最新神经生物学总结

合集下载

神经生物学知识点总结

神经生物学知识点总结

神经生物学知识点总结神经生物学是研究神经系统结构、功能和发育的学科,涵盖了广泛的知识领域,包括神经细胞、神经网络、神经递质等。

本文将对神经生物学的一些重要知识点进行总结。

1. 神经细胞结构与功能神经细胞是神经系统的基本组成单位,主要包括细胞体、树突、轴突和突触等部分。

细胞体内含有细胞核和细胞器,负责细胞的代谢和调控活动。

树突负责接收其他神经细胞的输入信息,轴突负责传递神经冲动,而突触是神经元之间的连接点,通过神经递质传递信号。

2. 神经系统的分层结构神经系统可以分为中枢神经系统(包括大脑和脊髓)和周围神经系统(包括神经和神经节)。

中枢神经系统负责整体的调控和控制,而周围神经系统则将信息传递到中枢神经系统或从中枢神经系统传递出来。

3. 神经冲动的传导神经冲动是神经细胞内部产生的电信号,可以在神经细胞内传导,也可以通过神经元之间的突触传递。

神经冲动的传导是由离子通道的开闭所控制的。

当神经冲动到达轴突末端时,会释放出神经递质,通过突触传递到下一个神经元。

4. 突触可塑性突触可塑性是指神经元之间连接强度的可变性。

它可以通过长期增强或长期抑制来增加或减少神经元之间的连接。

突触可塑性在学习和记忆等认知功能中起重要作用。

5. 神经递质神经递质是神经冲动在突触传递时释放的化学物质,它可以兴奋或抑制相邻神经元。

常见的神经递质有乙酰胆碱、多巴胺和谷氨酸等。

神经递质的释放和清除是神经信号传递过程中不可或缺的环节。

6. 神经发育神经发育是指神经系统在胚胎和幼年阶段形成和成熟的过程。

这个过程中包括神经细胞的生成、迁移和分化,以及神经突触的形成和重塑。

神经发育的异常可能导致神经系统功能障碍。

7. 神经系统疾病神经系统疾病包括神经退行性疾病(如帕金森病和阿尔茨海默病)、神经感染性疾病(如脑膜炎和脊髓灰质炎)以及神经精神疾病(如抑郁症和精神分裂症)等。

这些疾病的发生和发展与神经生物学的异常有关。

总结:神经生物学牵涉到神经细胞的结构与功能、神经系统的分层结构、神经冲动的传导、突触可塑性、神经递质、神经发育以及神经系统疾病等多个方面。

神经生物学综述(一)2024

神经生物学综述(一)2024

神经生物学综述(一)引言概述:神经生物学是研究神经系统的结构、功能和发展的科学领域。

它涉及到神经元的形成、突触传递、信号转导以及神经元网络的形成和塑性等方面。

本文将从神经元的结构和功能、突触传递、神经信号转导、神经元网络的形成和塑性以及神经系统的发展等五个大点来综述神经生物学的相关内容。

正文:一、神经元的结构和功能1. 神经元的基本结构:细胞体、树突、轴突等组成.2. 神经元的功能:信息传递、信息处理、动作生成等.3. 神经元的特殊功能:感觉神经元、运动神经元、中间神经元等.4. 神经元的电活动:动作电位、静息电位等.5. 神经元的兴奋性和抑制性:阈值、兴奋性传导等.二、突触传递1. 突触的结构:突触前膜、突触间隙、突触后膜等.2. 突触传递的机制:神经递质的释放、突触后受体的作用等.3. 兴奋性突触和抑制性突触:神经递质的种类和功能.4. 突触可塑性:长时程增强、长时程抑制等.5. 突触传递的调节:自动脉冲生成系统、突触可塑性调节系统等.三、神经信号转导1. 神经递质的合成和释放:合成途径、细胞内运输等.2. 神经受体的结构和分类:离子通道受体、酪氨酸激酶受体等.3. 第二信使的作用:细胞内信号转导的重要分子.4. 神经调节物质的作用:内源性神经肽等.5. 神经信号传递的异常和疾病:神经精神疾病、神经退行性疾病等.四、神经元网络的形成和塑性1. 神经元网络的发育:轴突导向、突触形成等.2. 神经突触的稳定性和可塑性:突触连接的稳定性、突触可塑性的调节等.3. 学习和记忆的神经机制:突触可塑性的重要作用.4. 神经元网络的重构和修复:再生神经学的研究进展.5. 神经网络的计算和信息处理:神经网络模型的发展与应用.五、神经系统的发展1. 胚胎发育中的神经系统:神经管的形成、神经细胞的迁移等.2. 神经系统在成体中的重建和再生:神经干细胞的应用.3. 神经生长因子的作用:神经细胞发育的重要分子调控.4. 神经系统的运动学和感受机制:脊髓运动神经元的发育、感觉神经元的分化等.5. 神经系统的功能成熟和稳定:大脑发育的关键时期、神经元成熟的调控等.总结:综上所述,神经生物学综述了神经元的结构和功能、突触传递、神经信号转导、神经元网络的形成和塑性以及神经系统的发展等方面的内容。

