第六章航天器主动姿态稳定系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2
喷气姿态稳定系统的非线性控制
研究非线性控制系统常用的分析方法是相平面图解 法和描述函数法。相平面是由姿态角和角速度所组成的 平面,相平面图解法就是研 究系统在相平面中的运动轨迹 。这种方法对于研究较简单的 低阶非线性系统具有简单和直
观的优点。在相平面上可以研
究过渡过程时间、超调量、极 限环等主要姿态控制性能指标。
M c M cxi M cy j M cz k
Βιβλιοθήκη Baidu(6.2)
若本体坐标系为主轴坐标系,则航天器在控制力矩 的作用下,它的姿态动力学方程式为
I xx I z I y yz M cx M dx I y y I x I z xz M cy M dy I zz I y I x yx M cz M dz
表示了这些相轨迹族。
2.基于位置和速度反馈的死区继电控制律 进一步地,在反馈控制系统中引人角速度反馈,并考 虑推力器力或力矩输出特性中的死区特性,即在图 6.4 所示 中令 u0 uc 0 ,此时 u0 uc 对应的位置(角度)偏差为 1 , 如图 6.7 所示。相应的采用角度和角速度敏感器的继电型控 制系统结构框图见图 6.8 。这里姿态角度敏感器可以采用红 外地平仪,角速度敏感器可以是速率陀螺。控制规律如下:
(6.3)
式中, M d M dxi M dy j M dz k 为作用于航天器的其 他环境干扰力矩。
喷嘴机构的简单工作原理如图6.3所示。
喷气阀门在正比于姿态角及其的驱动信号u作用下, 若不计衔铁运动的时间,就只有全开或全关的两种状态, 所以喷射推力F不是零值就是某一常值。
喷嘴原理
I y u M dy
M 0 u M 0 该式说明只要姿态有偏差 0
,喷嘴立即产生恒定的推力力矩M,
(6.7a)
(6.7b)
如图6.5所示。
暂时令 M dy 0 ,把式(6.7)代入式(6.6b)得 M def (6.8) A Iy 式中 A M I y ,式(6.8)的解为 0 At (6.9a) (6.9b)
第六章
6.1 6.2 6.3 6.4 6.5 6.6 6.7
航天器主动姿态稳定系统
喷气推力姿态稳定原理 喷气姿态稳定系统的非线性控制律 航天器的喷气推力器系统 飞轮姿态稳定原理 零动量反作用轮三轴姿态稳定系统 偏置动置轮三轴姿态稳定系统 控制力矩陀螺三轴姿态稳定系统
第六章
航天器主动姿态稳定系统
为了保证航天器在轨道坐标系中相对于平衡点的稳 定性,除了采用上一章叙述的各种被动稳定方案以外, 也可以利用控制系统实现对航天器姿态的主动稳定控制。 与被动稳定方案比较,主 动姿态稳定的优点是可以 保证更高的精确度和快速 性,缺点是结构复杂化, 降低了可靠性,且增加了 能源消耗,因此适用于高 精度要求和大扰动力矩的 情形。 主动姿态稳定系统包括了喷气三轴稳定系统、以 飞轮为主的三轴稳定系统和磁力矩器轴稳定系统。
m 0
d 1 d k
02
(6.15)
2A
当 时,发生滑行现象,如图6.11中所示点 “4”以后的轨迹线状态。
d 1 当 d k 时,发生穿越现象,相轨迹如图6.12所示。
4.极限环工作方式 在没有外力矩作用在航天器上的情下,M dy 0 , 将图6.11和图6.12所示的极限环放大至如图6.13所示。
三通道具有相同的简便形式,为此下面仅以俯仰通道为例 进行讨论。
1.基于位置反馈的继电控制律 为了便于由浅入深的分析,首先将图6.4所示的推力 器推力或力矩输出特性简化为单纯的继电型特性,即 令 u u 0,则航天器俯仰通道动力学方程和基于位置 0 c (只有角度而无角速度)反馈的继电控制律可列写为
