谓词逻辑的性质及前束范式

合集下载

第3章 谓词逻辑

第3章 谓词逻辑

【谓词公式的类型】根据公式与解释的关系,可以把谓词公式分为三种 类型:永真式、矛盾式和可满足式。 定义 3.13 若公式 A 在任何解释下均为真,则称 A 为永真式。 定义 3.14 若公式 A 在任何解释下均为假,则称 A 为矛盾式(或永假式)。 定义 3.15 若(至少)存在一个解释使公式 A 为真,则称 A 为可满足式。
例3.5 用谓词公式表示下列命题: (1) 所有人都吃饭 (2) 存在不吃饭的人 (2) 没有不吃饭的人
令 M (x) 表示: x 是人
E (x) 表示: x 吃饭 (1) x ( M ( x ) E ( x)) (2) x( M ( x) E ( x)) (3) (x( M ( x) E ( x)))
• 存在量词:表示个体变元在个体论域中取某个值 的量词称为存在量词
符号 加上一个个体变元表示。如 x, y
量词
所有的、任意的、一切的、每一个 有些、至少有一个、某一些、存在
x
x
3.2 谓词公式
定 义 3.5 设 P 是 一 个 n 元 谓 词 , t1 , t2 ,, tn 是 项 , 则
P(t1 , t2 ,, tn ) 构成一个谓词公式,称为原子谓词公式。
F(x): x 是奇数 H(x,y): x 大于 y L(x,y): x 比 y 聪明
定义 3.6 谓词逻辑中的合式公式定义如下: (1) 任何一个原子谓词公式都是合式公式; (2) 若 A 是合式公式,则 ( A ) 也是合式公式; (3) 若 A, 是合式公式, ( A B ) , A B ) , A B ) , B 则 ( ( ( A B ) 都是合式公式; (4) 若 A 是合式公式,则 ( xA ) , ( xA ) 也是合式公式; (5) 仅由(1)—(4)在有限步内产生的公式才是合式公式。

第二章 谓词逻辑

第二章  谓词逻辑

1/14/2020 2:38 PM
chapter2
13
2.1 谓词及相关的概念
Predicate Logic 谓词逻辑
【例4】 将下列命题形式化为谓词逻辑中的命题: (1)所有的病人都相信医生。 (2)有的病人相信所有的医生。 (3)有的病人相信某些医生。 (4)所有的病人都相信某些医生。 解: 设F(x):x是病人,G(y):y是医生,H(x,y):x相信y。 (1)x(F(x)→y(G(y)→H(x,y))) (2) x(F(x)∧y(G(y)→H(x,y))) (3) xy (F(x)∧G(y)∧H(x,y)) (4) x (F(x)→y(G(y)∧H(x,y)))
【例2】将下列命题形式化为谓词逻辑中的命题 (a) 没有不犯错误的人。 (b) 人总是要犯错误的。 解:设F(x):x犯错误,M(x):x是人。则上句符号化为: (a) ┒(x)(M(x)⋀┒F(x)) (b) x(M(x)→F(x)) 【例3】尽管有人聪明但未必一切人都聪明。 解:设P(x):x聪明,M(x):x是人。则上句符号化为: x(M(x)⋀P(x))⋀┒(x(M(x)→P(x)))
Predicate Logic 谓词逻辑
7、多重量词 对于多元谓词,需用多个量词对其中不同
的变元加以约束。
如:u={a1,a2,…,an} xyP(x,y) x(yP(x,y))
x(P(x,a1)∨P(x,a2)∨…∨P(x,an)) (P(a1,a1)∨P(a1,a2)∨…∨P(a1,an))∧
1/14/2020 2:38 PM
chapter2
15
2.1 谓词及相关的概念
Predicate Logic 谓词逻辑
【例6】将“不管黑猫白猫,抓住老鼠就是好猫。”符号 化

7谓词逻辑

7谓词逻辑
蕴含表达式量词转化律量词辖域扩张蕴含表达式蕴含表达式量词辖域扩张蕴含表达式蕴含表达式量词辖域扩张蕴含表达式只要给出一种解释上式不成立即可如可用1个体域d为自然数集合n是奇数是偶数
第七章 谓词逻辑
在命题逻辑中,主要研究命题和命题演算,其基本组 成单位是原子命题,并视为不可再分解. 命题逻辑中的推理有很大的局限性. 例如:著名的苏格拉底三段论: 所有的人都是要死的; 苏格拉底是人; 所以苏格拉底是要死的.
在命题逻辑中的符号化:
用P、Q、R分别表示以上三个命题,
则可用
P Q R表示这一推理过程.
谓词逻辑的任务: 对原子命题作进一步的分析,研究其内部的逻辑结构,并 在此基础上更深入地刻画推理.
第七章
§7.1 谓词与量词
谓词逻辑
§7.2 谓词公式与变元约束 §7.3 谓词演算的等价式与永真蕴含式
左到右的顺序读出.
习题:P178
1、2
§7.2 谓词公式与变元约束
引入命题演算合式公式:为了使命题的符号化更准确 和规范,以及正确进行谓词演算和推理. 定义7.2.1 设 R( x1 , x2 ,, xn ) 是n元谓词,其中 x1 , x2 ,, xn 是个体变元,则 R( x1 , x2 ,, xn ) 称为谓词演算的原子公式. 定义7.2.2 谓词演算的合式公式定义如下:
0 元谓词:不含个体变元的谓词,如:原子命题
谓词 P ( x1 , x2 ,, xn ) 不是命题,真值无法确定,只有当以
n个个体常元代替变元后,才有确定的真值,从而成为命 题.
注:命题逻辑中的联结词在谓词逻辑中仍然可用且含
义不变.
二、量词: 谓词逻辑中表示数量的词.
例:所有的人都是要死的,有些人是要死的 两个命题中的个体词和谓词均相同,区别在于“所有 的”和“有些”两个量词. 量词可分为:全称量词和存在量词 全称量词:对应自然语言中的“一切”、“所有的” 、 “任意的”等,表示对个体域中的所有个体,用符号“ ” 表示.

