调制解调器电路设计

合集下载

毕业论文-调制解调器电路设计【范本模板】

毕业论文-调制解调器电路设计【范本模板】

摘要文章开篇对现有的一些调制、解调技术原理进行了系统地概括与归纳,例如说AM、FM、2ASK、2PSK等一些模拟或数字信号的产生与解调。

在此基础上创造性的提出了基于CPLD的16QAM调制解调器的方案,同时简要阐述了各个模块的组成及其原理。

至此,利用MATLAB对16QAM的性能进行了仿真,绘制了星座图、信号轨迹图、眼图以及误码率曲线,并对它们进行了简要的分析,16QAM可以合理的安排各个矢量端点,使它们间的最小距离最大,从而使系统达到最佳的误码率。

所以说,QAM调制解调技术能够实现在提高信息传输速率的同时降低误译码率,从而改善通信质量。

关键词:调制解调;载波恢复;QAMABSTRACTAt first,article introduces the existing modulation demodulation principle, such as AM、FM、2ASK、2PSK signal generation and demodulation principle。

we proposed the 16 qam modem based on CPLD, and expounds the composition and principle of each module. At this basis,Using MATLAB simulation to the performance of 16 QAM map of the constellation diagram, signal path, eye diagram and bit error rate curve, and carried on the brief analysis.16 qam can reasonable arrangement each endpoint vector, the minimum distance between them is the largest,which make the system achieve the best bit error rate.QAM modulation demodulation technology can be achieved in improving information transmission rate and reduce the decoding error rate。

UQPSK调制解调器的设计

UQPSK调制解调器的设计

本科专业方向设计报告课程名称: 通信工程专业方向设计设计题目: UQPSK调制解调器的设计专业班级:学生姓名:学生学号:指导教师:教师职称:起止日期:学生邮箱:2018年03月《通信工程专业方向设计》任务书《通信工程专业方向设计》学生日志与师生见面情况西南科技大学信息工程学院《通信工程专业方向设计》评分表(2)优秀率:控制在总人数的15-20%之内,并且宁缺毋滥。

(3)课程教学目标根据大纲需求进行调整。

UQPSK调制解调器的设计摘要:随着卫星通信及无线通信技术的发展,调制信号类型不仅仅局限于相移键控( Phase Shift Keying,PSK) 调制中的BPSK、QPSK和OQPSK 等常用信号衍生出的非平衡四相键控( Unbalanced Quaternary Shift Key UQPSK) 调制信号近些年也得到广泛应用。

其特点在于信号的正交同相( I路)与反相( Q路) 二路发送不同功率或码速率的独立二进制数据流。

本文介绍了UQPSK调制解调的基本原理,同时设计了一种特殊的用于宽带数传和跟踪系统的UQPSK调制与解调器。

本设计的UQPSK 调制系统中,I路用于调制数据信息,而Q 路用于调制一个时钟信号;在接收端,就可以通过追踪系统对时钟信号的捕捉追踪到UQPSK 信号,然后解调出I路的数据信息。

这样就在传输信号的同时达到了追踪信号的目的。

并利用Matlab中单Simulink模块对UQPSK的调制解调系统进行了仿真,对UQPSK 在高斯白噪声信道中的性能进行分析,进而验证了UQPSK调制技术的优越性。

关键词:UQPSK;Simulink;仿真;调制解调第1章设计任务分析与设计方案选择1.1 设计任务分析1.1.1 设计任务与要求1. 了解且掌握UQPSK调制和解调的基本原理;2. 在通信原理的基础上设计与分析通信系统;3. 学习MATLAB知识,熟悉Simulink在MATLAB集成环境下的仿真平台;4. 利用通信原理相关知识在仿真平台中设计UQPSK调制与解调仿真系统并用示波器观察解调后的波形。

基于FPGA的FSK调制解调器设计与实现

基于FPGA的FSK调制解调器设计与实现

基于FPGA的FSK调制解调器设计与实现FSK调制解调器是一种常用的数字通信技术,可用于数据传输、无线通信等领域。

本文将介绍基于FPGA的FSK调制解调器的设计和实现,包括原理介绍、系统设计、硬件实现和性能分析等方面。

一、引言FSK调制解调器是一种数字通信系统,它通过改变载波频率的方式来传输数字信号。

本文基于FPGA实现FSK调制解调器,利用FPGA 的灵活性和可重构性,提供了一种高效、可靠的数字通信解决方案。

二、FSK调制解调原理介绍FSK调制解调器是通过将数字信号映射到两个不同频率的载波上,实现信息传输的。

调制过程中,二进制数据0和1分别对应两个特定频率的载波,解调过程中通过判断输入信号的频率来还原原始数据。

三、系统设计1. FSK调制器在FPGA中设计FSK调制器,需要使用相应的调制算法将数字信号转换为两个不同频率的载波。

可以采用数字频率合成技术合成两个不同频率的信号,并通过逻辑电路实现相应的调制功能。

2. FSK解调器FSK解调器的设计目标是通过输入信号的频率变化来判定数字信号的0和1。

可以采用数字滤波器和频率判决电路实现解调功能,将输入的频率信号转换为相应的数字信号。

四、硬件实现1. FPGA配置基于FPGA的FSK调制解调器的硬件实现,首先需要将相应的调制解调算法和电路设计编写为硬件描述语言如VHDL,并经过综合、布局布线等步骤生成比特流。

