矩阵等价相似合同的关系

合集下载

矩阵合同的定义

矩阵合同的定义

矩阵合同的定义篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。

若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为AB。

2、矩阵等价的充要条件:AB{同型,且人r(A)=r(B)存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。

(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A成立,则称A,B合同,记作AB该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则A BBPAPBT二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。

(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~B。

2、矩阵相似的性质:A~B,A~B,AA~BTTkk1~B(前提,A,B均可逆)1|E-A||EB|即A,B有相同的特征值(反之不成立)r(A)=r(B)tr(A)tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。

②充要条件:A~B(EA)(EB) 二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵A(1,2,,n),B(1,2,,m)1、若向量组(1,2,,m)是向量组(1,2,,n)的极大线性无关组,则有mn,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

而矩阵B与A亦不同型,虽然r(A)r(B)但不能得出AB。

2、若m=n,两向量组(1,2,,n)(1,2,,m)则有矩阵A,B同型且r(A)r(B)A~B,AB,ABr(A)r(B)AB。

3、若ABr(A)r(B)两向量组秩相同,两向量组等价,即有AB(1,2,,n)(1,2,,n)综上所述:矩阵等价与向量等价不可互推。

矩阵的三种等价关系

矩阵的三种等价关系

矩阵的三种等价关系摘要本文主要介绍矩阵的三种等价关系的定义及性质、各关系之间的不变量即等价不变量、合同不变量、相似不变量以及它们之间的联系。

同时,也将λ-矩阵的等价关系与矩阵的相似关系加以联系,这样增加了矩阵相似方法的判断也加强了知识的衔接。

关键字矩阵;矩阵的等价关系;矩阵的合同关系;矩阵的相似关系A matrix of three equivalence relationsAbstractThis paper mainly introduces three kinds of equivalent relation matrix and the three equivalence relations with the nature of the property, the connection between them and the three kinds of relations that equivalent invariants, contract invariant, similar invariants. At the same time, will also be equivalent relation of matrix and matrix similarity relation to contact, which increases the matrix similarity method judgment also strengthened the convergence of knowledge.Key wordsmatrix; the equivalence relation of matrix ;the contract relation of matrix ;the similar relation of matrix.0 引言在线性方程组的讨论中我们知道,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这就使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要的研究对象.我们的目的是讨论矩阵的一些基本性质.另外,新课程标准把矩阵作为高中的一个选修内容,进入教学,是希望通过中学的选修课,使得一部分对于数学有兴趣的学生,能够尽早的了解高等数学中非常重要的一些知识.这也凸显出矩阵在中学数学中的重要性.为了满足中学生对矩阵知识的渴望和矩阵初学者对矩阵基本性质的需求,我们研究了矩阵的三种基本关系即等价关系、合同关系、相似关系.首先,我们给出矩阵三种等价关系的定义及相关知识;其次,我们探究了矩阵三种等价关系所具有的性质、它们之间的联系以及满足这些关系所保持的量的不变性.同时,我们也提出了矩阵相似的几种等价定义,这可以使初学者更好的判断矩阵的相似性.1 矩阵的三种等价关系的定义1.1 矩阵的三种等价关系定义1.1.1 设矩阵A 、B 是数域P 上的矩阵,矩阵A 与B 称为等价的,如果B 可以由A 经过一系列的初等变换得到。

矩阵相似与合同

矩阵相似与合同

矩阵相似与合同1. 矩阵相似矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵之间的一种关系。

在讨论矩阵相似之前,我们先来回顾一下什么是矩阵。

1.1 矩阵的定义矩阵是由m行n列的数排成的一个矩形阵列,记作A=(a ij)m×n。

其中,a ij表示矩阵A中第i行第j列的元素。

1.2 矩阵相似的定义给定两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得B=P−1AP,则称矩阵A和B相似。

矩阵相似关系具有以下性质:•自反性:任意矩阵A都与自身相似,即A相似于A。

•对称性:如果矩阵A与矩阵B相似,则矩阵B与矩阵A相似。

•传递性:如果矩阵A与矩阵B相似,矩阵B与矩阵C相似,则矩阵A与矩阵C相似。

矩阵相似关系可以看作是一种矩阵之间的等价关系,它保持了矩阵之间的某些性质不变。

2. 矩阵合同矩阵合同是另一种描述矩阵之间关系的概念。

与矩阵相似类似,矩阵合同也是通过一个可逆矩阵来表示两个矩阵之间的关系。

2.1 矩阵合同的定义给定两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得B=P T AP,则称矩阵A和B合同。