5谓词逻辑基本概念

5谓词逻辑基本概念
这是命题,作为谓词逻辑的对象, 张明” 个体, 这是命题,作为谓词逻辑的对象,“张明”是个体,“是位大 学生”是谓词,它刻划了“张明”的性质。 学生” 谓词,它刻划了“张明”的性质。 设 P:是位大学生 a:张明 则“张明是位大学生”可表示为P(a), 张明是位大学生”可表示为P(a), P(a) 或者写成P(a):张明是位大学生。 或者写成P(a):张明是位大学生。 P(a)
10
一、谓词的概念及表示法
将下列命题用0元谓词符号化,并讨论它们的真值。 将下列命题用 元谓词符号化,并讨论它们的真值。 元谓词符号化 (1) 2是素数且是偶数 是素数且是偶数 (2) 如果 大于 ,则2大于 如果2大于 大于3, 大于4 大于 解:(1)设一元谓词F(x):x是素数;一元谓词G(x):x (1) F(x) x G(x) x 是偶数;a:2。 则(1)中命题符号化为0元谓词的合取式: F(a) ∧G(a)。 (2) 设二元谓词L(x, y):x大于y;a:2;b:3;c:4. 命题符号化为L(a,b) → L(a,c)
一阶逻辑(谓词逻辑)
1
内容要点: 谓词和个体 CH4 量词 CH4
一阶逻辑公式 CH4 一阶逻辑等值式 CH5 置换规则 CH5 一阶逻辑前束范式CH5
推理理论
CH5
2
引 言
整除, 例:凡偶数都能被2整除, 凡偶数都能被 整除 6是偶数。 是偶数。 是偶数 所以, 能被 能被2整除 所以,6能被 整除 将它们命题符号化: 将它们命题符号化: p:凡偶数都能被2整除 :凡偶数都能被 整除 q: 6是偶数 : 是偶数 r: 6能被 整除 : 能被 能被2整除 则推理的形式结构符号化为: 则推理的形式结构符号化为: (p∧ q) → r ∧
11

《离散数学》谓词逻辑

《离散数学》谓词逻辑

§3.5 前束范式
§3.6 谓词逻辑的推理
4
谓词与量词
个体词(individual)是一个命题里表示思维
对象的词,表示独立存在的具体或抽象的客体
具体的、确定的个体词称为个体常项,一般用
a, b, c 表示
抽象的、不确定的个体词称为个体变项,一般
用 x, y, z 表示
个体变项的取值范围称作个体域或论域
那么在解释2下该命题是真命题。

24
谓词公式及分类
类似于命题逻辑,也可以对谓词逻辑
公式进行分类:
设 A 为一个谓词公式,若 A 在任何解
释下真值均为真,则称 A 为普遍有效
的公式或逻辑有效式(logically valid
formula)

(x)
(P(x)∨P(x))
(x) P(x) P(y)
第三章 谓词逻辑
《离散数学及应用》
第三章 谓词逻辑
苏格拉底三段论:
凡是人都是要死的。
苏格拉底是人。
所以苏格拉底是要死的。
p∧q r
重言式?正确的推理?
2
第三章 谓词逻辑
为了克服命题逻辑的局限性,引入了
3
谓词和量词对原子命题和命题间的相
互关系做进一步的剖析,从而产生了
为谓词。这是一元(目)谓词,以
P(x), Q(x), …表示。

Human
(Socrates)
Mortal (Socrates)
7
谓词与量词
如果在命题里的个体词多于一个,那
么表示这几个个体词间的关系的词称
作谓词。这是多元(目)谓词,有 n
个个体的谓词 P(x1, …, xn) 称 n 元(目)