2. ADC和DAC为了接收和发送模拟信号,需要使用ADC(模数转换器)将模拟信号转换为数字信号,并使用DAC(数模转换器)将数字信号转换为模拟信号。

3. 时钟模块与控制模块为了保持系统的同步和稳定性,需要设计时钟模块和控制模块。

时钟模块用于在固定的时间间隔内,对输入信号进行采样和调制;控制模块用于控制时钟、数据流等系统参数,保证系统的正常运行。

五、性能分析1. 调制误差分析通过对比输入信号与调制后的信号的频谱图,可以评估FSK调制器的性能,主要包括频率偏移、频谱扩展等指标。

测控电路信号调制解调电路

测控电路信号调制解调电路

PART 03
解调基本原理
解调定义及类型
解调定义
解调是从已调信号中恢复出调制 信号的过程。
解调类型
模拟解调和数字解调,根据调制 方式可分为调频解调、调相解调 和调幅解调。
解调过程
频率解调
01
通过改变电路参数,使回授信号的频率与调制信号一致,从而
恢复出调制信号。
相位解调
02
通过比较输入信号与回授信号的相位差,恢复出调制信号的相
多模式多频段支持
随着通信标准和频段的不同,调制解调电路需要支持多种标准和频 段,需要采用更灵活的软件可配置技术。
低功耗设计
在便携式和嵌入式应用中,低功耗设计是调制解调技术的关键挑战之 一,需要采用更有效的电源管理技术和低功耗设计方法。
技术前景展望
01
5G通信技术
随着5G通信技术的推广和应用,调制解调技术将发挥更加重要的作用,
PART 02
调制基本原理
调制定义
调制定义:调制是一种将低频信号(如声音、图像等)加载 到高频载波信号(如无线电波、光波等)上的过程,以便于 传输和接收。
调制定义调制是将低频信号转换为高频载波信号的过程,通 过改变载波信号的某些参数(如振幅、频率或相位),将低 频信号的信息加载到载波信号上,实现信息的传输和接收。
调制类型(如:
通过改变载波信号的振幅来加载 低频信号,接收端通过检测载波 信号的振幅变化来还原低频信号。
FM(调频)
通过改变载波信号的频率来加载低 频信号,接收端通过检测载波信号 的频率变化来还原低频信号。
PM(调相)
通过改变载波信号的相位来加载低 频信号,接收端通过检测载波信号 的相位变化来还原低频信号。
测控电路中的调制技术

AM振幅调制解调器的设计

AM振幅调制解调器的设计

AM振幅调制解调器的设计AM(Amplitude Modulation)振幅调制是一种常用的调制方法,用于在无线通信和广播领域传输音频信号。

AM振幅调制解调器的设计可以分为信号调制和解调两个主要部分。

信号调制部分的设计需要将音频信号与射频载波信号进行叠加,生成调制信号。

首先,需要将音频信号进行放大和滤波,以确保信号的幅度范围适合于调制过程。

放大可以使用放大电路或运放电路来实现,滤波可以使用滤波器电路来实现。

接下来,需要将调制信号和射频载波信号进行叠加,这可以使用一个调制电路来实现。

调制电路可以采用集成电路或者传统的离散元件电路,如二极管、晶体管等。

解调部分的设计需要将调制信号还原成原始的音频信号。

解调器的设计可以采用一些常用的解调方法,如幅度检波、包络检波等。

在幅度检波中,常用的解调器是使用整流电路。

整流电路可以将调制信号的负半周置零,只保留正半周的信号,然后使用低通滤波器去除高频噪声。

在整流电路中,可以使用二极管或者晶体管来实现整流功能,然后使用电容和电阻来构成低通滤波器。

在包络检波中,常用的解调器是使用包络检波电路。

包络检波电路可以提取调制信号的包络曲线,以还原原始的音频信号。

在包络检波电路中,可以使用二极管和电容来实现包络检波功能。

除了以上两种常用的解调方法,还有其他一些更复杂的解调方法,如同步检波、相干解调等。

这些方法可以提供更高的解调性能和抗干扰能力。

此外,在AM振幅调制解调器的设计中,还需要考虑一些其他的因素。

例如,需要对射频载波进行稳定的频率控制,可以使用锁相环电路来实现频率稳定。

还需要考虑功率放大器的设计,以保证调制信号的功率满足传输要求。

总之,AM振幅调制解调器的设计涉及到信号调制和解调两个主要部分。

在信号调制中,需要将音频信号和射频载波信号进行叠加;在解调中,需要将调制信号还原成原始的音频信号。

除了这些主要部分,还需要考虑其他因素,如射频频率控制和功率放大等。

设计一个高性能的AM振幅调制解调器需要根据具体的应用需求进行综合考虑和优化。

基于stm32的FSK调制解调器的设计(原理及程序)

基于stm32的FSK调制解调器的设计(原理及程序)

基于stm32的FSK调制解调器的设计(原理及程序)
 大致要求:设计一个FSK调制解调器,基带信号码速率为2000B/s,载波速率为4khz和8khz,解调信号要能完整还原基带信号。

实现方法多种多样,通信领域内调制解调器的设计大多数用的都是硬件电路,鉴于笔者对编程情有独钟(其实笔者还是懂一点电路设计知识的~),所以最终决定用stm32来设计,纯编程实现。

看起来高大上,但实际做起来不难,不过有挺多东西要考虑的。

 总的设计思路如下:
 首先是基带信号的产生,它也是我们要调制和解调的目标。

基带信号由一连串随机的码元序列构成,为了模拟随机的码元序列,笔者用定时器设计8
位的PN码序列,码元速率为2000B/s。

定时器3定时0.5ms,每进入一次中断,变量num加一,设置一次IO引脚电平,8位PN码只需设置8次,然后num清零。

 TIM3_Init(499,71); //基带信号。

基于FPGA的ASK调制解调器设计与实现

基于FPGA的ASK调制解调器设计与实现

基于FPGA的ASK调制解调器设计与实现近年来,随着无线通信技术的迅猛发展,ASK调制解调器作为无线通信系统的重要组成部分,得到了广泛应用。

本文将介绍一种基于FPGA的ASK调制解调器的设计与实现,旨在为读者提供一种可行的设计思路和实际操作方法。

一、引言在无线通信系统中,ASK调制解调器的作用是将数字信号转换为模拟信号进行传输,并将接收到的模拟信号转换为数字信号进行处理。

FPGA(Field-Programmable Gate Array,现场可编程门阵列)作为一种灵活可重构的集成电路,具有高度集成度、高性能和可编程性的特点,因此被广泛应用于无线通信系统中各种调制解调器的设计与实现。

