,对原始影像进行一系列的校正、增强等操作,以提高影像的质量和可用性。

其中包括几何纠正、辐射校正和大气校正等步骤。

几何纠正主要是针对影像中的几何畸变问题进行校正,通常包括影像配准、去除地形效应以及去除大地畸变等处理。

影像配准是指将不同卫星或不同时间拍摄的影像进行精确对准,使得它们能够在同一坐标系下进行比较和分析。

去除地形效应是为了消除由于地表起伏引起的影像变形,以确保影像中对地物的位置和形状描述准确。

去除大地畸变是为了消除地球曲面引起的影像形变,通常采用像点的投影转换和校正等方法。

辐射校正是为了将影像中的数字计数值转换为大气无影响的地表辐射亮度值,从而能够实现不同时间、不同地域之间的比较研究。

常用的辐射校正方法有分级灰度线性变换法、大气校正法和无标定性辐射校正法等。

大气校正是为了消除大气介质对遥感影像的影响,以准确获取地表反射率信息。

常用的大气校正方法有大气能见度法、基于粒子传输函数的大气校正法以及辐射传输模型法等。

2. 影像分类遥感影像分类是将影像中的像素分为不同的类别,以实现对地物类型的识别和区分。

常用的影像分类方法包括无监督分类和监督分类两种。

无监督分类是指在不需要先验知识的情况下,根据像素的相似性进行聚类分组,从而得到影像中各个类别的统计信息。

常用的无监督分类方法有K均值聚类法、高斯混合模型法以及自组织映射法等。

监督分类是在事先提供类别标记的训练样本的基础上,通过对样本进行特征提取和模式识别,从而对整个影像进行分类。

常用的监督分类方法有最大似然法、支持向量机法、人工神经网络法以及决策树法等。

遥感数据处理的基本流程和工具介绍

遥感数据处理的基本流程和工具介绍

遥感数据处理的基本流程和工具介绍遥感数据处理是指利用卫星或其他遥感平台获得的遥感影像数据进行分析、处理和应用的过程。

遥感数据处理的目的是从遥感影像数据中提取有效信息,并将其转化为具有实际应用价值的产品和服务。

本文将介绍遥感数据处理的基本流程和一些常用的工具。

一、遥感数据处理的基本流程1. 遥感数据获取:首先需要获取遥感影像数据,可以通过卫星、无人机等平台采集数据。

常见的遥感数据来源包括Landsat、MODIS、Sentinel等卫星影像。

数据获取后,需要将其存储在计算机或服务器上。

2. 遥感数据预处理:在进行后续处理前,需要对遥感数据进行预处理。

预处理包括对影像进行辐射定标(radiometric calibration)、大气校正(atmospheric correction)、几何校正(geometric correction)等步骤。