3.2前束范式谓词推理

3.2前束范式谓词推理

1/11/2011
discrete math
前束合取范式
Logic 一阶逻辑
定义:一个谓词公式A如果具有如下形式 如果具有如下形式, 定义:一个谓词公式 如果具有如下形式, 则称为前束合取范式: 则称为前束合取范式: 前束合取范式 (Q1x1)(Q2x2)…(Qnxn)[(A11∨A12∨…∨ 1k1)∧( ∨…∨A ∧ A21∨A22∨…∨ 2k2)∧…∧(Am1∨Am2∨…∨ mkm)] ∨…∨A ∧ ∨…∨A 其中Q 为客体变元, 其中 i (1≤i≤n)为∃或∀,xi为客体变元, ) Aij是原子变元或其否定。 是原子变元或其否定。
1/11/2011 discrete math
谓词演算的推理理论
Logic 一阶逻辑
在谓词逻辑中,如果A 在谓词逻辑中,如果 1∧A2∧…∧An→B ∧ 是逻辑有效式,则称B是 是逻辑有效式,则称 是A1, 效结论, 效结论,记作 A1∧A2∧…∧An⇒B ∧ A⇒B 当且仅当 A→B是重言式 ⇒ → 是重言式 例如: 例如: ∀xF(x) ⇒∃xF(x) A2, …,An的有 ,
1/11/2011
discrete math
前束范式例子
Logic 一阶逻辑
(3) ∀x∀y (∃z(P(x,z)∧P(y,z))→∃z Q(x,y,z)) ∀ ∃ ∧ ∃ ⇔∀x∀y (┐∃z(P(x,z)∧P(y,z))∨∃z Q(x,y,z)) ⇔∀ ∀ ∃ ∧ ∨ ⇔∀x∀ ∀ ∨ ∨ ⇔∀ ∀y(∀z(┐P(x,z)∨┐P(y,z))∨∃z Q(x,y,z)) ⇔∀x∀y (∀z(┐P(x,z)∨┐P(y,z))∨∃u Q(x,y,u)) ⇔∀ ∀ ∀ ∨ ∨ ⇔∀x∀ ⇔∀ ∀y ∀z∃u (┐P(x,z)∨┐P(y,z)∨Q(x,y,u)) ∃ ∨ ∨ (或⇔∀x∀y ∀z∃u (P(x,z)∧P(y,z)→Q(x,y,u))) ⇔∀ ∀ ∃ ∧ )

离散数学第二章谓词逻辑2-6前束范式

离散数学第二章谓词逻辑2-6前束范式

离散数学第⼆章谓词逻辑2-6前束范式在命题演算中,常常要将公式化成规范形式,对于谓词演算,也有类似情况,⼀个谓词演算公式,可以化为与它等价的范式。

定义2-6。

1 ⼀个公式,如果量词均在全式的开头,它们的作⽤域,延伸到整个公式的末尾,则该公式叫做前束范式。

前束范式可记为下述形式:(□v1)(□v2)…(□v4)a,其中□可能是量词或量词ヨ,v i(i=1,2,3,…,n)是客体变元,a是没有量词的谓词公式。

例如("x)("y)($z)(q(x,y)®r(z)),("y)("x)(øp(x,y)®q(y))等都是前束范式。

定理2-6.1 任意⼀个谓词公式,均和⼀个前束范式等价。

证明⾸先利⽤量词转化公式,把否定深⼊到命题变元和谓词填式的前⾯,其次利⽤("x)(aúb(x))ûaú("x)b(x)和($x)(aùb(x))ûaù($x)b(x)把量词移到全式的最前⾯,这样便得到前束范式。

例题1 把公式("x)p(x)®($x)q(x)转化为前束范式。

解("x)p(x)®($x)q(x)û($x)øp(x)ú($x)q(x)û($x)(øp(x)úq(x))例题2 化公式("x)("y)(($z)(p(x,y)ùp(y,z))®($u)q(x,y,u))为前束范式。

解原式û("x)("y)(ø($z)(p(x,z)ùp(y,z))ú($u)q(x,y,u))û("x)("y)(("z)(øp(x,z)úøp(x,z))ú($u)q(x,y,u))û("x)("y)("z)($u)(øp(x,z)úøp(x,y)úq(x,y,u))例题3 把公式ø("x){($y)a(x,y)®($x)("y)[b(x,y)ù("y)(a(y,x)®b(x,y))]}化为前束范式。

第02章谓词逻辑

第02章谓词逻辑

然而,(P∧Q)R并不是永真式,故上述 推理形式又是错误的。一个推理,得出矛盾的 结论
问题在哪里呢? ? ?
问题就在于这类推理中,各命题之间的逻辑关系 不是体现在原子命题之间,而是体现在构成原子命题 的内部成分之间,即体现在命题结构的更深层次上。
对此,命题逻辑是无能为力的。 所以,在研究某些推理时,有必要对原子命题作
③符号!称为存在唯一量词符,用来表达 “恰有一个”、“存在唯一”等词语;!x称为 存在唯一量词,称 x 为指导变元。
全称量词、存在量词、存在唯一量词统称量 词。
量词记号是由逻辑学家Fray引入的,有了量 词之后,用逻辑符号表示命题的能力大大加强了。
例:(1) 所有的人都是要死的。
(2) 有的人活百岁以上。 一、考虑个体域 D 为人类集合
列规则形成的符号串: P60 ① 原子谓词公式是谓词合式公式;
② 若A是谓词合式公式,则(¬A)是谓词合式公式; ③ 若A、B是谓词合式公式,则(A∧B),(A∨B), (AB)和(AB)都是谓词合式公式; ④ 若A是谓词合式公式,x是个体变元,则(x)A、 (x)A都是谓词合式公式; ⑤ 只有经过有限项次地使用①、②、③、④形成的 才是谓词合式公式。——简称为谓词公式。
例如:令 f(x,y) 表示 x+y,谓词 N(x) 表示x是 自然数,那么 f(2,3) 表示个体自然数 5,而 N(f(2,3))表示 5是自然数。
这里函数是就广义而言的。
例如:P(x): x是教授,f(x): x的父亲,c: 张 强,那么 P(f(c)) 便是表示“张强的父亲是教授” 这一命题。
客体——是指可以独立存在的,它可以是具体
的事物,也可以是抽象的概念。
如:李明,计算机,玫瑰花,自然数,思想,定 理等。