力矩由成对喷嘴产生(力偶)。
点击观看虚拟现实演示
分析图6.2得知,对装有三轴喷嘴所产生的控制力矩为
M cx 2m y vel M cy 2mz vel M cz 2mx vel
(6.1)
设由这些喷嘴产生的控制力矩矢量为 M c ,它以本体 坐标系三轴控制力矩分量表示,则有
6.3.1
推力器系统的结构
“阿波罗”登月舱的推力器系统,可完成三轴姿态 控制与三轴质心控制,同样,要求控制某些轴的姿态或 质心运动时,不要影响其他轴的姿态与质心的运动。
“阿波罗”登月舱
宇航员在月球上
系统冗余度R是指系统仍能完成控制任务,允许推 力器失效的最大数目。 系统冗余度R的值是衡量系统可靠性的重要指标。 R的值越大系统越可靠,但随着R值增大,推力器数目 也随之增加。 称用最少的推力器数目构成给定的冗余度R的结构 为最小冗余结构。特别称R=O的最小冗余结构为最小结 构。最小结构是完成控制任务所需的最少推力器数目。
(6.4b)
推力器实际上是一种继电系统,推力器的控制力矩 变化分为三档:正开、关闭、负开,具体属于哪一档取 决于航天器的姿态和控制律。这也就决定了推力器控制 系统的非线性输出和断续工作形式。 继电系统的稳定状态是极限环自振荡。在这种系统 的设计中,重要的是选择自振荡频率和振幅,即极限环 参数,使它们最佳地满足精度和能量消耗的要求。 喷气控制最适合于抵消具有常值分量的扰动力矩, 即非周期性扰动力矩,例如气动扰动力矩。这种情况正 是低轨道航天器扰动力矩所具有的特点。
3.含超前校正网络的死区迟滞继电控制律 同时考虑推力器力或力矩输出特性中的死区和迟滞 特性,即图6.4所示中,u0≠uc≠ 0。此时 uc 对应推力器 的死区角度偏差 ,u0 对应 (1 + h)1 ,这里h 为迟滞系 1 数。于是根据式(6.4),控制律可列写为
U (1 ks)(c )
1 2 0 0t At 2
0 , 0 为初始姿态角度和初始姿态角速度。 式中, 若消去式(6.9a) 和(6.9b) 中的时间变量 t,就得到相 轨迹方程,即 1 2 2 (6.10) 0 0
2A

这个式子说明:相平 面上的相轨迹是由一簇其轴 线与横轴平行的抛物线组成。 当时,相轨迹为直线,图6.6
从该理想化的极限环工作状态可知,在死区负极限 ( R )和正极限( R )之间存在一个常值角速度 R ,见 式(6.18)。尽量减小这个常值角速度有利于节省工质消耗 量。 若推力器的推力为F,相对航天器质心的力臂为l,比 冲(比推力)为 I sp ,推力器的最小脉宽为△t,则容易证 明航天器继电控制的理想平均工质消耗量为
具有死区特性的相平面运动
对于给定的理想情况,自振荡周期可以按下述方法 求得。运动方程 0 对应于自振荡循环的直线段;而 A 对应于抛物线段。 在初始条件 1 , 1 情况下对上述方程进 行积分,对于整个abcd段,有
41 = 1 t off
41 = At on 和 其中 ton 和 toff 分别是有推力与没有推力的时间。 显然,自振荡周期 t a为
2
(6.21)
(6.22)
推力器和敏感器的选择必须保证极限环参数均小于 航天器姿态控制精度要求,即 R c R c
c 和 c 分别为航天器姿态控制的角度和角速度精 式中, 度要求。
6.3
航天器的喷气推力器系统
对于大型航天器来说,由于动力学模型维数较高, 因此需要完成更高维的控制任务。 为了兼顾这几方面的要求,往往将 航天器的姿态控制与轨道控制任务 相结合,把相当数量的推力器组成 一个多推力器系统。在设计这样一 个复杂的执行机构系统结构时,如何保证推力器的数目 与分布安装位置既要达到可靠性要求,又要消耗最少的 工质或燃料是一个重要问题。同时在这种情况下,如何 通过计算机完成系统操作任务,即最佳地分配推力器的 工作和工作时间长短,以满足姿态控制或轨道控制任务, 又是另一个重要问题。