神经生物学知识点

神经生物学知识点

神经生物学知识点神经生物学是研究神经系统结构、功能和作用的学科,涉及到神经元、突触、神经传递等一系列生物学过程。

本文将介绍一些重要的神经生物学知识点,帮助读者深入了解这一领域。

一、神经元和突触神经元是神经系统的基本结构和功能单元,主要负责信息的接收、处理和传递。

它由细胞体、树突、轴突和突触组成。

1. 细胞体:神经元的细胞体包含细胞核和细胞质,是神经元的代谢中心。

2. 树突:树突是一种短而分支的突起,负责接收其他神经元传递的信息。

3. 轴突:轴突是一种长且单一的突起,可将信息从细胞体传递到其他神经元。

4. 突触:突触是神经元之间的连接点,信息通过神经递质在突触间传递。

二、神经传递神经传递是指信息在神经元之间的传递过程,包括电信号传递和化学信号传递两种方式。

1. 电信号传递:神经元内部存在负离子和正离子的电荷差异,当神经元受到刺激时,离子通道打开,电荷发生变化,产生电脉冲信号。

这种信号的传递速度快,主要发生在轴突内。

2. 化学信号传递:当电脉冲信号传递到轴突末梢时,会释放神经递质,通过突触将信号传递给其他神经元。

神经递质会与突触后膜上的受体结合,引发新的电信号,从而传递信息。

三、神经系统的分布与功能神经系统分为中枢神经系统(CNS)和周围神经系统(PNS),分别负责感知、控制和调节机体的各种生理活动。

1. 中枢神经系统(CNS):中枢神经系统由大脑和脊髓组成,是指挥和控制全身各个器官和组织的中心。

大脑负责高级认知、情绪调节等功能,脊髓负责传递神经信号。

2. 周围神经系统(PNS):周围神经系统包括脑神经和脊神经,将感觉信息从感受器传递给中枢神经系统,并将指令从中枢神经系统传递给肌肉和腺体。

四、神经调节与神经递质神经调节是指神经系统通过释放神经递质来调节机体内各种生理过程。

以下是几种常见的神经递质及其作用:1. 乙酰胆碱(Acetylcholine,简称ACh):ACh是一种常见的神经递质,在神经-肌肉接头传递信号时起重要作用。

神经生物学知识点总结

神经生物学知识点总结

神经生物学知识点总结神经生物学是关于神经系统的科学领域,涉及到神经元的结构、功能、发生、发育、疾病等各方面知识。

本文将从细胞水平、单元回路水平、神经系统水平三个方面,总结一些常见的神经生物学知识点。

细胞水平1. 神经元神经元是神经系统的基本功能单元。

其主要结构包括细胞体、树突、轴突等。

树突主要接收神经冲动,而轴突则在神经末梢释放神经递质。

神经元的典型结构有单极神经元、双极神经元和多极神经元。

神经元之间通过突触相互连接。

2. 神经胶质细胞神经胶质细胞是神经系统中的非神经元细胞,主要具有支持、保护神经元的功能。

与神经元相比,神经胶质细胞数量更多。

其中星形胶质细胞、少突胶质细胞和密集胶质细胞是三种常见的胶质细胞。

3. 动作电位动作电位是神经元在兴奋状态下产生的一种电信号。

其产生主要是由于神经元的钠离子通道和钾离子通道的开关机制。

动作电位具有特定的形态和时间序列特征,可以被记录和分析。

4. 突触传递突触传递是一种神经信号传递方式,由神经元的轴突末梢释放神经递质,影响相邻神经元或肌肉、腺体等靶细胞。

突触传递主要包括化学突触传递和电子突触传递两种方式,前者是通过神经递质介导的,后者是通过电流通过直接传递关节隙。

5. 突触可塑性突触可塑性是指突触传递能力的改变。

其主要形式包括长时程增强(LTP)和长时程抑制(LTD)。

LTP和LTD的产生机制包括突触前活动变化、突触后细胞膜电位变化和神经递质浓度变化等。

单元回路水平1. 神经环路神经环路是由多个神经元组成的,具有特定功能的神经网络结构。

神经环路可以通过神经突触连接,从而形成复杂的功能。

常见的神经环路包括反射弧和中枢神经环路等。

2. 突触后势突触后势是当神经元被兴奋后,在不同时间尺度上的形成的一种延迟激活现象。

突触后势的强度和持续时间因不同的突触类型而异,但是它可以影响神经元的电活动,从而影响神经网络的功能。

3. 网络动力学神经系统中的神经回路具有复杂的动力学特性。

2、神经生物学名词解释总结

2、神经生物学名词解释总结

神经生物学名词解释总结第九章神经系统第一节神经元和神经胶质细胞01. nerve impulse (神经冲动)沿神经纤维传导的一个个动作电位称为神经冲动。

02. axoplastic transport (轴浆运输)轴突内的轴浆经常流动,进行性物质的运输和交换,称为轴浆运输。

第二节神经元之间的信息传递03. synapse (突触)神经元间相互"接触"并传递信息的部位,根据媒介物性质的不同可分为化学性突触和电突触。

04. excitatory postsynaptic potential, EPSP (兴奋性突触后电位)突触前膜释放的兴奋性神经递质与突触后膜受体结合,导致突触后膜去极化,产生兴奋性突触后电位。

05. inhibitory postsynaptic potential, IPSP(抑制性突触后电位)突触前膜释放的抑制性神经递质与突触后膜受体结合,导致突触后膜超极化,产生抑制性突触后电位。

06. after discharge(后放)在反射活动中,当刺激停止后,传出神经仍可在一定时间内发放神经冲动的现象。

07. non-directed synaptic transmission(非定向突触传递)神经递质从轴突末梢的曲张体释出后通过弥散作用到达效应细胞,与其相应的膜受体结合而传递信息。

第三节神经递质与受体08. neurotransmitter(神经递质)由神经元合成,突触前膜释放,特异性作用于突触后膜受体,参与突触传递的化学物质称为神经递质。

09. neurotransmitter co-existence(递质共存)两种或两种以上的递质可以共存于同一神经元内的现象称为递质共存。

第四节神经反射10.nonconditioned reflex (非条件反射)指在出生后无需训练先天就具有的反射,包括防御反射、食物反射、性反射等。

11.conditioned reflex (条件反射)指在出生后通过训练而在后天形成的反射,它可以建立,也能消退,数量可以不断增加。

神经生物学实验心得体会

神经生物学实验心得体会

神经生物学实验心得体会在我进行神经生物学实验的过程中,我学到了很多有关于神经系统的知识,同时也积累了一些实验上的经验和技巧。

以下是我在实验中得到的一些心得体会:首先,实验前要进行充分的准备工作。

在进行任何实验之前,我们必须要了解实验的目的和方法,并详细阅读实验手册或相关文献。

了解实验的目的和方法有助于我们在实验过程中对照实验要求进行操作,并且可以提前预估实验过程中可能遇到的问题,以及如何解决这些问题。

其次,在实验操作过程中要认真细致。

实验过程中需要精确地称量药品,准确地测量体温,注意观察动物行为等。

这些细致的操作对于实验结果的准确性至关重要。

而且还要时刻关注实验动物的健康状况,以及发现异常情况及时做出调整,保证实验的顺利进行。

此外,实验中的安全防护工作也是非常重要的。

无论是在实验室内还是实验操作中,都要时刻保持高度的安全意识。

比如佩戴好实验室必要的防护用品,如实验手套、口罩等,安全操作实验仪器和试剂等。

进行神经生物学实验时,我们还需要注意细胞和组织的保存和处理工作。

这些工作往往需要非常谨慎和细致的操作,以确保获得可靠的实验结果。

对于保存组织和细胞的方法,我们需要根据实验的具体要求选择合适的保存方法,并在操作时仔细遵循实验手册上的步骤,以确保保存的组织和细胞的完整性和稳定性。

实验中还需要注重数据的记录和分析。

在进行实验过程中,我们需要记录实验进行的时间、药物的剂量、动物的行为等数据。

这些数据对于实验结果的解读和分析非常重要。

在实验结束后,我们需要将这些数据整理和分析,以生成结论,并为后续的研究工作提供参考。

同时,在记录实验数据时,我们还应该注意数据的准确性和清晰度,以免影响后续的数据分析和解读。

最后,及时总结和归纳实验结果也是十分重要的。

在实验结束后,我们需要对实验结果进行总结和归纳,并从中提取出科学意义和启示。

这有助于我们更好地理解神经生物学中的一些重要概念和原理,并为我们今后的研究工作提供指导和借鉴。

神经生物学总结

神经生物学总结

神经生物学总结1、神经元的定义、分类:神经元又称神经细胞,是构成神经系统结构和功能的基本单位,由细胞体和细胞突起构成。

细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。

神经元分类:①根据神经元数目分类:假单极神经元:从胞体发出一个突起,在离胞体不远处呈T型分为两支,因此,称假单极神经元。

其中一支突起细长,结构与轴突相同,伸向周围,称周围突,其功能相当于树突,能感受刺激并将冲动传向胞体;另一分支伸向中枢,称中枢突,将冲动传给另一个神经元,相当于轴突。