这些步骤的目的是消除遥感影像中的噪声和偏差,提高数据的质量和可信度。

3. 影像分类:影像分类是遥感数据处理的核心环节,其目的是将遥感影像中的像素按照不同的地物类型进行划分。

常用的分类方法包括基于像元(pixel-based)的分类、基于目标(object-based)的分类等。

这些方法通常使用统计学、机器学习等技术进行像元或目标的识别和分类。

4. 特征提取:在进行影像分类后,常常需要从分类结果中提取特定地物的影像特征。

特征提取可以从影像数据的光谱、纹理、形状等方面进行,以获取地物的相关信息。

常见的特征提取方法包括主成分分析(PCA)、纹理分析、滤波等。

5. 数据融合:数据融合是将多个遥感数据源(如多个波段、多个传感器)融合起来,以获得更全面和丰富的信息。

常用的融合方法包括多波段融合、多尺度融合、多时相融合等。

数据融合可以提高数据的分辨率和准确性,从而改善地物分类和分析的结果。

6. 地物检测和变化监测:地物检测和变化监测是利用遥感数据识别和监测特定地物的空间分布和时变特征。

卫星遥感数据处理的高级技术方法

卫星遥感数据处理的高级技术方法

卫星遥感数据处理的高级技术方法卫星遥感数据处理是利用遥感卫星获取的遥感数据进行处理和分析,以获得地球表面的信息和数据。

随着遥感技术的不断发展和卫星数据的日益丰富,卫星遥感数据处理的技术方法也在不断创新和进步。

以下将介绍一些卫星遥感数据处理的高级技术方法。

1.遥感影像处理技术遥感影像处理是卫星遥感数据处理的核心环节,包括预处理、图像去噪、辐射校正、几何校正、镶边和拼接、特征提取等。

在预处理阶段,可以采取基础处理技术,如影像重采样、几何校正、辐射校正等,以提高数据的质量和准确性。

图像去噪是在影像中去除噪声和杂点,使目标更清晰可见。

在特征提取阶段,可以利用图像分类、目标识别等技术,提取出地面目标的信息。

2.遥感数据融合技术遥感数据融合是将来自不同传感器或不同波段的遥感数据进行融合,以获取更全面和准确的信息。

数据融合技术包括像素级融合、特征级融合和决策级融合等。

像素级融合是将不同传感器获得的像素值进行融合,以提高空间分辨率和光谱分辨率。

特征级融合是将不同传感器获得的特征信息进行融合,以提高分类精度和目标检测效果。

通过数据融合技术,可以充分发挥各种遥感数据的优势,提高数据处理的效率和精度。

3.遥感数据挖掘技术遥感数据挖掘是利用遥感数据进行信息提取和知识发现的技术,包括分类、目标检测、变化检测、异常检测等。

分类是将遥感影像中的像元按照其属性分为不同类别,常用的分类方法包括传统的监督分类和无监督分类,以及基于深度学习的卷积神经网络(CNN)等。

目标检测是在遥感影像中检测出特定目标或区域,可以采用目标检测算法,如基于目标形状、纹理、颜色等特征的目标检测方法。

变化检测是通过对不同时段的遥感影像进行比较,检测出地表的变化信息,可以用于监测城市扩张、土地利用变化等。

异常检测是在遥感影像中检测出异常的像元或区域,用于发现地表的异常事件和情况。

4.大数据技术在遥感数据处理中的应用随着遥感数据量的不断增加和传感器技术的进步,遥感数据处理已经成为一个大数据处理的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京揽宇方圆信息技术有限公司
常用的遥感卫星影像数据处理方法
1、常用遥感图像处理软件
⏹ENVI:美国Exelis Visual Information Solutions公司的旗舰产品
⏹PCI GEOMATICA:加拿大PCI公司旗下的四个主要产品系列之一
⏹EDRAS imagine
2、白色的光可以分解为系列单色的可见光;三种原色:红、绿、蓝;三种补色:黄、
品、青
黄=红+绿品=红+蓝青=绿+蓝任何一种颜色都可以用3原色或者3补色来组

3、
常用的波段组合
特点
红绿蓝
321真彩色:可见光组成,符合人眼对自然物体的观察习惯。

对于水体和人工
地物表现突出。

432假彩色:城市地区,植被种类。

543假彩色:增强对植被的识别
743假彩色:增强对植被的识别,以及矿物、岩石类别的区分。

4、共15个主功能模块,其中一般的遥感数字图像处理经常用到的是Viewer、Import、DataPrep、Interpreter、Classifier、Modeler等。

5、功能模块介绍:
①该模块主要实现图形图像的显示,是人机对话的关键。

②数据输入输出模块,主要实现外部数据的导入、外部数据与ERDAS支持数据的转换及ERDAS内部数据的导出。

③数据预处理模块,主要实现图像拼接、校正、投影变换、分幅裁剪、重采样等功能。

④专题制图模块,主要实现专题地图的制作。

⑤启动图像解译模块,主要实现图像增强、傅里叶变换、地形分析及地理信息系统分析等功能。

⑥图像库管理模块,实现入库图像的统一管理,可方便地进行图像的存档与恢复。

⑦图像分类模块,实现监督分类、非监督分类及专家分类等功能。

⑧空间建模模块,主要是通过一组可以自行编制的指令集来实现地理信息和图像处理的操作功能。

⑨矢量功能模块,主要包括内置矢量模块及扩展矢量模块,该模块是基于ESRI的数据模型开发的,所以它直接支持coverage、shapfile、vector layer等格式数据。

⑩雷达图像处理模块,主要针对雷达影像进行图像处理、图像校正等操作。

⑾虚拟GIS模块,给用户提供一个在三维虚拟环境中操作空间影像数据的模块。

⑿立体分析模块,提供针对三维要素进行采集、编辑及显示的模块。

⒀自动化影像校正模块,该模块提供工作站及向导驱动的工作流程机制,可实现影像的自动校正。

⒁启动智能变化检测模块。

⒂启动面向对象信息提取模块。

6、图像显示操作:①启动Viewer视窗;②在菜单条单击File|Open|Raster Layer,打开Select Layer To Add对话框;③在File选项卡中选择要打开的图像文件;④在Raster Options选项卡中设置显示参数;⑤确定后,打开图像。