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
命题“凡人要死。”符号化为:(x)F (x) ⑵ 令G(x):x是研究生。 命题“有的人是研究生。”符号化为:(x)G(x)
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
例4:某些人对某些食物过敏。 设F(x,y):x对y过敏。 M(x):x是人。 G(y):y是食物。 (x) (y) (M(x) ∧ G(y) ∧ F(x,y))
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词

离散数学-2-6_前束范式

离散数学-2-6_前束范式
9
三、前束析取范式
定义2-6.3:如果一个谓词公式wff A具有如下形式,
则称其为一个前束析取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)]

其中□ 可为或,vi(i=1,2,……n)是客体变元,Aij 是 原子公式或其否定。
6
二、前束合取范式
定义2-6.2:如果一个谓词公式wff A具有 如下形式,则称其为一个前束合取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)] 其中□ 可为或,vi(i=1,2,……n)是客体 变元,Aij 是原子公式或其否定。
第二章谓词逻辑
2-6 前束范式 授课人:李朔 Email:chn.nj.ls@
1
一、前束范式
与命题逻辑类似,在谓词逻辑中也希望研 究其合式公式,即谓词公式的规范形式, 这就是前束范式。 定义2-6.1 设A为一个谓词公式,若A有形 式:Q1x1Q2x2QkxkB,则称A为前束范式, 其中Qi(1≤i≤k)为或,B为不含量词的谓 词公式。
3
一、前束范式
例:化下列公式为前束范式
1)x F(x) xG(x) 2) xF(x) xG(x) 解:(1) x F(x) xG(x) x F(x) xG(x) x (F(x) G(x)) (2) x F(x) xG(x) x F(x) x G(x) x F(x) y G(y) x (F(x) y G(y)) x y (F(x) G(y))

第二章 谓词逻辑

第二章 谓词逻辑

离散数学
第一章
例3 设Q(x,y)表示“x比y重”。 当x,y指人或物时,它是一个命题,但 若x,y指实数时,Q(x,y)就不是一个命题。
离散数学
第一章
例4 R(x)表示“x是大学生”。 如果x的讨论范围为某大学里班级中的学 生,则R(x)是永真式。 如果x的讨论范围为某中学里班级中的学 生,则R(x)是永假式。 如果x的讨论范围为一个剧场中的观众, 观众中有大学生也有非大学生,那么,对某些 观众,R(x)为真,对另一些观众,R(x)为假。 真值不理,若L(x,y)表示x小于y,那么 L(2,3) 表示一个命题:“2小于3”, 为真。 而 L(5,1) 表示一个命题:“5小于1”, 为假。 又如,A(x,y,z)表示一个关系“x加上y等于z” 则 A(3,2,5) 表示了真命题“3+2=5”,而A(1,2,4)表示了一个假命题 “1+2=4”。 从上述三个例子中可以看到 H(x),L(x,y),A(x,y,z) 中的x,y,z等都是客体变元。 它们很象数学中的函数,这种函数就是命题函数。
离散数学
第一章
3. 量词 使用上面所讲的一些概念,还不能用符号很好地表达 日常生活中的各种命题。 例如:S(x)表示x是大学生,而x的个体域为某单位的 职工。那么S(x)可以表示某单位职工都是大学生,也可以 表示某单位存在一些职工是大学生。 为了避免这种理解上的混乱,需要引入量词,以刻划 “所有的”和“存在一些’的不同概念。 例如: (1) 所有的人都是要呼吸的。 (2) 每个学生都要参加考试。 (3) 任何整数或是正的或是负的。 这三个例子都需要表示“对所有的x”这样的概念,为此 ,引入符号: (x) 或 (x) 表示“对所有的x”。
离散数学
第一章

命题逻辑与谓词逻辑

命题逻辑与谓词逻辑

如 D2 = {1,2,3}
根据上面的分析,在D2上的解释应有29个。
下面是其中的一个解释:
I: P(1, 1) P(1, 2) P(1, 3) P(2, 1) P(2, 2) P(2, 3) P(3, 1) P(3, 2) P(3,3)
T
T
T
F
F
T
FF
F
由于x = 3时,不存在一个y使P(x, y) = T。所以在这个解释下公式B为假,
要考察在这个解释下公式A的真假,根据量词(x)要对所有x 进行考察。由于:对x = 0时,
P(x)→Q( f (x), a) = P(0)→Q( f (0), 0) = P(0)→Q(1, 0) = F→F = T
对x = 1时
P(x)→Q( f (x), a) = P(1)→Q( f (1), 0) = P(1)→Q(0,0) = T→T = T
定义2-5 永真蕴涵:命题公式A永真蕴 涵命题公式B,当且仅当A→B是一个永真 式,记作AB,读作“A永真蕴涵B”,简 称“A蕴涵B”。
2.2 谓 词 逻 辑
• 1.谓词与个体 原子命题被分解为谓词和个体两部分。
• 个体是指可以单独存在的事物,它可以是 一个抽象的概念,也可以是一个具体的东 西。
定理2-2是反证法的理论依据。
6.谓词公式中的等价和蕴涵式 定义2-13 设P与Q是两个谓词公式,D是它们
共同的个体域。若对D上的任何一个解释,P与Q 的真值都相同,则称公式P和Q在域D上是等价的。 如果在任何个体域上P和Q都等价,则称P和Q是 等价的,记做:P Q。
下面是一些常用的等价式:
• 交换律 P∨QQ∨P
(证毕)
定理2-2 G为B1, B2, …, Bn的逻辑结论,当且仅当 (B1 ∧ B2 ∧ … ∧ Bn) ∧ ~ G