双极神经元:从胞体两端各发出一个突起,一个是树突,另一个是轴突。

多极神经元:有一个轴突和多个树突,是人体中数量最多的一种神经元,多极神经元又可依轴突的长短和分支情况分为两型:①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元;②高尔基Ⅱ型神经元,其胞体小,轴突短,在胞体附近发出侧支。

②根据神经元的功能:感觉神经元:也称传入神经元是传导感觉冲动的,胞体在脑、脊神经节内,多为假单极神经元。

其突起构成周围神经的传入神经。

神经纤维终末在皮肤和肌肉等部位形成感受器。

运动神经元:也称传出神经元,是传导运动冲动的神经元,多为多极神经元。

胞体位于的灰质和节内,其突起构成传出神经纤维。

神经纤维终未,分布在肌组织和腺体,形成效应器。

中间神经元:也称联合神经元,是在神经元之间起联络作用的神经元,是多极神经元,人类中,最多的神经元,构成中枢神经系统内的复杂网络。

胞体位于中枢神经系统的灰质内,其突起一般也位于灰质。

③根据神经元所释放的神经递质不同分类:胆碱能神经元:该神经元的神经末梢能释放乙酸胆碱。

胺能神经元:能释放单胺类神经递质:肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、组胺等。

如能释放肾上腺素的称为肾上腺素能神经元,如交感神经节内的神经元等。

氨基酸能神经元: 能释放谷氨酸、γ-氨基丁酸等。

肽能神经元:能释放脑啡肽、P物质等肽类物质,这类神经元所释放的物质总称为神经肽。

神经生物学 总结(一)2024

神经生物学 总结(一)2024

神经生物学总结(一)引言概述:神经生物学是研究神经系统结构、功能和发展的学科,它涉及到神经元、神经通讯、神经调节和神经发育等方面的内容。

本文将从神经元的结构和功能、神经通讯的原理、神经调节的机制、神经发育的过程以及神经生物学的应用等5个大点进行阐述。

正文:一、神经元的结构和功能1. 神经元的基本结构:由细胞体、树突、轴突和突触组成。

2. 神经元的功能:接收、处理和传递信息的能力。

3. 神经元的类型:感觉神经元、运动神经元和中间神经元等。

4. 神经元的兴奋传导:神经膜的通透性变化引起的电信号传递过程。

5. 神经元的兴奋阈值:触发神经元产生动作电位的最小刺激强度。

二、神经通讯的原理1. 神经突触的结构:由突触前元和突触后元组成。

2. 突触前元的释放机制:通过电化学方式释放神经递质,跨越突触间隙作用于突触后元。

3. 突触后元的响应机制:接受神经递质信号,产生电信号传递到下一个神经元。

4. 神经递质的种类:多种神经递质用于不同神经通讯过程。

5. 突触可塑性:突触连接的可增强或减弱的能力,是学习和记忆的基础。

三、神经调节的机制1. 神经系统的调节:通过神经系统内的神经递质释放和神经元膜电位变化来调节生理过程。

2. 自主神经系统:分为交感神经系统和副交感神经系统,分别负责不同的生理调节过程。

3. 神经调节的反馈机制:通过负反馈和正反馈调节生理过程的平衡。

4. 神经调节与情绪:神经系统参与情绪的产生和调节。

5. 神经调节和疾病:神经系统的紊乱导致多种神经性疾病的发生。

四、神经发育的过程1. 神经胚胎学:研究神经系统发育的起源和发展过程。

2. 神经细胞分化:原始神经母细胞分化为不同类型的神经元和神经胶质细胞。

3. 神经元迁移:神经元从胚胎的起始位置迁移到最终的定位。

4. 突触形成:神经元通过突触的形成与其他神经元相连接,建立神经网络。

5. 神经元成熟:神经元通过形态和功能的成熟建立起健康的神经系统。

五、神经生物学的应用1. 神经药理学:研究药物对神经系统的作用和治疗神经性疾病的方法。

神经生物学 总结(二)

神经生物学 总结(二)