二、设计思路基于FPGA的ASK调制解调器主要包括两个功能模块,分别为ASK调制模块和ASK解调模块。

其中,ASK调制模块负责将数字信号转换为ASK调制信号进行传输,而ASK解调模块则负责将接收到的ASK调制信号进行解调,还原为数字信号进一步处理。

三、ASK调制模块设计ASK调制模块的设计主要包括数字信号生成、载波信号生成和ASK调制信号合成三个子模块。

1. 数字信号生成在数字信号生成模块中,我们可以根据实际需求,采用VerilogHDL等硬件描述语言来描述数字信号的生成过程,通过逻辑运算和状态切换等方式生成需要传输的数字信号。

2. 载波信号生成载波信号生成模块是ASK调制的关键环节,可以采用时钟信号和正弦函数生成器相结合的方式实现。

通过控制正弦函数的频率和振幅,可以生成符合ASK调制要求的载波信号。

3. ASK调制信号合成将数字信号和载波信号进行合成,生成ASK调制信号。

可以通过乘法运算实现,即将数字信号与载波信号相乘,得到ASK调制信号。

四、ASK解调模块设计ASK解调模块的设计主要包括ASK解调信号提取和数字信号还原两个子模块。

1. ASK解调信号提取在ASK解调信号提取模块中,首先需要对接收到的调制信号进行滤波,以去除噪声和其他干扰。

中波通信调制解调器的设计与实现

中波通信调制解调器的设计与实现

中波通信调制解调器的设计与实现首先,中波通信调制解调器的设计需要考虑到以下几个方面:1.调制方案:调制方案是中波通信调制解调器的核心。

常见的调制方案有幅移键控(ASK)、频移键控(FSK)、相移键控(PSK)等。

根据具体的需求和应用场景选择合适的调制方案。

2.调制器设计:调制器是将数字信号转换为模拟信号的关键组件。

一种常见的实现方式是使用数字信号处理器(DSP)或者嵌入式系统对数字信号进行处理,生成对应的模拟信号。

3.解调器设计:解调器是将接收到的模拟信号转换为数字信号的关键组件。

解调器的设计需要考虑到信道噪声、多径效应等因素。

一种常见的解调器实现方式是使用滤波器和采样器对接收到的模拟信号进行处理,恢复出原始的数字信号。

4.射频设计:射频设计是中波通信调制解调器中不可忽视的一部分。

射频电路涉及到频率合成器、射频放大器、低噪声放大器等组件的选择与设计。

射频电路设计的好坏直接决定了调制解调器的性能。

在中波通信调制解调器的实现过程中,需要进行系统级的设计和各个组件的具体设计与实现。

下面以一个常见的调制解调器为例,具体描述中波通信调制解调器的实现。

1.调制器实现:考虑到中波通信中信道噪声较大,可以选择幅移键控(ASK)作为调制方案。

调制器的实现可以使用一块DSP开发板,通过DSP对数字信号进行处理,然后通过DAC将数字信号转换为模拟信号。

2.解调器实现:解调器的实现可以使用一块模拟信号处理器(ADC)开发板。

首先,通过射频电路将接收到的模拟信号进行放大和滤波,然后经过ADC转换为数字信号。

最后,通过软件对数字信号进行处理,恢复出原始的数字信号。

3.射频设计实现:射频电路设计涉及到频率合成器、射频放大器、低噪声放大器等组件的选择与设计。

可以采用定制射频模块的方式,通过射频设计工具对射频电路进行设计,然后进行样板制作和测试。

4.系统级设计实现:在实现中波通信调制解调器时,还需要进行系统级的设计。

包括定义通信协议、设计数据传输格式、选择适合的调制方案等。

ook调制解调电路

ook调制解调电路

ook调制解调电路篇一:ook调制解调电路是一种用于传输数据的现代化通信技术。

它是一种基于红外线或微波技术的电路,可以将数据转换成电磁波信号,并通过无线传输到接收端。

本文将介绍ook调制解调电路的基本原理、应用和发展趋势。

ook调制解调电路的基本原理是将数据转换成电磁波信号,并通过无线传输到接收端。

在ook调制解调电路中,数据被转换成红外线或微波信号,这些信号通过传输线传输到接收端,接收端再将这些数据转换成人类可识别的电信号,如音频或视频信号。

ook调制解调电路广泛应用于通信、计算机、物联网等领域。

例如,在通信中,ook调制解调电路可以将语音和数据信号从发送端传输到接收端,实现语音和数据的实时传输。

在计算机中,ook调制解调电路可用于实现无线传输,如蓝牙和Wi-Fi传输等。

在物联网中,ook调制解调电路可用于实现无线传感器网络和智能家居等领域的数据传输。

ook调制解调电路的发展趋势是向着更高效、更可靠、更安全的方向发展。

随着5G和物联网等技术的快速发展,ook调制解调电路的性能和功能将不断提高。

同时,ook调制解调电路还将实现更多的应用场景,如虚拟现实、增强现实等。

ook调制解调电路是一种现代化的通信技术,它的性能和功能将不断提高,应用于通信、计算机、物联网等领域。

随着5G和物联网等技术的快速发展,ook 调制解调电路的应用场景将更加广泛,具有广阔的发展前景。

篇二:ook调制解调电路是一种用于传输数字数据的调制解调器,通常用于无线通信系统中。

它是一种基于电磁波的调制和解调技术,可以将数字信号转换为无线信号,并在无线信号中进行传输。

Oakcat调制解调电路采用最先进的数字技术,具有高可靠性、高速度和低功耗的优点。

它的设计灵感来自于汽车排放系统,因此具有高度的可定制性,可以根据不同的通信需求进行个性化的设计。

Oakcat调制解调电路广泛应用于无线通信、物联网、智能家居、智能交通等领域。

例如,它可以用于无线传输数字音频、视频、数据、传感器数据等。

cd4046构成的fsk调制解调电路

cd4046构成的fsk调制解调电路

cd4046构成的fsk调制解调电路全文共四篇示例,供读者参考第一篇示例:CD4046是一种集成电路,常用于FSK调制和解调电路中。

FSK (Frequency Shift Keying)调制技术是一种数字调制技术,通过改变信号的频率来携带数字信息。

在通信系统中,FSK调制技术被广泛应用于数据传输和调频调制解调。