第七讲谓词逻辑的性质及前束范式

第七讲谓词逻辑的性质及前束范式

第七讲谓词逻辑的性质及前束范式1.在命题逻辑中成立的基本等价式(详见第三讲)可以推广到谓词逻辑中:例如:幂等律在谓词逻辑中表述为:∃x A(x)∧∃x A(x)⇔∃x A(x)蕴涵律在谓词逻辑中表述为:∀x( A(x)→B)⇔∀x(┓A(x)∨B)2.量词和否定的交换:┓∀x A(x)⇔∃x ┓A(x)┓∃x A(x)⇔∀x ┓A(x)3.量词辖域的扩张和收缩【这里注意∀x(A(x)→B)和∀xA(x)→B 的区别:比如A(x): x遵纪守法 B:社会和谐∀xA(x)→B表述为:只要人人遵纪守法,社会就会和谐∀x(A(x)→B)表述为:对于每一人,只要他遵纪守法,社会就会和谐】以下是等价公式:(1)∀x(A(x)∨B)⇔∀xA(x)∨B(2)∀x(A(x)∧B)⇔∀xA(x)∧B(3)∃x(A(x)∨B)⇔∃xA(x)∨B(4)∃x(A(x)∧B)⇔∃xA(x)∧B(5)∀x(A(x)→B)⇔∃xA(x)→B该公式看上去难以理解,所以证明如下:∀x(A(x)→B)⇔∀x(┓A(x)∨B)蕴涵律⇔∀x┓A(x)∨B⇔┓∃xA(x)∨B 否定的交换⇔∃xA(x)→B 蕴涵律(6)∀x(B→A(x))⇔ B→∀xA(x)(7)∃x(A(x)→B)⇔∀xA(x)→B (证明类似公式(5))(8)∃x(B→A(x))⇔ B→∃xA(x)4.量词和联结词的关系的等值式∀xA(x)∧∀xB(x)⇔∀x(A(x)∧B(x))∃xA(x)∨∃xB(x)⇔∃x(A(x)∨B(x))5.量词和联结词的重言蕴含式∀xA(x)∨∀xB(x)⇒∀x(A(x)∨ B(x))∃x(A(x)∧ B(x))⇒∃xA(x)∧∃x B(x)后者是不能推出前者的,比如对于第一个公式:x有两个取值,x取0时,A(x)为True, B(x)为False; x取0时,A(x)为False, B(x)为True. 此时,前者能推出后者,后者不能推出前者。

离散数学_谓词逻辑

离散数学_谓词逻辑

(3) 当个体域为全体整数的集合时: 令P(x): x是正的。N(x): x是负的。则(3)符 号化为 (x)(P(x)∨N(x)) 当个体域为全总个体域时: 令I(x): x是整数。则(3)符号化为 (x)(I(x)(P(x)∨N(x))).
全称量词的一些重要性质: 设P是任意的命题,F(x)与A(x,y)均为谓词, 则有:
【例】设 P 表示命题:张辉是工人。 Q 表示命题:李明是工人。 仅仅从命题符号 P 和 Q 看不出张辉和李明 都是工人这一特性。 【例】 x=3 ? x+y=z ? f(x)=0 ?
第二章 谓词逻辑(Predicate Logic)
2.1 谓词的概念与表示(Predicate and Its Expression)
2.1 谓词的概念与表示(Predicate and Its Expression) 谓词:用来刻划个体的性质或个体之间的相互关系的词。 例如在下面命题中: (1)张明是个劳动模范。 (2)李华是个劳动模范。 刻划客体的性质 (3)王红是个大学生。 (4)小李比小赵高2cm。 (5)点a在b与c之间。 刻划客体之间的相互关系 (6)阿杜与阿寺同岁。 (7) x与y具有关系L。 “是个劳动模范”、“是个大学生”、“…比…高2cm”、 “… 在…与…之间”、“…与…具有关系L”都是谓词。
2.1 谓词的概念与表示(Predicate and Its Expression)

(2)当个体域为人类集合时: 令G(x): x活百岁以上。则(2)符号化为 ( x)G(x) 当个体域为全总个体域时: 令M(x): x是人。则(2)符号化为 (x) (M(x) ∧ G(x))
存在量词的一些重要性质: 设P是任意的命题,F(x)与A(x,y)均为谓词, 则有:

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

1第2章谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词....