神经生物学总结(二)引言概述:神经生物学是研究神经系统结构和功能的学科,通过研究神经细胞、神经网络和神经行为等来探索神经系统的运作机制。

本文将继续探讨神经生物学领域的相关内容,包括突触传递、神经调控、神经退行性疾病、神经可塑性以及神经成像技术的应用。

正文:1. 突触传递- 突触是神经细胞之间通信的重要结构,包括化学突触和电突触两种形式。

- 发射神经递质的突触传递过程中,包括神经递质合成、释放、结合受体以及再摄取等步骤。

- 突触传递异常可能导致神经疾病,如帕金森病和抑郁症等。

2. 神经调控- 神经调控是神经系统对生物行为的调节过程。

- 自主神经系统是神经调控的重要组成部分,包括交感神经系统和副交感神经系统。

- 神经调控紊乱可能引发一系列疾病,如心血管病、消化系统疾病等。

3. 神经退行性疾病- 神经退行性疾病是指导致神经系统结构和功能逐渐丧失的疾病,如阿尔茨海默病和帕金森病等。

- 这些疾病的发生与神经元损伤、氧化应激和蛋白质异常积累等因素有关。

- 神经退行性疾病的治疗目前尚无明确方法,但研究表明通过药物干预、基因疗法等可能有助于减缓病情。

4. 神经可塑性- 神经可塑性是神经系统对环境刺激作出适应性改变的能力。

- 突触可塑性和神经元可塑性是神经可塑性的重要表现形式。

- 神经可塑性在学习记忆、适应性行为等方面起到重要作用,同时也与一些神经疾病如抑郁症和成瘾症相关。

5. 神经成像技术的应用- 神经成像技术可用于研究活体神经系统的结构和功能,如功能磁共振成像(fMRI)、电脑断层扫描(CT)等。

- 这些技术在神经科学研究、神经疾病诊断和治疗等方面具有重要意义。

- 不断发展的神经成像技术有望为神经生物学研究提供更为精细的解析度和客观的数据。

总结:神经生物学作为一门综合性的学科,涉及到神经系统的结构与功能,突触传递、神经调控、神经退行性疾病、神经可塑性以及神经成像技术的研究。

深入了解这些内容,有助于我们更好地理解和阐释神经系统的工作原理,同时为神经科学研究和相关疾病的诊断与治疗提供指导。

《神经生物学》学习总结

《神经生物学》学习总结

从辨证唯物主义的观点出发,任何自然现象的发生都有其运动规律和物质基础。

人类的心理现象和心理活动都不是神秘的、不可知的,它们都是神经系统活动(特别是人类的大脑活动)的结果。

学习神经生物学就是要从最基本的生物学角度树立科学的世界观和方法论,从最基本的角度探索人类心理的奥秘,开发人类的潜能,为人类的自身的发展提供强有力的支持。

第一部分第一章1细胞:细胞是人体和其他生物体结构和功能的基本单位(神经细胞是特化的即已经高度分化的细胞),人和其他多细胞生物体的细胞,在结构和功能上出现各种各样的分化,由分化的细胞组成具有专门功能的组织、器官和系统,在神经系统的主导之下,并且互相协调统一,进行完整的生命过程;2细胞膜的基本结构:细胞膜主要由脂质、蛋白质、糖类组成;蛋白质与细胞膜的物质转运有关----载体、通道、离子泵等;与辨认和接受细胞环境中特异的化学刺激有关----受体;具有酶的催化作用----如腺苷酸环化酶、Na+-K+ATP酶;与细胞免疫功能有关----如红细胞表面的血型抗原等;3 细胞膜的功能:细胞膜是细胞与外界环境的界膜,是物质转运、能量传送、维持细胞代谢和动态平衡的枢纽,物质的转运功能: 1)单纯扩散一些小分子脂溶性物质从浓度高的一侧通过细胞膜扩散到低的一侧-----不需要能量和其它物质的参与如常见的气体分子;2)易化扩散一些难溶于脂质的物质,在细胞膜蛋白质的帮助下,从浓度高的一侧通过细胞膜扩散到低的一侧----需要细胞膜蛋白质的参与,但不需要能量;载体协助扩散---葡萄糖、氨基酸的扩散;通道扩散------神经细胞膜在活动中对离子的通透作用;3)主动转运:细胞膜通过本身的某种耗能过程,将某些物质或离子由低浓度侧移向高浓度侧的过程;它需要细胞代谢提供能量,也需要镶嵌蛋白质(泵)的参与;4)入胞作用和出胞作用:入胞作用----大分子物质和物质团块通过细胞膜的运动,从细胞外进入细胞内的过程;出胞作用----大分子物质和物质团块通过细胞膜的运动,从细胞内排出细胞外的过程(如神经递质的释放);受体功能:细胞膜受体是镶嵌在细胞膜上的特殊蛋白质,它与环境中的特定结构的物质(信息)相结合,引起细胞内一系列的生物化学反应和生理效应(如兴奋传递过程中的递质受体);4基本组织:组织是指构造相似、功能相关的细胞、细胞间质所组成的结构;人体的组织可以分为:上皮组织、结缔组织、肌肉组织、神经组织;是构成器官的基本结构,故称为基本组织;5神经组织:神经组织由神经细胞和神经胶质细胞组成;神经细胞是是神经组织的主要成分,具有接受刺激产生兴奋和传导神经冲动的功能;因此,神经细胞是神经组织的基本功能单位,神经胶质细胞在神经组织中起支持、营养、联系的作用;(神经,神经核,神经节,灰质,白质也属于组织)6器官:是指由几种不同的组织结合在一起,形成具有一定形态,执行一定功能的结构;如:脑(脑干,大脑,间脑等)、脊髓、,神经,心、肺、肝、肾、脾、胃;7系统:许多在结构和功能上有密切联系的器官,按一定的顺序排列在一起,共同执行某种特定的功能,即为系统;如口腔、食道、胃、小肠、大肠、肛门、肝、胰等器官组成人体的消化系统,执行消化和吸收功能;人体有运动系统、循环系统、呼吸系统、消化系统、泌尿系统、生殖系统、内分泌系统、神经系统、感觉器官等九个;神经系统是人体功能活动的主导系统,机体在神经系统的调节和控制之下,通过神经调节和体液调节的方式,作为统一的整体活动;第二章1神经系统:由中枢神经系统和周围神经系统组成; 接受,识别,整合体内,外环境传入的信息,调节机体各系统的功能,维持个体的生存和种族的繁衍;2中枢神经系统有脑(位于颅腔)和脊髓(位于椎管)组成;外被有三层连续的脑脊膜(硬膜,蛛网膜,软膜)3脊髓:上端在枕骨大孔处与延髓连接;下端齐第12胸椎至第3腰椎(由此可以认为,在人体的发育过程中,神经系统与运动系统的发育不同步);两侧有31对脊神经附着;故为31个节段(颈段8节,胸段12节,腰段5节,骶段5节,尾节1,与人体的体节相对应);4脊髓内部分别形成灰质和白质;灰质:神经元及其突起共同组成;白质:由神经纤维构成的传导束(有上行传到束和下行传导束)组成;5脊髓灰质: (由神经元的胞体组成)在脊髓内部呈”蝴蝶形”结构,每侧前部扩大为前角,与前根相连,前根为传出纤维,属于远动行成分);后部狭长为后角(与后根相连,后根为传入纤维,属于感觉性成分);在胸-腰段脊髓节段的前后角之间有向外突出的侧角(交感神经起源);中央管前后的灰质相互连接称灰质连合.中央管为神经管发育为中枢神经系统遗留的管状结构;6脊髓白质:(由神经纤维构成) 由前索,后索,侧索组成;它们中起止相同,功能相同的神经纤维构成一条传导束(通路),包括上行(脊-脑感觉信息)传导通路和下行(脑-脊运动信息)传导通路,它们位于灰质的周边;紧贴灰质边缘的是短距离的传导纤维(起止于脊髓上下节段,起联系上下节段的作用)是固有束;7脑: 由大脑,间脑,小脑,脑干组成;脑干自上而下为中脑,脑桥,延髓组成;由神经元胞体为主形成的大脑,小脑表面的皮质(灰质);由神经元深入脑实质聚集成的团块结构(脑神经核团); 脑内神经元发出的突起及脊髓神经元,脊神经节神经元突起形成的纤维束(白质,也称传导束,传导通路) ;脑干的灰质结构主要有:与脑神经(Ⅲ-ⅩⅡ)相关的神经核;脑干的白质纤维束:有上行传导束和下行传导束;另外,脑干网状结构是界与灰质与白质的神经组织)8脑干网状结构:为脑干内灰质与纤维之间的区域,纤维纵横交织,并分布大量的神经元胞体故得名;其内有上行激活系统,生命中枢;它参与躯体的运动与感觉,内脏活动调节,控制脑的觉醒与睡眠,机体的节律性活动和神经内分泌;9小脑:参与运动的协调与控制,但不参与运动的启动(非随意);一旦小脑受到损害,机体的协调活动就会发生障碍(如注意性震颤,问题:与静止性震颤的神经机制有何不同?); 10大脑:由左右大脑半球组成,通过横行的神经纤维板--胼胝体相连;大脑分4个叶(额,顶,颞,枕叶)和脑岛;大脑表面为灰质,隆起为”回”,凹陷为”沟”;11大脑深部为白质,由联络系,投射系,连合系3部分纤维组成;以投射束最重要,由联系大脑皮质和皮质下中枢的上行,下行纤维组成,集中于内囊部位(易发生中风的部位);12-1大脑表面的灰质也称皮质,分化成为特殊的功能区-----脑中枢;有躯体感觉中枢,躯体运动中枢,听中枢,视中枢,平衡中枢,嗅觉中枢,语言中枢;语言中枢又分化为与视,听,读,写有关的视觉性,听觉性,运动性,书写语言中枢;12-2人类大脑皮层的发达从两个方面体现出:(1)沟回的出现,使其表面积得到了较大的发展;(2)特殊功能区的分化13边缘系统:从发生上由古皮质,旧皮质演化成的结构------包括梨状皮质,内嗅区,隔区,眶回,扣带回,胼胝体下回,海马回,海马,杏仁核,视前区,下丘脑乳头体----部分大脑核团及部分皮质区构成围绕间脑的环周结构-----与情绪,记忆等有关;14外周神经系统也称为周围神经系统:指脑和脊髓以外的神经结构;由神经节和神经组成;脊,脑神经:与脊髓,脑相连:分布与躯体的骨骼肌,皮肤等参与躯体的感觉与运动;内脏神经:也与脑,脊髓相连,分布与内脏器官的心肌,平滑肌,腺体等;15-1脑神经12对:对称性分布于头,颈,躯干,四肢;脊神经31对:颈神经C1-8对,胸神经T1-12对,腰神经L1-5对,骶神经S1-5对,尾神经1对;15-2脊神经由与脊髓相连的前根、后根合并而成,从椎间孔穿出椎管;前根为前角运动神经元发出的传出性突起组成;后根为传入性神经,与脊髓的后角相关连;15自主神经系统:为内脏神经的感觉和运动神经部分,主要分布于内脏,心血管,腺体;内脏运动神经系统的活动因较不受随意控制而得名;16在血液和神经组织之间存在一道屏障------血脑屏障; 人体内除血脑屏障之外,还有血-睾屏障和胎盘屏障,对人类的生存有极其重大的意义;17神经系统是进化的产物:单细胞动物(如草履虫)的细胞虽然对刺激产生反应,但它不是专门的神经细胞;海绵动物(海绵)是最原始的多细胞动物,但细胞分化程度低,也没有典型的神经细胞; 原始神经元最早出现在腔肠动物(如水螅),突起相互交叉连接呈网状;构成了弥散神经系统; 节状神经系统--------神经元只集合为若干神经节节肢动物;(如虾)的节状神经系统; 另外还出现了神经胶质细胞,对神经元起绝缘,支持,营养等作用; 梯状神经系统---扁形动物(如涡虫)的神经细胞集中形成两条并列的神经索,通过横向的神经联系. 管状神经系统---脊索动物在个体发生中,由外胚叶的神经板凹陷封闭围成神经管发育而成;脊椎动物及人的脊髓的中央管和脑室就是管状神经系统的证明;在管状神经系统的脑部进化中,端脑,间脑,中脑,小脑,延脑虽然都有逐步集中和增大,但更为重要的是在大脑两个半球表面的大脑皮质的出现和发展.高等的哺乳动物的大脑皮质虽然已有相当程度的发展,但人的大脑皮质不但面积大而且厚,其分化程度也很高;18人脑功能的可塑性: 一般认为,高等哺乳动物脑所实现的行为多数是定型化的;它们后天的习得性行为很少;而人脑的功能在出生后还有很长的发育成熟阶段;人脑的这种可塑性在外界环境的作用下,大致在15-17岁才达到高峰.这表明,人脑在出生后还有为动物所不能比拟的发展潜能;即存在巨大的可塑性;但可塑性存在着临界期;狼孩的发现及后来的研究结果证实了这一点;18-2人学习的黄金时期是3岁以前,最好从新生儿期开始教育。