uc 是释放衔铁的信号,u0 与 uc 之差称为滞宽。
于是,按照形成推力 F 的原理,就可以获得由推力 器产生的控制力矩M。的大小,即
M u0 u M c 0 uc u uc M u0 u
(6.4a)
M sgn u sgn uu 0 Mc sgn uu 0 0
6.1
喷气推力姿态稳定原理
喷气姿态稳定系统的运行基本上根据质量排出反作
用喷气产生控制力矩的原理进行。图6.1表示一个典型的 喷气三轴姿态稳定控制系统
由于一个喷嘴只能产生一个方
向的推力,因此系统的每个通道起
码要有两个喷嘴。为了避免反作用 喷气推力对航天器的轨道运动产生 影响,一般地在同一方向都装上两 个喷嘴,如图6.2所示,此时控制
M 当 >1 , 1时 u , 0 当 1 , 1 时 (6.11) M 当 <- , 时

1
1
在一般情况下,控制系统将抑制运动受到的初始扰 动,这种扰动出现于相平面中的点 1( 0 , 0 ) ,如图 6.9所示,然后使航天器进入极限环模式(自振荡)。
对于一般的n维控制任务,由上述分析方法可以证明 以下结论:
(1)n维任务的最小结构要求推力器数目m为
m=n+1
(2)n 维任务如果要求冗余度为 R ,则最小冗余结构 的推力器数目m为
m
Fl t
2
4 I y gI sp l1
(6.20)
可见,选择小力矩、小脉宽、大比冲和大死区的推 力器能使工质消耗速度减至最小。
考虑到节省喷气系统中的燃料,采用单侧极限环工作 方式(见图6.14)是一种有效的手段。
这种单边极限环使姿态限制在以下范围内:
R R
M dy t I y R M dy 16 I y
ta ton toff
.
.
由于 t off = 41 / 1 和
.
t on = 41 / A,所以有
(6.13)
1 1 t a = 4( + ) 1 A
从相平面图6.9所示看到,极限环宽度由喷嘴推力器 不灵敏区(即死区)决定,而极限环高度由姿态角速度敏 感器(例如速率陀螺)不灵敏度决定。具有角速度和角度 反馈的继电型控制系统是稳定的,从相平面图得知,系 统是有阻尼的。阻尼大小由角速度反馈系数决定。
考虑三轴稳定航天器姿态角偏差很小的情况,此时3个通 道的姿态运动可以视作独立无耦合,且
z y x 于是航天器的欧拉动力学方程式(6.3)可简化为
I x M cx M dx
I y M cy M dy
(6.6a) (6.6b) (6.6c)
I z M cz M dz
M sgn(U ) 0
(6.14a)
U (1 h)1或 sgn(UU ) 0 (6.14b) U 1或 sgn(UU ) 0
系统框图见图6.10。图中k为微分系数,θ c为给定 的姿态角。
当θ c=0时,系统由初始条件逐渐向里收敛,最后停留在 一个稳定振荡上面,即为极限环(见图6.11)。显然该控 制系统也是稳定的,有阻尼存在,且阻尼的大小取决于 超前网络参数k的大小。过渡过程的最大角度超调发生在 点“2”处,从分析式(6.12)得知,发生在处,其大小可 以表示为
最小冗余结构可用作图法确定。以图 6.17所示的二 维控制任务为例,图6.18为各种推力器配置方案的推力 矢量图。图中的每一个矢量代表配置的一个推力器的推 力矢量或力矩矢量。
过矢量的交点作任一直线aa’,把二维控制平面分为两 半。如果每一个半平面内至少含i个推力或力矩矢量,则系 统有冗余度R=I-1。依此方法可以判定,图6.18所示中由左 至右4种推力器配置方案的冗余度分别为R=1,l,2,2。
相关文档
最新文档