本文将详细介绍CD4046构成的FSK 调制解调电路的原理和应用。

一、CD4046简介CD4046是一种集成数字数字锁相环PLL(Phase Locked Loop)电路,由德州仪器公司生产。

它由一个相位比较器、一个VCO (Voltage Controlled Oscillator)和一个低通滤波器组成。

CD4046可以将输入信号的频率与VCO的频率进行比较,并自动调节VCO的频率,使得输入信号与VCO的频率同步。

这种锁相环的原理可以用于FSK调制和解调电路中。

二、FSK调制解调电路原理1. FSK调制原理:在FSK调制中,输入的数字信号被转换成两种不同频率的信号,并分别控制两个不同频率的载波信号。

这两种载波信号通过一个开关切换器,使得输出信号在两种频率之间切换,从而携带数字信息。

2. FSK解调原理:在FSK解调中,接收到的信号经过解调器解调,得到两种不同频率的信号。

这两种信号再经过一个比较器比较,得到解调后的数字信号。

CD4046通过其内部的相位比较器和VCO实现了FSK调制解调电路。

其电路连接如下:1. 输入信号经过一个低通滤波器,去除噪声和高频成分,然后输入到CD4046的相位比较器。

2. CD4046的VCO的频率由输入信号的频率控制,当输入信号的频率高于VCO的频率时,VCO的频率会增加;反之,当输入信号的频率低于VCO的频率时,VCO的频率会减小。

3. CD4046的输出信号通过一个比较器进行信号处理,得到FSK调制或解调后的数字信号。

1. 数据传输:FSK调制技术可以将数字信号转换成模拟信号进行传输,提高数据传输效率和可靠性。

FM电路实现调制解调

FM电路实现调制解调

FM电路实现调制解调调制解调,即我们常说的Modem,其实是Modulator(调制器)与Demodulator (解调器)的简称,中文称为调制解调器。

也有人跟据Modem的谐音,亲昵地称之为“猫”。

调制: 将各种数字基带信号转换成适于信道传输的数字调制信号(已调信号或频带信号);解调: 在接收端将收到的数字频带信号还原成数字基带信号一、概述FM调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。

FM解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。

锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。

锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。

调制电路还需要另设计一个高频信号放大器和加法器。

解调电路需要设计一个低通滤波器,来取出解调信号。

技术指标:1.载波频率fc=,载波信号的电压Vp-p≥3V;2.FM调频信号的电压Vp-p≥6V,最大频率偏移∆fm≥5KHz;3.解调电路输出的FM调制信号的电压Vp-p≥200mV。

二、方案设计与分析调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。

其逆过程为频率解调(也称频率检波或鉴频)。

本实验是用CD4046数字集成锁相环(PLL)来实现调频/解调(鉴频)的。

调频电路原理图(如图1所示)将调制信号加到压控振荡器(VCO)的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f上下)随调制信号的变化而变化,于是生成了调频波。

当载波频率与自由振荡频率相近时,载波频率与压控振荡器的振荡频率锁定。

低通滤波器只保证压控振荡中心振荡频率与载波频率锁定时所产生的相位误差电压通过,该电压与调制信号同经加法器,用以控制压控振荡器的频率,从而获得与载波频率具有同样频率稳定度的调频波。

dPMR标准调制解调器设计

dPMR标准调制解调器设计

个采 样点 , 滤 除高频 分量 , 满足 d P MR规定 的信 道 间
隔为 6 . 2 5 k H z 。滤 波后 的基带信号送 于 中频调制 。
2 . 2 解调原 理
字对讲机标准 , 信道间隔 6 . 2 5 k H z , 单工通信模式, 提
供 两种业务 : 语音业 务和数据业务 。调制方案为 4 F S K
・ 产 品 设 计 ・
【 摘 要】根据 d P MR标准, 提 出了4 F S K调制解调器的结构组成 。详细介绍 了平 方根升余弦滤波器 、 码元同步器 的
设 计 。对 码 元 同步 器 的 性 能进 行 了仿 真 , 验证可行性。
【 关键词 】d P M R; 4 F S K; 平方根升余 弦滤波器 ; 码元 同步器
了芯 片的成本 。所 以研 发具 有 自主 知识 产权 的价 格
( 2 )内插零点 : 对数据 帧的 比特流 , 先做 2— 4电
平变换 , 在 每个 符号之 间插入 1 5个零 点 , 每个码 元周
期 内有 1 6个采样点 。
低廉 、 性 能优 良的专用 芯片对我 国数字集群 通信 的发
【 中图分类号 】 T N 9 1 5
【 文献标志码】A
CHEN Ha i f e i, CHEN Xi , LI N Xi a o ka n g
De s i g n o f Mo d u l a t i o n a n d De mo d u l a t i o n Mo d u l e f o r d P M R S t a n d a r d s
【 A b s t r a c t 】B a s e d o n t h e c o m m u n i c a t i o n p r o t o c o l o f d P MR, a n a r c h i t e c t u r e f o r i m p l e m e n t i n g t h e m o d u l a t i o n a n d d e m o d u l a —