神经生物学概论(一)2024

神经生物学概论(一)2024

神经生物学概论(一)引言:神经生物学是研究神经系统的结构、功能和发展的学科,是生物学的重要分支之一。

本文将介绍神经生物学的基本概念、神经元的结构与功能、神经信号传递、神经系统发育以及神经科学的应用领域。

正文:一、基本概念1. 神经生物学的定义和研究对象2. 神经生物学与其他学科的关系3. 神经生物学的历史和重要里程碑4. 神经科学的研究方法和技术5. 神经生物学的研究意义和应用前景二、神经元的结构与功能1. 神经元的基本结构和组成2. 神经元的功能:信息处理和传递3. 神经元的类型和分类4. 神经元的发育和成熟过程5. 神经元的可塑性和学习记忆三、神经信号传递1. 神经元内部电信号的传导与产生2. 突触传递的基本过程和机制3. 突触可塑性及其在神经系统功能中的作用4. 神经递质的种类和作用机制5. 神经调节和神经信号整合四、神经系统发育1. 神经细胞的分化和定位2. 神经细胞迁移和形态发育3. 突触的形成和发展4. 神经系统发育的调控因素5. 神经系统发育中的异常与疾病五、神经科学的应用领域1. 神经科学在临床医学中的应用2. 神经科学在神经退行性疾病中的研究与治疗3. 神经科学在心理学和行为学中的应用4. 神经科学在人工智能和机器学习中的应用5. 神经科学的未来发展方向和挑战总结:神经生物学作为研究神经系统的学科,涉及到神经元的结构与功能、神经信号传递、神经系统发育以及神经科学的应用领域。