7、几何校正:纠正系统和非系统因素引起的几何畸变。

8、图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准,以使两幅图像中的同名像素配准。

9、图像纠正(Rectification):借助一组控制点,对一幅图像进行地理坐标的校正。

又叫地理参照。

10、图像地理编码(Geo-coding):特殊的图像纠正方式,把图像矫正到一种统一标准的坐标系。

11、图像正射校正:借助于地形高程模型,对图像中每个像元进行地形的校正,使图像符合正射投影的要求。

12、图像几何校正图像几何校正途径
①数据预处理途径(Start from Data Preparation)
Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File 对话框
点击Data Prep图标→Image Geometric Correction→打开Set Geo-Correction Input File对话框
②在Set Geo-Correction Input File对话框中,需要确定校正图像,有两种选择情况
a.其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗(Select Viewer)
b.打开Set Geometric Model对话框-——选择几何校正计算模型(Select Geometric Model)→OK
c.打开校正模型参数与投影参数设置对话框
d.定义校正模型参数与投影参数→Apply→Close
e.打开GCP Tool Reference Setup对话框
f.确定采点模式,采点校正…
13、图像重采样
①Nearest Neighbor:最邻近点插值法,将最邻近像元值直接赋予输出像元。

优点是
算法非常简单且保持原光谱信息不变;缺点是几何精度较差,使校正后的图像亮度具有不连续性,表现为原来光滑的边界出现锯齿状。

简单易用,计算量小,图像的亮度具有不连续性,精度差。

②Bilinear Interpolation:双线性插值法,用双线性方程和2×2窗口计算输出像元
值,优点是计算较为简单,且具有一定的亮度采样精度以及几何上比较精确,从而使得校正后的图像亮度连续;缺点是由于亮度值内插,原来的光谱信息发生了变
化,而且这种方法具有低通滤波的性质,从而易造成高频成分(如线条、边缘等)的损失,使图像变得模糊。

双线性内插法比最近邻发虽然计算量有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。

内插法会对图像起到平滑作用,从而使对比度明显的分界线变得模糊。

③Cubic Convolution:立体卷积插值法,用立方方程和4×4窗口计算输出像元值,
优点是不仅图像亮度连续以及几何上较精确,而且还能较好的保留高频部分;其缺
点是计算量大。

计算量大,精度高,细节表现更为清楚,对控制点要求较高④
14、图像空间增强:图像空间增强是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像的目的。

(1)方法:Convolution(卷积增强)Non-directional Edge(非定向边缘增强)Focal Analysis(聚焦分析)Texture(纹理分析)Adaptive Filter(自适应滤波)Statistical Filter(统计滤波)Resolution Merge(分辨率融合)Crisp(锐化处理)
(2)卷积增强处理:
卷积增强处理的关键是卷积算子——系数矩阵(Kernal)的选择,系统提供了3×3,5×5,7×7等大小不同的矩阵,并且预置了不同系数以便应用于不同目的的图像处理,诸如:
边缘检测(Edge Detect)边缘增强(Edge Enhance)低通滤波(Low Pass)高通滤波(High Pass)水平增强(Horizontal)垂直增强(Vertical)水平边缘检测(Horizontal Edge
34、基本雷达图像处理
斑点噪声压缩、边缘增强处理,雷达图像增强、图像纹理分析、图像亮度调整、图像斜距调整等。

35、干涉雷达
InSAR就是利用SAR在平行轨道上对同一地区获取两幅(或两幅以上)的单视复数影像来形成干涉
充分利用了雷达回波信号所携带的相位信息,得到两次成像相应的相位差,综合观测平台的轨道参数等提取高程信息,获得高精度、高分辨率的地面高程信息。

36、干涉雷达DEM提取
(1)处理流程:InSAR数据处理的一般流程包括:影像配准,干涉图生成,噪声滤除,基线估算,平地效应消除,相位解缠,高程计算和纠正(地图编码处理)等等
北京揽宇方圆信息技术有限公司。

相关文档
最新文档