第2章 谓词逻辑本章重点:谓词与量词,公式与解释,前束范式,谓词逻辑推理证明.一、重点内容1. 谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。

谓词是用来刻划个体词的性质或事物之间关系的词. 个体词分个体常项(用a ,b ,c ,…表示)和个体变项(用x ,y ,z ,…表示);谓词分谓词常项(表示具体性质和关系)和谓词变项(表示抽象的或泛指的谓词),用F ,G ,P ,…表示.注意,单独的个体词和谓词不能构成命题,将个体词和谓词分开不是命题.量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”.在谓词逻辑中,使用量词应注意以下几点:(1) 在不同个体域中,命题符号化的形式可能不同,命题的真值也可能会改变.(2) 在考虑命题符号化时,如果对个体域未作说明,一律使用全总个体域.(3) 多个量词出现时,不能随意颠倒它们的顺序,否则可能会改变命题的含义.谓词公式只是一个符号串,没有什么意义,但我们给这个符号串一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公式中的每一个变项都有个体域中的元素相对应.在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是全总个体域。

一般地,使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2. 公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材). 命题的符号化结果都是谓词公式.例如∀x (F (x )→G (x )),∃x (F (x )∧G (x )),∀x ∀y (F (x )∧F (y )∧L (x ,y )→H (x ,y ))等都是谓词公式. 变元与辖域,在谓词公式∀xA 和∃xA 中,x 是指导变元,A 是相应量词的辖域. 在∀x 和∃x 的辖域A 中,x 的所有出现都是约束出现,即x 是约束变元,不是约束出现的变元,就是自由变元. 也就是说,量词后面的式子是辖域. 量词只对辖域内的同一变元有效.换名规则,就是把公式中量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变.代入规则,就是把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号.解释(赋值),谓词公式A 的个体域D 是非空集合,则 (1) 每一个常项指定D 中一个元素; (2) 每一个n 元函数指定D n 到D 的一个函数;(3) 每一个n 元谓词指定D n 到{0,1}的一个谓词;按这个规则做的一组指派,称为A 的一个解释或赋值.在有限个体域下,消除量词的规则为:如D ={a 1,a 2,…,a n },则)(...)()()()(...)()()(2121n n a A a A a A x xA a A a A a A x xA ∨∨∨⇔∃∧∧∧⇔∀谓词公式分类,在任何解释下,谓词公式A 取真值1,公式A 为逻辑有效式(永真式);在任何解释下谓词公式A 取真值0,公式A 为永假式;至少有一个解释使公式A 取真值1,公式A 称为可满足式.3. 前束范式 一个谓词公式的前束范式仍是谓词公式. 若谓词公式F 等值地转化成B x Q x Q x Q k k ...2211那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,x 1,x 2,…,x k 是个体变元,B 是不含量词的谓词公式.每个谓词公式F 都可以变换成与它等值的前束范式. 其步骤如下:① 消去联结词→,↔,⎺∨;② 将联结词⌝移至原子谓词公式之前;③ 利用换名或代入规则使所有约束变元的符号均不同,并且自由变元与约束变元的符号也不同;④将∀x ,∃x 移至整个公式最左边;⑤ 得到公式的前束范式.4.谓词逻辑的推理理论 谓词演算的推理是命题演算推理的推广和扩充,命题演算中的基本等值公式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用. 在谓词演算推理中,某些前提和结论可能受到量词的限制,为了使用这些推理,引入消去和附加量词的规则,有US 规则(全称量词消去规则),UG 规则(全称量词附加规则),ES 规则(存在量词消去规则),EG 规则(存在量词附加规则)等,以便使谓词演算公式的推理过程可类似于命题演算的推理进行.二、实例例2.1 将下列命题符号化:(1) 有某些实数是有理数;(2) 所有的人都呼吸;(3)每个母亲都爱自己的孩子.注意:一般地,全称量词“∀”后,跟蕴含联结词“→”;存在量词“∃”后,跟合取联结词“∧”.解 (1) 设R (x ):x 是实数,Q (x ):x 是有理数。

离散数学自考第二章

离散数学自考第二章

定义 1.辖域(作用域):紧接在量词后面括号内的谓词公式。 辖域( 辖域 作用域)
例: ∀xP(x) , ∃x(P(x) ∧Q(x)) 。 若量词后括号内为原子谓词公式,则括号可以省去。
2.指导变元(作用变元):紧接在量词后面括号内的X。 指导变元(作用变元) 指导变元 3.约束变元:在量词的辖域内,且与量词下标相同的变元。 约束变元: 约束变元 4.自由变元:当且仅当不受量词的约束。 自由变元: 自由变元
例:张华是学生,李明是学生。则可把它表示成: H:表示“是学生”,j:表示“张华”,m:表示“李明”,则可用下 列符号表示上述二个命题:H(j),H(m)。
1. 命题函数
客体在谓词表达式中可以是任意的名词。 例:C—“总是要死的。” j:张三;t:老虎;e:桌子。 则C(j), C(t), C(e)均表达了命题。 在上面的例子中,C:表示“总是要死的”;x:表示变元(客 体变元),则C(x)表示“x总是要死的”,则称C(x)为命题 函数。 定义》 《定义》由一个谓词字母和一个非空的客体变元的集合所组成 的表达式,称为命题函数。
2.区别是命题还是命题函数的方法 (a)若谓词公式中出现自由变元,则该公式为命题函数; (b)若谓词公式中的变元均为约束出现,则该公式为命题。
例: ∀xP(x,y,z)是二元谓词, ∃y∀xP(x,y,z)是一元谓词, 而谓词公式中如果没有自由变元出现,则该公式是一个命题。
3.代入规则:对公式中的自由变元的更改叫做代入。 代入规则: 代入规则 (a)对公式中出现该自由变元的每一处进行代入, (b)用以代入的变元与原公式中所有变元的名称不 能相同。
∃x (A(x) ∨B(x)) ⇔ ∃xA(x) ∨ ∃xB(x) ∀x(A(x)∧B(x)) ⇔ ∀xA(x)∧ ∀xB(x) (∃x (A(x) → B(x)) ⇔ ∀xA(x) → ∃xB(x) ∀xA(x) ∨ ∀xB(x) ⇒ ∀x(A(x) ∨ B(x)) x(A(x) ∧ B(x)) ⇒ ∃ x(A(x) ∧ B(x)) ∃xA(x) → ∀xB(x) ⇒ ∀x(A(x) → B(x))