通过深入研究神经生物学,我们可以更好地理解神经系统的工作原理,为神经科学的发展和疾病治疗提供有力支持。

随着技术的不断进步和研究的深入,神经生物学将继续为人们提供更多的启示和突破。

神经生物学教学心得体会

神经生物学教学心得体会

作为一名神经生物学教师,我有幸站在讲台上,将这门深奥的学科知识传授给学生。

在多年的教学实践中,我深刻体会到了神经生物学教学的重要性和挑战性。

以下是我在教学过程中的一些心得体会。

一、激发学生对神经生物学的兴趣神经生物学是一门涉及生物学、医学、心理学等多个学科的综合性学科,内容丰富、复杂。

要想让学生真正爱上这门学科,首先要激发他们的兴趣。

以下是我在这方面的一些尝试:1. 结合实际案例:在教学中,我将神经生物学知识与实际生活中的案例相结合,让学生了解神经生物学在医学、心理学等领域的应用。

例如,在讲解神经元工作时,我介绍了脑电图(EEG)在癫痫诊断中的应用。

2. 互动式教学:通过提问、讨论、实验等方式,让学生积极参与课堂,提高他们的学习兴趣。

例如,在讲解神经递质时,我让学生分组讨论神经递质的作用,并设计实验验证。

3. 利用多媒体资源:利用PPT、视频、动画等多媒体资源,将抽象的神经生物学知识形象化、具体化,提高学生的学习兴趣。

例如,在讲解神经元的突触传递时,我通过动画演示神经元之间的信息传递过程。

4. 关注学生心理:了解学生的心理需求,关心他们的成长,让学生感受到教师对他们的关爱。

在课堂上,我鼓励学生提问、表达自己的观点,营造一个宽松、愉快的课堂氛围。

二、培养学生的科学思维和创新能力神经生物学是一门实验性很强的学科,培养学生的科学思维和创新能力至关重要。

以下是我在这方面的一些做法:1. 注重基础理论教学:在教学中,我注重基础理论知识的传授,让学生掌握神经生物学的基本概念、原理和规律。

只有打下扎实的基础,才能培养学生的科学思维。

2. 强化实验技能训练:通过实验课,让学生亲自动手操作,掌握实验技能。

在实验过程中,鼓励学生发现问题、解决问题,培养他们的创新意识。

3. 鼓励学生参与科研项目:组织学生参加科研项目,让他们在实践中锻炼自己的科研能力。

例如,指导学生进行神经递质检测、神经元培养等实验。

4. 开展学术交流活动:邀请神经生物学领域的专家学者来校讲座,让学生了解学科前沿动态,拓宽视野。

神经生物学知识点

神经生物学知识点

神经生物学知识点神经生物学是研究神经系统结构、功能以及相关疾病的学科,它涉及到人类思维、行为、情绪等多个方面。

在人类生活中,神经生物学相关的知识点是非常重要的。

本文将介绍一些关于神经生物学的知识点,帮助读者更好地理解人类神经系统的工作原理和相关疾病。

1. 神经元神经元是神经系统的基本单位,它们负责传递神经信号。

神经元由细胞体、轴突和树突组成。

神经信号是通过神经元之间的突触传递的,神经元之间的连接形成了神经网络,实现了信息传递和处理。

2. 神经递质神经递质是神经元之间传递信号的化学物质,它们可以充当兴奋或抑制信号的传递者。

常见的神经递质包括乙酰胆碱、多巴胺、去甲肾上腺素等。

神经递质的不平衡会导致多种神经系统疾病,如帕金森病和抑郁症。

3. 大脑大脑是人类神经系统中最为复杂的器官,它负责认知、情绪、运动等功能。

大脑皮层分为额叶、顶叶、颞叶和枕叶,各区域负责不同的功能。

大脑中有多种神经递质通过神经元之间的连接实现信息传递和处理。

4. 神经系统疾病神经系统疾病包括多种类型,如脑卒中、阿尔茨海默症、帕金森病等。

这些疾病会导致神经元的损伤和神经递质的不平衡,表现出认知障碍、运动障碍、情绪障碍等症状。

5. 神经影像学神经影像学是通过影像技术来研究神经系统结构和功能的学科。

常见的神经影像学技术包括MRI、CT和脑电图等,它们可以帮助医生了解患者神经系统的状况,诊断疾病并制定治疗计划。

总结:神经生物学是一门重要的学科,它涉及到人类神经系统的结构、功能和相关疾病。

了解神经生物学知识点可以帮助我们更好地理解神经系统工作原理和相关疾病的发生机制。

通过神经影像学技术,我们可以更直观地观察神经系统结构和功能。

希望本文对读者有所帮助,增加对神经生物学的认识和理解。

神经生物学知识的学习对于人类健康和幸福至关重要。

祝愿大家身体健康,神经系统正常运转!。

神经生物学基础知识点总结

神经生物学基础知识点总结

神经生物学基础知识点总结全文共四篇示例,供读者参考第一篇示例:神经生物学是研究神经系统结构和功能的领域,涉及生物体内神经元之间的相互作用以及神经元和非神经元细胞之间的相互作用。