模电AM调制解调器

模电AM调制解调器

目录1.PROTEUS简介 (1)1.1模块介绍 (1)1.2特点功能 (3)2.理论分析 (4)2.1振幅调制 (4)2.2振幅解调 (5)3.各部分工作原理 (7)3.1调制电路 (7)3.2包络检波电路 (9)3.3调制解调总原理图 (10)4.原理图绘制与仿真设置 (11)4.1绘制电路原理图 (11)4.2模拟仿真设置 (13)5.仿真及结果分析 (13)5.1电路仿真 (13)5.2结果分析 (15)6.心得体会 ................................. 错误!未定义书签。

7.参考文献 ................................. 错误!未定义书签。

附:本科生课程设计成绩评定表................. 错误!未定义书签。

1.Proteus简介Proteus软件是英国Labcenter electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。

它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年即将增加Cortex 和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

使用Proteus 软件进行单片机系统仿真设计, 是虚拟仿真技术和计算机多媒体技术相结合的综合运用,有利于培养学生的电路设计能力及仿真软件的操作能力;在单片机课程设计和全国大学生电子设计竞赛中,用Proteus 开发环境对学生进行培训,在不需要硬件投入的条件下,对单片机的学习比单纯学习书本知识更容易接受,更容易提高。

高速铁路通信信号的调制解调器设计与优化

高速铁路通信信号的调制解调器设计与优化

高速铁路通信信号的调制解调器设计与优化一、引言高速铁路通信信号的调制解调器是现代铁路通信系统中不可或缺的重要组成部分。

它承担着将数字信号转换为模拟信号,并实现数据传输的关键任务。

对于高速铁路来说,建立高效可靠的通信系统是确保运行安全和提高运行效率的关键所在。

本文将讨论调制解调器的设计原理以及优化方法。

二、调制解调器的基本原理调制解调器的基本原理是将数字信号通过调制的方式转换为模拟信号进行传输,并在接收端使用解调的方式将模拟信号转换为数字信号。

调制过程将数字信号与载波信号相结合,而解调过程则是将载波信号分离出来,恢复原始的数字信号。

1. 调制原理常用的调制技术有幅度调制(AM)、频率调制(FM)和相位调制(PM)。

对于高速铁路通信系统,为了满足大容量数据传输的需求,一般采用相位调制技术。

相位调制技术通过改变载波信号的相位来表示数字信号的不同状态。

常见的相位调制方式有二进制相移键控(BPSK)、四进制相移键控(QPSK)和八进制相移键控(8PSK)等。

2. 解调原理解调过程是调制的逆过程,它将调制后的信号分析为不同的相位状态,并将其转换为数字信号。

解调的关键是通过正确的相位解调算法来还原数字信号。

常用的解调技术有最大似然估计(MLE)和决策反馈等。

在高速铁路通信系统中,为了保证解调的准确性和可靠性,需要采用信号重构、滤波和抗干扰等技术来提升解调性能。

三、调制解调器的优化方法为了提高高速铁路通信系统的传输速率、可靠性和抗干扰能力,对调制解调器进行优化是非常重要的。

以下是一些常见的调制解调器优化方法:1. 信道均衡高速铁路通信系统中,信号传输经常会受到多径效应、时延扩展和脉冲失真等问题的影响。

为了提高信号传输的稳定性和可靠性,可以在接收端使用均衡滤波器来补偿信道的失真效应,从而降低误码率,提高数据传输的可靠性。

2. 抗干扰技术高速铁路通信系统的运行环境复杂,容易受到电磁干扰的影响。

为了提高调制解调器的抗干扰能力,可以采用差分编码、码间差分调制以及前向纠错码等技术来提高信号对干扰的容忍度。

(精简版)通信电子线路课程设计--简易SSB设计

(精简版)通信电子线路课程设计--简易SSB设计

高频电子线路课程设计学校:海南大学学院:信息学院指导老师:专业:电子信息工程设计者:日期:2009年4月18日简易振幅调制解调器的设计摘要:在当今时代,电子科技已经十分发达,而通信和广播等领域也随之高速发展。

在模拟调制系统的有效性从优至劣排列为SSB、VSB、AM(DSB)、FM;可靠性从优至劣排列为FM、SSB(DSB)、AM,因此我们选择制作SSB。

有时为了提高通信质量和处理信号方便,需要在将语音、图象等有用信息经过调幅后再发送出去,这就无疑需要一种振幅调制电路来实现,该电路的载波信号和调制信号经乘法器后,将调制信号搬移到了高频处,输出抑制载波的双边带调幅波,再经过低通滤波器,即可产生单边带调幅波;然后将已调信号和载波信号经乘法器后,则已调信号搬移到了低频和更高频处,再经过低通滤波器,即可恢复出调制信号。

此电路的设计思路十分清晰,原理较为易懂,结构简单明了,使用起来方便、稳定且实用价值较高。

关键词:高频;载波;调幅;调制信号。

一、概述1、设计任务要求设计一个简易的振幅调制解调器,该电路的载波信号和调制信号经乘法器后,将调制信号搬移到了高频处,输出抑制载波的双边带调幅波,再经过低通滤波器,即可产生单边带调幅波;然后将已调信号和载波信号经乘法器后,则已调信号搬移到了低频和更高频处,再经过低通滤波器,即可恢复出调制信号。