离散数学(谓词逻辑)课后总结

离散数学(谓词逻辑)课后总结

第二章谓词逻辑2—1基本概念例题1. 所有的自然数都是整数。

设N(x):x是自然数。

I(x):x是整数。

此命题可以写成∀x(N(x)→I(x))例题2. 有些自然数是偶数。

设E(x):x是偶数。

此命题可以写成∃x(N(x)∧E(x))例题3. 每个人都有一个生母。

设P(x):x是个人。

M(x,y):y是x的生母。

此命题可以写成:∀x(P(x)→∃y(P(y)∧M(x,y))) 2-2 谓词公式及命题符号化例题1. 如果x是奇数,则2x是偶数。

其中客体x与客体2x之间就有函数关系,可以设客体函数g(x)=2x,谓词O(x):x是奇数,E(x):x是偶数,则此命题可以表示为:∀x(O(x)→E(g(x)))例题2 小王的父亲是个医生。

设函数f(x)=x的父亲,谓词D(x):x是个医生,a:小王,此命题可以表示为D(f(a))。

例题3 如果x和y都是奇数,则x+y是偶数。

设h(x,y)=x+y ,此命题可以表示为:∀x∀y((O(x)∧O(y))→E(h(x,y))命题的符号表达式与论域有关系两个公式:一般地,设论域为{a1,a2,....,an},则有(1). ∀xA(x)⇔A(a1)∧A(a2)∧......∧A(an)(2). ∃xB(x)⇔B(a1)∨B(a2)∨......∨B(an)1.每个自然数都是整数。

该命题的真值是真的。

表达式∀x(N(x)→I(x))在全总个体域的真值是真的,因∀x(N(x)→I(x))⇔(N(a1)→I(a1))∧(N(a2)→I(a2))∧…∧(N(an)→I(an))式中的x不论用自然数客体代入,还是用非自然数客体代入均为真。

例如(N(0.1)→I(0.1))也为真。

而∀x(N(x)∧I(x))在全总个体域却不是永真式。

∀x(N(x)∧I(x))⇔(N(a1)∧I(a1))∧(N(a2)∧I(a2)) ∧…∧(N(an)∧I(an))比如x用0.2代入(N(0.2)∧I(0.2))就为假。

前束范式推理

前束范式推理
-吴扬扬8
§2.5 推理理论(4)
例3: 下列推导结论是错误的: (1) ∀x∃yP(x,y) (2) (3) (4) (5) ∃yP(z,y) P(z,d) ∀xP(x,d) ∃y∀xP(x,y) 前提 (1)US (2)ES (3)UG (4)EG
所以, ∀x∃yP(x,y)⇒ ∃y∀xP(x,y) 设:个体域实数集,P(x,y): x+y=1 则 ∀x∃yP(x,y)为T,而∃y∀xP(x,y)为F。 错在哪里?为什么?
»
(4) D(a) (1)(3)假言推论 例2: 证明 ∀x(P(x)∨Q(x))⇒∃x¬P(x)→∃xQ(x). ∃x ¬P(x) 附加前提 证明: (1) (2) ¬P(c) (1)ES (3) ∀x(P(x)∨Q(x)) 前提 (4) P(c)∨Q(c) (3)US (5) Q(c) (2)(4)析取三段论 (6) ∃xQ(x) (5)EG (7) ∃x¬P(x)→∃xQ(x) CP
-吴扬扬4
不是等价变换
§2.4 范式(4)
定理2.4.1: 设A为合式公式,那么A是永假式 iff A的Skolem 范式是永假式。 引理2.4.1: 设C为∀x1,…,∀xt∃yB(x1,…,xt,y), C’为∀x1,…,∀xtB(x1,…,xt,f(x1,…,xt)),那么 C是永假式 iff C’是永假式。 证明:必要性 若C是永假式,但C’不是永假式, 则有解释I,使C’在I下为1, 即∀a1,…,at∈DI,有B(a1,…,at,f(a1,…,at))为1, ∵ f(a1,…,at)∈DI, ∴ ∀a1,…,at∈DI,有a=f(a1,…,at),使B(a1,…,at,a)为1, 与C是永假式矛盾。 充分性证明见pp.48 -吴扬扬5
-吴扬扬-