在神经生物学研究中,涉及到许多基础知识点,本文将对一些重要的神经生物学基础知识点进行总结。

一、神经细胞神经细胞是构成神经系统的基本单位,其细胞体包括细胞核和细胞质,具有粗的树突和细长的轴突。

神经细胞通过树突接收其他神经元传来的信号,通过轴突向其他神经元传递信号。

二、动作电位动作电位是神经细胞内外电位发生瞬时变化的现象,是神经细胞传递信号的基础。

当神经细胞受到刺激时,细胞膜上的离子通道打开,离子通过细胞膜流动,导致细胞内外电位发生快速变化,形成电信号传递到细胞的轴突。

三、突触突触是神经元之间进行信号传递的连接点,包括突触前膜、突触后膜和突触间隙。

神经元通过释放神经递质到突触后膜,使得后者的离子通道开放,电信号从一个神经元传递到另一个神经元。

四、神经递质神经递质是神经元之间传递信号的化学物质,包括多种生物活性物质,如乙酰胆碱、多巴胺、谷氨酸等。

神经递质通过突触传递信号,调节神经系统内外的各种生理活动。

五、神经系统神经系统由中枢神经系统和外周神经系统组成。

中枢神经系统包括脑和脊髓,外周神经系统包括神经、神经节和神经末梢。

神经系统负责接收、处理和传递信息,调节机体各个系统的活动。

六、脑人类大脑是神经系统的主要组成部分,包括大脑皮层、脑干和小脑。

大脑皮层是负责思维、感知和运动的中枢,脑干控制自主神经系统的活动,小脑协调运动和平衡。

七、神经调节神经系统通过调节机体内外的生理活动,维持机体内稳态。

神经系统的调节作用包括感觉、运动、情绪等方面,通过神经元之间的信号传递实现。

神经生物学基础知识包括神经细胞、动作电位、突触、神经递质、神经系统、脑和神经调节等方面。

通过研究这些基础知识点,可以更好地理解神经系统的结构和功能,为研究神经系统相关的疾病和治疗提供理论基础。

神经生物学总结

神经生物学总结

无(胚胎轴突和轴丘有, 有 少)
优势存在(突触前)
神经生物学总结
选择性存在
星形胶质细胞(astrocytes)
• 在胶质细胞中体积最大、数量最多 • 常用区分方法:
– 免疫细胞化学染色(胶原纤维酸性蛋白,GFAP) – 星形胶质细胞无尼氏体
• 相邻星形胶质细胞之间以及相邻终足之间存 在有缝隙连接(离子耦联、代谢耦联)
Vm<ENa 内向INa Vm=ENa INa=0 Vm>ENa 外向Ina •反转电位:+52mV
神经生物学总结
动作电位的传导:
• 是以“局部电流”的形式传导的。
• 局部电流:在已兴奋的细胞膜和与它相邻的 未兴奋的细胞膜之间,由于电位差的出现而 发生电荷移动,称为局部电流(local current)。
神经生物学总结
星形胶质细胞的主要功能
• 支持作用: • 修复和保护作用 • 参与构筑血脑屏障 • 维持神经元周围K+稳态 • 影响突触传递 • 调节神经元糖的供应
神经生物学总结
基本知识点:
• 神经元的轴突和轴丘都没有游离核糖体(尼氏体)和粗面 内质网。
• 胶质细胞的突起不分树突和轴突;它与神经细胞不同,可 终身具有分裂增殖的能力。
突触传递的特征
单向传递; 突触延搁; 总和; 兴奋节律的改变; 对内环境变化敏感; 易疲劳。
神经生物学总结
突触后抑制 (postsynaptic inhibition)
神经元信息传递过程中,通过兴奋一个抑制性中间神经元 释放抑制性递质,而引起它的下一级神经元突触后膜产生 IPSP致使其活动发生抑制。
• 运动方向是:在膜外的正电荷由未兴奋段移 向已兴奋段,而膜内的正电荷由已兴奋段移 向未兴奋段。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、神经元的定义、分类:神经元又称神经细胞,是构成神经系统结构和功能的基本单位,由细胞体和细胞突起构成。

细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。

神经元分类:①根据神经元数目分类:假单极神经元:从胞体发出一个突起,在离胞体不远处呈T型分为两支,因此,称假单极神经元。

其中一支突起细长,结构与轴突相同,伸向周围,称周围突,其功能相当于树突,能感受刺激并将冲动传向胞体;另一分支伸向中枢,称中枢突,将冲动传给另一个神经元,相当于轴突。

双极神经元:从胞体两端各发出一个突起,一个是树突,另一个是轴突。

多极神经元:有一个轴突和多个树突,是人体中数量最多的一种神经元,多极神经元又可依轴突的长短和分支情况分为两型:①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元;②高尔基Ⅱ型神经元,其胞体小,轴突短,在胞体附近发出侧支。

②根据神经元的功能:感觉神经元:也称传入神经元是传导感觉冲动的,胞体在脑、脊神经节内,多为假单极神经元。

其突起构成周围神经的传入神经。

神经纤维终末在皮肤和肌肉等部位形成感受器。

运动神经元:也称传出神经元,是传导运动冲动的神经元,多为多极神经元。

胞体位于中枢神经系统的灰质和植物神经节内,其突起构成传出神经纤维。

神经纤维终未,分布在肌组织和腺体,形成效应器。

中间神经元:也称联合神经元,是在神经元之间起联络作用的神经元,是多极神经元,人类神经系统中,最多的神经元,构成中枢神经系统内的复杂网络。

胞体位于中枢神经系统的灰质内,其突起一般也位于灰质。

③根据神经元所释放的神经递质不同分类:胆碱能神经元:该神经元的神经末梢能释放乙酸胆碱。

胺能神经元:能释放单胺类神经递质:肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、组胺等。

如能释放肾上腺素的称为肾上腺素能神经元,如交感神经节内的神经元等。

氨基酸能神经元: 能释放谷氨酸、γ-氨基丁酸等。

肽能神经元:能释放脑啡肽、P物质等肽类物质,这类神经元所释放的物质总称为神经肽。

现在认为神经肽不直接引起效应细胞的改变,仅对神经递质的效应起调节作用,故将神经肽称为神经调质。

2、突触的定义及分类:突触是指一个神经元的冲动传到另一个神经元或传到另一细胞间的相互接触的结构, 由突触前膜、突触间隙和突触后膜三部分构成。

化学性突触传递过程:突触由突触前膜、突触间隙和突触后膜三部分组成。

当神经冲动抵达轴突末梢时,突触前膜发生去极化,导致电压门控Ca2+通道开放,Ca2+进入突触前末梢内,促使一定数量的小泡与突触前膜接触融合,然后小泡与突触前膜粘合处出现破裂口,小泡内递质和其他内容物释放到突触间隙;进入突触间隙的神经递质作用于突触后膜上的特异性受体或化学门控通道,产生突触后电位。

根据突触后膜发生去极化或超极化,可将突触后电位分为兴奋性和抑制性突触后电位两种。

中枢兴奋传递的特征当兴奋通过化学性突触传递时,主要表现有以下6方面特征:(一)单向传递在反射活动中,兴奋只能向一个方向传播,即从突触前末梢传向突触后神经元。

(二)中枢延搁兴奋通过反射中枢时往往较慢,这一现象称为中枢延搁,兴奋通过化学性突触比在同样长的神经纤维上传导要慢得多。

反射通路上跨越的化学性突触数目越多,则兴奋传递所需的时间也越长。

(三)兴奋的总和在反射活动中,单根神经纤维的传入冲动一般不能使中枢发出传出效应;而若干神经纤维的传入冲动同时到达同一中枢,才能产生传出效应。

(四)兴奋节律的改变测定某—反射弧的传入神经和传出神经在兴奋传递过程中的放电频率,两者往往不同。

医学教育网搜|索整理(五)后发放在环式联系中,即使最初的刺激已经停止,传出通路上冲动发放仍能继续一段时间,这种现象称为后发放。

(六)对内外环境变化敏感和容易发生疲劳。

突触分类:①根据神经冲动通过突触的方式分类:电突触:前后膜间隙窄;双向传导无延迟;缝隙连接的孔径较大。

化学性突触:前后膜以神经递质交互,传导由前膜到后膜,有延迟,结构功能不对称,前膜有突触囊泡,内含神经递质,后膜有PSD(突触后膜致密区);前后膜间隙大。

②根据突触接触接触部位:轴突-树突突触、轴突-胞体突触、轴突-轴突突触。

③根据突触的结合形式分类:兴奋性突触、抑制性突触。

受体,首先与内源性配体(递质、调质、激素及细胞性因子等信息分子)或相应药物与毒素等结合,并产生特定效应的蛋白质。

分类,按药理效应分类:乙酰胆碱受体(AChR)、肾上腺素受体(NAR)、多巴胺受体(DAR)和阿片受体(APR);④按解剖学定位分类:膜受体(突触前受体-调节神经末梢递质合成与释放、突触后受体-实现跨膜信息转导)、核受体。

⑤按受体跨膜信息转导机制分类:1)G蛋白偶联受体:由受体、G蛋白和效应酶组成。

G蛋白是实现受体和效应器间信息转导的膜蛋白家族,功能的激活与失活受控于GDP-GTP-GDP转化开关。

受体与配体结合后,通过与受体偶联的相应G蛋白,调节膜上相应效应酶,影响一种或数种第二信使物质的产生与代谢,并通过级联反应,导致效应细胞的功能改变;2)受体门控离子通道或配体门控离子通道受体:能与特异配体结合的离子通道组成的受体;3)酶活性受体:只有一个跨膜螺旋,本身兼有配体的识别部位与激酶活性两部分。