2、技术指标①振幅调制的载波部分采用高频信号发生器输出幅值为7mV,频率为20KHz的正弦波;②振幅调制器的设计采用乘法器产生抑制载波的双边带调幅波;③低频信号可以利用已有的信号发生器产生,输出2KHz的正弦波信号,幅值根据实际需要自行确定。

3、理论意义本课题其理论意义十分广泛且重要,涉及方面广,而且对电路基础、模拟电子线路、通信电子线路中的一些基础知识要求较高,对以往学过的知识是一次全面的复习。

同时也将理论知识应用到设与计与实践中。

二、方案分析1、整体方案分析(1)、本课题的调制电路原理框图(图1)如下:图1 原理框图载波由高频信号源直接产生即可,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波,工作原理如图2。

基于FPGA的QAM OFDM调制解调器设计与实现

基于FPGA的QAM OFDM调制解调器设计与实现

基于FPGA的QAM OFDM调制解调器设计与实现随着通信技术的不断发展,QAM(Quadrature Amplitude Modulation)OFDM(Orthogonal Frequency Division Multiplexing)调制解调器在无线通信领域中扮演着重要的角色。

本文将介绍一种基于FPGA的QAM OFDM调制解调器的设计与实现。

通过该调制解调器,可以实现高效的数据传输和频谱利用率。

下面将分为几个部分来详细讲解。

一、QAM OFDM调制解调器的原理QAM OFDM调制解调器是一种将QAM调制与OFDM技术相结合的通信系统。

QAM调制是一种多级振幅调制技术,能够通过改变振幅和相位来传输多个比特。

OFDM技术则是一种将高速数据流分成多个低速数据流进行传输的技术,通过正交子载波之间的无干扰传输,提高了信号的可靠性和抗干扰能力。

二、QAM OFDM调制解调器的设计与实现1. 硬件设计QAM OFDM调制解调器的硬件设计主要包括前端基带处理模块、调制解调模块和射频模块。

前端基带处理模块负责对输入信号进行滤波、采样和量化处理;调制解调模块实现QAM调制和OFDM调制解调功能;射频模块负责信号的射频前端处理和发射接收功能。

2. 软件设计QAM OFDM调制解调器的软件设计主要包括算法设计和FPGA编程。

算法设计涉及到QAM调制算法和OFDM调制解调算法的设计与优化;FPGA编程则是将算法实现在FPGA芯片上,包括时钟控制、逻辑电路设计和I/O接口设计等。

三、QAM OFDM调制解调器的性能优化为了提高QAM OFDM调制解调器的性能,可以采用以下几种优化措施:1. 信道估计和均衡:通过估计信道的频率响应和时延等参数,对接收到的信号进行均衡处理,提高信号的抗噪声性能和传输质量。

2. 错误控制编码:采用前向纠错编码技术,通过添加冗余信息来检测和纠正传输中的错误,提高信号的可靠性和抗干扰能力。

基于FPGA的BPSK调制解调器设计与实现

基于FPGA的BPSK调制解调器设计与实现

基于FPGA的BPSK调制解调器设计与实现随着通信技术的不断发展,调制解调器在无线通信系统中扮演着重要角色。

本文将探讨基于FPGA的二进制相移键控(BPSK)调制解调器的设计与实现。

BPSK调制技术是一种数字调制技术,常用于低速率无线通信系统,在诸多应用中被广泛采用。

一、调制解调器设计原理1. BPSK调制原理BPSK调制是一种基于相移调制的调制技术,其原理是将数字比特流与载波信号相位相互关联。

对于二进制输入信号,0表示正相位,1表示负相位。

因此,BPSK调制技术将数字信号转换为载波信号的相位,实现信号的调制。

2. BPSK解调原理BPSK解调过程是调制的逆过程。

通过比较解调器接收到的信号相位与参考相位,可以恢复出原始的数字信号。

解调原理可以通过相位差检测、锁相环等技术实现。

二、FPGA在BPSK调制解调器中的应用FPGA是一种可编程逻辑器件,具有并行处理能力和灵活的硬件资源配置。

在BPSK调制解调器设计中,FPGA可以承担信号处理、调制解调等任务,提高系统性能和灵活性。

1. FPGA的优势FPGA具有高度的并行性和灵活性,可以快速实现信号处理算法。

通过灵活配置硬件资源,可以满足不同调制解调算法的需求。

此外,FPGA还具有低功耗、低延迟和容错性强等优势。

2. FPGA的设计流程FPGA的设计流程包括系统建模、算法设计、逻辑设计、综合与布局布线、仿真验证等步骤。

在BPSK调制解调器设计中,首先需要将系统和算法进行建模,然后通过逻辑设计实现相应硬件电路,最后进行综合布局布线和仿真验证。

三、基于FPGA的BPSK调制解调器设计实现步骤1. 系统建模与算法设计根据BPSK调制解调器的原理,将系统进行建模,并设计相应的算法来实现调制和解调过程。

这一步骤需要考虑信号的采样率、滤波器设计、相位恢复等关键问题。

2. 逻辑设计与实现将系统建模和算法设计转化为相应的硬件电路。

利用FPGA的硬件资源进行逻辑设计,并将信号处理算法转化为硬件描述语言(如VHDL或Verilog)进行实现。

HART调制解调器SYM20C15应用设计

HART调制解调器SYM20C15应用设计

HART调制解调器SYM20C15应用设计HART通信协议使用频移键控FSK(Frequency Shift Keying)技术,将数字信号变换为音频信号,叠加到现场变送器和控制室之间的4~20mA电流环上来作数字通信。