矩阵合同关系具有以下性质:•自反性:任意矩阵A都与自身合同,即A合同于A。

•对称性:如果矩阵A与矩阵B合同,则矩阵B与矩阵A合同。

•传递性:如果矩阵A与矩阵B合同,矩阵B与矩阵C合同,则矩阵A与矩阵C合同。

矩阵合同关系也可以看作是一种矩阵之间的等价关系,它同样保持了矩阵之间的某些性质不变。

3. 矩阵相似与矩阵合同的关系矩阵相似和矩阵合同都是描述矩阵之间关系的概念,它们之间的区别在于变换矩阵的不同。

对于矩阵相似,变换矩阵是可逆矩阵P,而对于矩阵合同,变换矩阵是可逆矩阵P的转置P T。

矩阵相似和矩阵合同之间的关系可以通过以下定理来描述:定理 1:设A为n阶矩阵,A与对角矩阵D相似,即存在可逆矩阵P,使得D=P−1AP。

则存在正交矩阵Q,使得D=Q T AQ,其中Q是P的标准正交化矩阵。

定理 2:设A为n阶矩阵,A与对称矩阵S合同,即存在可逆矩阵P,使得S=P T AP。

矩阵合同相似

矩阵合同相似

矩阵的等价、相似与合同1、相似和合同都可以得到等价2、对正交矩阵而言,合同与相似等价。

3、相似矩阵的秩也是相等的,相似矩阵的定义就是:存在一个n阶可逆矩阵p使p-1ap====b就说a,b相似相互合同的矩阵的秩也相同。

矩阵间合同的定义就是:存在一个n阶可逆矩阵c使:cTac==b就主a,b合同相似和合同都可以得到等价14、1. 矩阵的等价:经过六个初等变换的矩阵之间具有等价关系,主要是指型和秩相同。