第2章 谓词逻辑-1

第2章 谓词逻辑-1

定义2.1.1:由一个谓词H和n个客体变元组成的表 达式H(x1, x2 , …, xn)称为n元简单命题函数. 由定义可知, n元谓词就是有n个客体变元的命题 函数.当n=0时,称为0元谓词.因此,一般情况下,命题 函数不是命题;特殊情况0元谓词就变成一个命题. 复合命题函数:由一个或几个简单命题函数以及 逻辑联结词组合而成的表达式.
(x) A(x)A(a1)∧A(a2)∧…∧A(an ) (x) A(x)A(a1)∨A(a2)∨…∨A(an )
例6:在谓词逻辑中将下列命题符号化. (1)所有的人都长头发。 (2)有的人吸烟。 (3)没有人登上过木星。 (4)清华大学的学生未必都是高素质的。 解:令 M(x): x是人。(特性谓词) (1) 令F(x): x长头发。则符号化为: (x)(M(x) F(x)) (2) 令S(x): x吸烟。则符号化为: (x)(M(x)∧S(x)) (3) 令D(x): x登上过木星。则符号化为: ┐(x)(M(x)∧D(x))
(4)一般来说,当多个量词同时出现时,它们的顺序不能
随意调换。如: 在实数域上用H(x,y)表示x+y=5,则命题“对于任意的x, 都存在y使得x+y=5”可符号化为: xyH(x,y) ,其真值 为1.若调换量词顺序后为: yx H(x,y) , 其真值为0。 (5) 当个体域为有限集合时,如D={a1, a2 …, an},对任 意谓词A(x),有




所有的人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。 根据常识,认为这个推理是正确的。但是,若用命题逻辑 (Ls)来表示,设P、Q和R分别表示这三个原子命题,则 有 P,QR 然而,(P∧Q)→R 并不是永真式,故上述推理形式又是错 误的。一个推理,得出矛盾的结论,问题在哪里呢? 问题就 在于这类推理中,各命题之间的逻辑关系不是体现在原子 命题之间,而是体现在构成原子命题的内部成分之间,即 体现在命题结构的更深层次上。对此,Ls是无能为力的。 所以,在研究某些推理时,有必要对原子命题作进一步分 析,分析出其中的个体词,谓词和量词,研究它们的形式 结构的逻辑关系、正确的推理形式和规则,这些正是谓词 逻辑(简称为Lp)的基本内容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲
谓词逻辑的性质及前束范式
1.在命题逻辑中成立的基本等价式(详见第三讲)可以推广到谓词逻辑中:
例如:
幂等律在谓词逻辑中表述为:
x A(x)∧x A(x)x A(x)
蕴涵律在谓词逻辑中表述为:
x(A(x)→B)x(┓A(x)∨B)
2.量词和否定的交换:
┓x A(x)x ┓A(x)
┓x A(x)x ┓A(x)
3.量词辖域的扩张和收缩
【这里注意x(A(x)→B)和xA(x)→B 的区别:
比如A(x): x遵纪守法B:社会和谐
xA(x)→B表述为:只要人人遵纪守法,社会就会和谐
x(A(x)→B)表述为:对于每一人,只要他遵纪守法,社会就会和谐】
以下是等价公式:
(1)x(A(x)∨B)xA(x)∨B
(2)x(A(x)∧B)xA(x)∧B
(3)x(A(x)∨B)xA(x)∨B
(4)x(A(x)∧B)xA(x)∧B
(5)x(A(x)→B)xA(x)→B
该公式看上去难以理解,所以证明如下:
x(A(x)→B)x(┓A(x)∨B)蕴涵律
x┓A(x)∨B
┓xA(x)∨B 否定的交换
xA(x)→B 蕴涵律
(6)x(B→A(x))B→xA(x)
(7)x(A(x)→B)xA(x)→B (证明类似公式(5))
(8)x(B→A(x))B→xA(x)
4.量词和联结词的关系的等值式
xA(x)∧xB(x)x(A(x)∧B(x))
xA(x)∨xB(x)x(A(x)∨B(x))
5.量词和联结词的重言蕴含式
xA(x)∨xB(x)x(A(x)∨B(x))
x(A(x)∧B(x))xA(x)∧x B(x)
后者是不能推出前者的,比如对于第一个公式:
x有两个取值,x取0时,A(x)为True, B(x)为False; x取0时,A(x)为False, B(x)为True. 此时,前者能推出后者,后者不能推出前者。

利用以上规则及前面命题逻辑中相应的公式,我们可以进行公式的等价性证明.
举例来说:
证明┓xy(F(x)∧G(y) →H(x,y))xy(F(x)∧G(y) ∧┓H(x,y))
证:┓xy(F(x)∧G(y) →H(x,y))
x ┓(y(┓(F(x)∧G(y))∨H(x,y)))
xy┓(┓(F(x)∧G(y))∨H(x,y))
xy(F(x)∧G(y) ∧┓H(x,y))
6.前束范式
所谓前束范式,通俗来讲,就是将命题公式中所有的量词提到最前面。

举例来说:
x F(x)∧┓x G(x)
化为前束范式:x F(x)∧┓x G(x)
x F(x)∧x ┓G(x)
x (F(x)∧┓G(x))
有时,我们需要变换变元的名称:
比如:(x F(x,y)→yG(y)) →x H(x,y)
(x F(x,y)→zG(z)) →t H(t,y)
(┓x F(x,y)∨zG(z)) →t H(t,y)
┓(┓x F(x,y)∨zG(z)) ∨t H(t,y)
(x F(x,y)∧┓zG(z)) ∨t H(t,y)
(x F(x,y)∧z┓G(z)) ∨t H(t,y)
xz t (( F(x,y)∧┓G(z)) ∨H(t,y))
这里需要注意:我们看到在x F(x,y)→yG(y) 中,量词的作用范围只局限在其后面一个谓词,所以尽管后面yG(y)含有y,但此y不是F(x,y)中的y. 所以yG(y)可以变为zG(z);但是x H(x,y)中的y,由于前面没有量词来约束y,所以此y和F(x,y)中的y是同一个y.。

相关文档
最新文档