协议规定的信号频率(1200Hz代表1,2200Hz代表0)和传输速率(1200bit/s)符合美国Bell 202标准。

这些音频正弦波的平均值为零,所以在现存的模拟信号中不增加直流成分,因此,在2根线上可以同时传送互不影响的模拟和数字信号。

正是由于HART协议的这种优点,使它成为工业现场广泛应用的、事实上的工业标准。

2 SYM20C15引脚说明和特点(2)SYM20C15特点*符合HART协议物理层规范;*单片CMOS、低功耗、FSK调制解调器;*符合Bell 2020标准,传输率1200bit/s,半双工;*单电源3.3~5V供电;*需外部提供460.8kHz时钟;SYM20C15是专为实现HART协议而设计的低功耗调制解调器。

它包含几乎怕有在4~20mA模拟现场仪表上叠加HART通信协议所需的电路,只需外接少量元件即可构成HART协议的完整应用。

SYM20C15包含4个主要模块:时钟模块、调制器模块、解调器模块、载波检测模块。

(1)调制过程当INRTS引脚为低电平时,调制器工作,解调器关闭。

调制器模块接收由ITXD引脚输入的不归零制(NRZ)数字信号,生成FSK调制信号由OTXA引脚输出。

图1为调制过程波形。

ITXD引脚为高电平时,OTXA引脚输出1200Hz的梯形波;ITXD引脚为低电平时,OTXA引脚输出2200Hz的梯形波。

OTXA输出通常需要和放大器或缓冲器进行交流耦合,输出电压幅度由IAREF引脚上的参考电压决定,其波形示意如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.35V(峰峰值)。调制器接收振幅达到1.35V(峰峰值)的差分I和Q基带信
号,带宽为15MHz。调制器同时产生一个频率范围为35~80MHz的差分 IF信号。当ENABLE(使能)引脚端为低电平时,芯片电流消耗小于
1μA
为了尽量减少寄生反馈,MAX2450的内部振荡器的频率通过外接 调谐元件被设置为中频频率的两倍。振荡器和相位移相器产生差分的信 号具有较低的振幅和相位不平衡。
第4章 调制解调器电路设计
2.MAX2450的引脚功能与内部结构
MAX2450采用QSOP-20的封装形式。其引脚封装形式 和内部结构框图分别如图4.2.1和图4.2.2所示,引脚功能如表 4.2.1所示。
第4章 调制解调器电路设计
图4.2.1 MAX2450的引脚封装形式
第4章 调制解调器电路设计
第4章 调制解调器电路设计
2
本地振荡器是由一个发射极耦合的差分对组成的。一个 外接LC谐振回路决定其振荡频率。谐振回路的Q值影响振荡 器的相位噪声。为了便于产生正交信号,振荡频率应该是中 频频率的两倍。振荡器可以被一个外接的信号源驱动。这个 信号源需要交流耦合到TANK/TANK,并且必须提供 200mV(峰峰值)的电平。TANK和TANK之间需要一个2.2μH 的扼流圈电感。TANK/TANK的差分输入电阻为10kΩ。对 于单端驱动,从TANK到GND连接一个交流旁路电容 (1000pF),并且交流耦合TANK到信号源上。
图4.2.2 MAX2450的内部结构框图
第4章 调制解调器电路设计 表4.2.1
引脚 1 2 3,19 4 5 6 7 8 9 10 符号 IF_OUT IF _ OUT 功能 调制器中频信号输出 调制器中频信号反向输出 接地端 I基带信号输入 反相I 基带信号输入 Q基带信号输入 反相Q 基带信号输入 使能控制端,高电平有效 本地振荡器 8分频输出 本地振荡器电源电压
第4章 调制解调器电路设计
引脚端5(BGOUT):能隙基准电压输出端。当电源电
压和工作温度变化时,这个电压输出能够保持恒定,也可以 作为基准电压用于其他外部电路。该引脚端的输出电流不能 够超过1mA。该引脚端应采用一个0.1μF 引脚端6(IIFOUT):该引脚端在解调器里不使用,但 是为了恰当地偏置I混频器,必须被连接到VCC 引脚端7(QIFOUT):该引脚端在解调器里不使用, 但是为了恰当地偏置Q混频器,必须被连接到VCC。
第4章 调制解调器电路设计
4.1 AD630调制解调器电路
1.AD630的主要技术特性
AD630 (1)AD630的结构使它能够理想地对信号进行处理,
如平衡调制器和解调器、锁定放大、相位检测和正交相乘。
(2)在需要确定固定增益、转换增益、多路技术、集 成转换功能和高速精确放大的应用时,AD630所具有的特性 使它成为最好的选择之一。
第4章 调制解调器电路设计
3
正交相位发生器使用两个锁存的2分频器对本地振荡频 率进行分频,同时产生两个精确的正交信号,内部的限幅放 大器形成近似于方波的信号去驱动吉尔伯特混频器。同相信 号(本地振荡频率的一半)被前置分频器4 4 PRE_OUT是前置分频器的输出端,可驱动一个10kΩ和 6pF的负载,输出信号的幅度为0.35V(峰峰值)。它能够
第4章 调制解调器电路设计
2.AD630的引脚功能与内部结构
AD630采用的封装形式有SOIC-20、PDIP-20、CLCC -20和CERDIP-20,其引脚封装形式和内部结构框图分别 如图4.1.1和图4.1.2所示,引脚功能如表4.1.1所示。
第4章 调制解调器电路设计
图4.1.1 AD630 (a)SOIC-20、PDIP-20、CERDIP-20封装;(b)CLCC-20封装
第4章 调制解调器电路设计
图4.1.3 AD630构成的增益为1的平衡型调制器电路
第4章 调制解调器电路设计
3.AD630的应用电路设计
AD630常用来组成双平衡调制器电路,如图4.1.3和图 4.1.4所示,引脚14内部的电阻10kΩ为反馈电阻,引脚12的 内部电容为补偿电容,引脚3、4和引脚5、6外接的电位器用 于调节零点漂移。AD630构成的增益为2的平衡型调制器电 路的采样波形如图4.1.5所示。
第4章 调制解调器电路设计
5
调制器可接收幅度为1.35V(峰峰值)、频率为15MHz的差分I和 Q基带信号,并且转换它们为更高频率的IF信号。这些输入端被
内部偏置在1.5V附近,采用外部电容耦合信号进入高阻抗端(差
动输入阻抗接近44kΩ),以改善载波抑制。对于单端驱动,从 I_IN和Q_IN到GND连接一个交流旁路电容(0.1μF
第4章 调制解调器电路设计
图4.1.4 AD630构成的增益为2的平衡型调制器电路
第4章 调制解调器电路设计
图4.1.5 AD630构成的增益为2的平衡型调制器电路的采样波形
第4章 调制解调器电路设计
4.2
MAX2450正交调制解调器电路
1.MAX2450的主要技术特性 MAX2450的工作电压为+3V,电流消耗为5.9mA。解调器能够接收 35~80MHz频率范围内的中频信号,具有51dB电压转换增益,并且能够 将IF信号解调为I/Q基带信号。中频输入端输入电阻为400Ω,能够与外 接的中频滤波器相匹配。基带输出信号采用完全差分形式,信号幅度为
第4章 调制解调器电路设计
每一个引脚的这个输入阻抗都是通过由1260Ω的电阻器 连接到VCC与晶体管基极并联所决定的。引脚端1和3以及引 脚端2和4,4个输入引脚端都有一个内置的直流偏置。因此, 这些输入端(引脚端1到引脚端4)都应该被隔直流。隔直电 容器的电容值由IF频率所决定。当采用单端驱动时,两组输 入端(引脚端1和3以及引脚端2和4)串联的隔直电容器相对 一个630Ω 引脚端2(IINPUTB):引脚端1互补输入端。功能与引 脚端1相同。 引脚端3(QINPUTA):Q缓冲放大器输入端。功能与 引脚端1相同。 引脚端4(QINPUTB):引脚端3互补输入端。功能与 引脚端3相同。
第4章 调制解调器电路设计
图4.1.2 AD630的内部结构框图
第4章 调制解调器电路设计
表4.1.1 AD630的引脚功能
引脚 1 2, 20 3, 4 5, 6 7 8 9, 10 11 12 13 14 15 16 17 18,19 符号 RINA CH A+ ,CH ADIFF OFF ADJ,DIFF OFF ADJ CM OFF ADJ,CM OFF ADJ B/ A -Vs SEL B ,SEL A +Vs COMP VOUT RB RF RA RINB CH B+ ,CH B功能 放大器 A 的同相反馈端,与 RA 一起控制信道 A 的增益。 信道 A 的差分输入端 DIFF OFF 调节端 CM OFF 调节端 信道状态选择输出端。输出高电平表示选中信道 B;输出低 电平表示选中信道 A 电源电压负端 信道 A,B 选择控制端。SEL B 为高电平选中信道 B ;SEL A 为高电平选中信道 A 电源电压正端 比较器输出端 输出端。 OP 放大器的输出 信道 B 的增益控制端。与 RINB 一起控制信道 B 的增益 输出增益控制端。通过一个 10KΩ 的电阻与输出端相连 信道 A 的增益控制端。与 RINA 一起控制信道 A 的增益 放大器 B 的同相反馈端,与 RB 一起控制信道 B 的增益 信道 B 的差分输入端
6
在正常工作中,使能控制端电压必须高于VCC-0.4V,使能控 制端的输入信号为低电平状态,可以关闭主偏置电路,并且减少
电路的电流消耗到2μA。主偏置部分包含了一个能隙基准电压发
生器和一个PTAT(与绝对温度成比例)电流发生器。
第4章 调制解调器电路设计
3.MAX2450的应用电路设计
MAX2450的基本应用电路形式如图4.2.3所示。振荡器 的谐振电路如图4.2.4所示,其中包含一个电感、两个电容和 一个双变容二极管。振荡器的频率范围是130~160MHz。 电感直接连接在振荡器的TANK端,在启动期间确保振荡器 不被锁住,可进入稳定状态。两个33pF的电容增加谐振回 路的Q值,减少VCO的增益。
由于RF2713可作为解调器,也可作为调制器,因此其