3、跨膜信息转导:细胞外的信息分子(第一信使)特异性地与细胞表面的受体结合,刺激细胞产生胞内调节信息分子(第二信使),将信息传递到细胞特异性的反应系统,进而产生生理或病理性应答反应。

4、神经递质与神经调质:神经递质:突触前神经元合成并在末梢出释放、经突触间隙扩散、特异性的作用于突触后神经元或效应器细胞上的受体引致信息从突触前传递到突触后的一些化学物质。

是化学传递的物质基础。

神经调质:神经元、胶质细胞或其他分泌细胞产生和释放,作用于特定受体(不直接参与神经元间的信息传递或不直接引起效应细胞的功能改变),通过调节神经递质的释放及基础水平,影响突触后效应细胞对递质的反应性,间接调节神经递质的传递效应。

5、神经递质的种类及特定类型:胆碱类(乙酰胆碱)、单胺类(多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、组织胺)、氨基酸类(兴奋性氨基酸如谷氨酸、天门冬氨酸,抑制性氨基酸如y-氨基丁酸、甘氨酸)、神经肽类(下丘脑释放素类、神经垂体激素类、阿片肽类、垂体肽类、脑肠肽类)、嘌呤类、CO、NO。

特定类型神经递质:①乙酰胆碱(Ach):乙酰辅酶A和胆碱在乙酰基转位酶(ChAT)催化下生成。

胆碱高亲和力载体为合成限速因子,调制胆碱浓度,胆碱为限速底物。

Ach合成后因乙酰胆碱转运体部分进入囊泡储存,部分存于胞质。

神经冲动引起神经末梢去极化和Ca内流,通过胞裂外排的方式释放ACh。

乙酰胆碱受体,分毒蕈碱受体(M-AChR,为G蛋白偶联受体)和烟碱受体(N-AChR为配体门控离子通道受体)。

②儿茶酚胺(CA)类递质:是指去甲肾上腺素(NE或NA)、多巴胺(DA)和肾上腺素(E或AD)。

合成:以酪氨酸羟化酶(限速酶)、多巴脱羧酶脱羧生成多DA,DA经多巴胺-B-羟化酶(NA特异性标志酶)羟化生成NA,NA经苯乙醇氨氮位甲基移位酶(AD标志酶)催化获得甲基生成AD。

储存:NA储存在囊泡中防止递质弥散出神经元,避免胞质内酶的代谢或毒物的作用而失活,并使递质在胞质中保持较低的水平避免损害。

依靠囊泡膜上的囊泡单胺类转运体摄取和储存。

释放:CA通过Ca依赖的胞裂外排方式释放。

失活:1、被细胞外液和血浆稀释到引起突触后反应的阈下值浓度;2、突触前膜转运体重摄取(膜摄取),储存在囊泡中,并在下次冲动时释放(中枢神经系统CA类递质失活主要方式),突触后膜和非神经组织也可有少量摄取;3、单胺氧化酶(MAO)或儿茶酚胺-氧位-甲基转移酶(COMT)降解。

受体:1、去甲肾上腺素受体;2、多巴胺受体(主要靶酶是腺苷酸环化酶AC)。

③5-羟色胺:合成:色氨酸经色氨酸羟化酶(限速酶,5-HT对其有负反馈调节作用)羟化生成5-羟色氨酸,再经5-羟色氨酸脱羧酶脱羧生成5-羟色胺。

5-HT不易通过血脑屏障,中枢神经系统和外周的5-HT 分属两个独立的系统。

储存:囊泡储存。

失活:突触前膜转运体重摄取,部分经单胺氧化酶降解。

受体:除5-HT3受体,均为G蛋白偶联受体。

④兴奋性氨基酸(谷氨酸、门冬氨酸):合成:谷氨酸和门冬氨酸为不能通过血脑屏障的非必须氨基酸,葡萄糖经三羧酸循环产生的a-酮戊二酸和草酰乙酸,经转氨酶作用下分别生成,作为神经递质,谷氨酸的主要来源是由谷氨酰胺在谷氨酰胺酶水解而成。

储存:于中枢神经系统谷氨酸能神经末梢的囊泡中,以胞裂外排的形式释放,其释放是Ca依赖性的。

失活:释放如突触间隙的谷氨酸和门冬氨酸,大部分被谷氨酸或门冬氨酸能神经末梢摄取再利用。

摄入胶质细胞的谷氨酸在谷氨酰胺合成酶的作用下转变为谷氨酰胺,再进入神经末梢后可敬谷氨酸脱氨酶生成谷氨酸,形成神经元和胶质细胞之间的谷氨酰胺循环。

受体:1、NMDA受体,是配体门控的Ca可通透的离子通道型受体,激活后通道开放,单价阳离子和Ca通透性增加引起突触后膜去极化。

其激活与开放受配体和膜电位的双重调节(激动剂的结合和突触后膜的去极化)。

NMDA受体受多种内源性的物质或药物的调制;2、AMPA受体和KA 受体是Na和K通透性离子通道型受体,对膜电位的改变不敏感,开放时只通透Na和K,少数AMPA对Ca通透。

AMPA、KA与NMDA受体协同介导兴奋性突触传递;3、促代谢型谷氨酸受体(mGluRs)为G蛋白偶联受体;4、L-AP4受体是促代谢型的自身受体。

⑤抑制性氨基酸:r-氨基丁酸(GABA)。

合成:由谷氨酸经谷氨酸脱氢酶脱羧生成。

储存:突触囊泡与胞质中,囊泡释放依赖Ca,胞质释放不依靠Ca。

失活:神经元和胶质细胞上的GABA转运体对GABA的重摄取可及时中止GABA 在突触间隙的活动。

受体:GABA A是配体门控离子通道;GABA B是G蛋白偶联受体,介导突触前或突触后抑制。

⑥甘氨酸:甘氨酸在线粒体合成,释放后依靠高亲和力的甘氨酸转运体(Na/Cl依赖性转运体)甘氨酸重摄取,小部分由胶质细胞摄取。

受体是氯离子通道受体,为脊髓中间神经元的抑制性递质。

6、最重要的兴奋性神经递质:谷氨酸Glu。

谷氨酰胺循环:释放入突触的Glu,大部分被神经末梢摄取再利用。

摄入胶质细胞的Glu在谷氨酰胺合成酶的作用下转变成谷氨酰胺,后者进入神经末梢后可经谷氨酰胺酶脱氨基生成Glu,形成神经元和胶质细胞之间的谷氨酰胺循环。

三个受体:NMDAR(钠钙内流,K外流),AMPAR,KAR(钠内流,钾外流)。

7、最重要抑制性神经递质:γ-氨基丁酸,谷氨酸脱羧形成(单胺类和抑制性神经递质:钠氯依赖性受体,兴奋性:钠氯依赖性)。

8、神经营养因子(NTF)的概念、信号、受体:概念:1)是一类为神经系统提供营养微环境的多肽或蛋白质分子。

相关文档
最新文档