第4章 调制解调器电路设计
图4.3.1
RF2713的引脚封装形式和内部结构框图
第4章 调制解调器电路设计
(1
引脚端1(IINPUTA):当RF2713被配置作为一个正交 解调器时,两个混频器被IF驱动。无论是单端还是差分驱动, A输入(引脚端1和3)应该被互相连接。同样,两个B输入(引 脚端2和4)也应该被互相连接。这样就保证了IF将以同样的 高度和相位到达每一个混频器,产生最佳的I/Q输出高度 和正交平衡。注意,并联输入的连接改变了输入阻抗(参见 Gilbertcell混频器等效电路)。输入阻抗变为630Ω,但在平 衡的结构中,输入阻抗会依然保持为1260Ω单端。对于稳定 的输入,混频器采用Gilbert蜂窝设计。
第4章 调制解调器电路设计
AD630的开环增益为110dB,闭环增益匹配为0.1%;信
道输入电压范围为(-VS+4V)~(+VS-1V),输入偏置电 压为100~500μV,信道失真为100dB(在10kHz时);比较器 输入电压范围为(-VS+3V)~(+VS-1.5V),响应时间(5~+5mV)为200ns;增益带宽为2MHz,上升速度为45V/μs; 电源电压范围为5~16.5V,电源电流为5mA;输出电压 (RL=2kΩ)为10V,输出电流为25mA。
第4章 调制解调器电路设计
图4.2.3 MAX2450的基本应用电路图
第4章 调制解调器电路设计
图4.2.4 振荡器的谐振电路图
第4章 调制解调器电路设计
相关文档
最新文档