2。

矩阵的相似:主要指存在可逆矩阵,能够变换它为对角矩阵。

15、相似,等价,合同均为矩阵与矩阵之间关系。

设有矩阵A和B如果说A与B等价则仅须A,B形状相同,秩相等。

A,B相似则指存在可逆阵c,使得A=CBC(-1),如智轩老师所暗含得,相似关系主要应用于给定一个(相似于对角)矩阵,让你求辅助矩阵使其对角化。

A,B合同指存在可逆阵p,使得A=p'Bp细心得学生可以看出,等价是合同或者相似得必要条件。

注意:凡是出现“关系”字眼得地方,均要涉及2或者2个以上得对象,而关系自然就是这些对象之间的联系。

相似关系,等价关系,合同关系都是矩阵之间的基本联系。

所以,一定要弄清2矩阵间有这样的关系,需要符合什么样的条件。

事实上,正是一步步检验这些条件的过程被命制成为5花8门的题型。

16、4、chen8281矩阵等价、对应矩阵列相两组等价、矩阵相似、矩阵合同(都对应于n阶方阵)1.矩阵A、B等价存在可逆矩阵P、Q,存在A=PBQ,秩相同。

2.对应矩阵A、B列向量两组等价存在可逆矩阵P,使AP=B,秩相同。

3.矩阵A.B相似,存在可逆矩阵P,使B=P`(-1)AP ,A、B秩相同,有相同的特征值,还有之间的特征向量关系。

4.矩阵AB合同,存在可逆Q,B=Q`AQ,A、B秩相同。

可以得出1.2.3.4 之间都存在秩相同的关系,但是大家可以考虑他们之间的相互关系是否是等价。

1.2之间、2.3之间的相互推导,是否同。

本人认为是不等价的。

矩阵的等价,规定合同,相似的联系与区别

矩阵的等价,规定合同,相似的联系与区别
定理9如果 与 都是 阶实对称矩阵,且有相同的特征根.则 与 既相似又合同.
证明:设 与 的特征根均为 因为 与 阶实对称矩阵,则一定存在一个 阶正交矩阵Q使得 同理,一定能找到一个正交矩阵 使得 从而有
将上式两边左乘 和右乘 ,得
由于 , ,
有 ,所以, 是正交矩阵,由定理8知 与 相似.
定理10若 阶矩阵 与 中只要有一个正交矩阵,则 与 相似且合同.
反过来,对于矩阵 , 等价,但是 与 并不相似,即等价矩阵未必相似.
定理6对于 阶方阵 ,若存在 阶可逆矩阵 使 ,(即 与 等价),且 ( 为 阶单位矩阵),则 与 相似.
证明:设对于 阶方阵 与 ,若存在 阶可逆矩阵 ,使 ,即 与 等价.又知 ,若记 ,那么 ,也即 ,则矩阵 也相似.
定理7合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.
(1) 矩阵 与 不仅为同型矩阵,而且是方阵.
(2) 存在数域 上的 阶矩阵 ,
性质2
(1)反身性:任意矩阵 都与自身合同.
(2)对称性:如果 与 合同,那么 也与 合同.
(3)传递性:如果 与 合同, 又与 合同,那么 与 合同.
因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.
(7) 相似矩阵有相同的秩,而且,如果 为满秩矩阵,那么 .
即满秩矩阵如果相似,那么它们的逆矩阵也相似.
(8)相似的矩阵有相同的行列式;
因为如果 ,则有:
(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;
设 ,若 可逆,则 从而 可逆.且 与 相似.
若 不可逆,则 不可逆,即 也不可逆.
证明:不妨设 是正交矩阵,则 可逆,取 ,有 ,则 与 相似,又知 是正交阵,所以 与 既相似又合同.

等价、相似、合同的关系

等价、相似、合同的关系

矩阵等价、相似与合同的区别与联系等价、相似与合同是矩阵的三大变换.应了解其定义,关系及有关性険.1)定义及相互之间的关系设川,舟是曲X并矩璋.若花 S阶可逆矩阵卩和用阶可逆矩阵0,使得PAQ=B t则称£与j?等价,记为A=B■设〃是科谕方阵,若存在用阶可龙矩阵尸,使^P-i AP = Bf则称Z 与苏祸似,记为A -肌若存在闯阶可湮矩阵P使猱戸AP= E贝U称』与舟合同-记为4R ;若存总艸阶正交矩阵0 使得Q l AQ= Q^AQ= B则称M与E正交相f以.由定文可知其关系*如下图所示*2)性质(1)等价、相似与合同都具有反身性、对称性及传递性,即A - At At A a A (反身性);若A", A~ R,则丹=』,E- A A{对称性);若』卷R,若A", K〜C则貝〜C;若, B^C则/ = C(传递性)•(2) A = E O A 与耳司型>且rank A = rank S・若rank 4 = F *则(£A= r,称旨者为矩阵』的等价标准形O O⑶rank A= rank B ? det A - det B J A与E的释3E 澄7冃司“注听给閔都是必要条件,即由rank A= rank B?或det A = dctB ,或J4与必的特征值相同不能筆知』〜J!.但若/与J?都可对兔址,旦特花值相同,则4- J?.(3)用正交相似变换可将/化简成Q J AQ=Q-l AQ^对实对称矩阵/的这三种变换,一个比一个特殊,一个比一个限毛:更多,各有其优诀点•总的来说则为:限制越少则化简后的形式越简单,但变换后丢掉原矩阵的性质就越多.如(1)的形式量简单.但变换后只保留了秩不变:(2)的形式虽然比(1)稍复杂.叵变换后保留秩不变,对称性不变,正、负惯性指数不变;(3)的形式又更复杂一点,但变换后保留秩不变,对称性不变,正、负惯性指数不变,特征值不变.。

2019年矩阵的合同与相似-优秀word范文 (18页)

2019年矩阵的合同与相似-优秀word范文 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==矩阵的合同与相似篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别201X09113 李娟娟一、基本概念与性质(一)等价:1、概念。

若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为A?B。

2、矩阵等价的充要条件:A?B?{A.B同型,且人r(A)=r(B) 存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。

(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A?BPTAP=B成立,则称A,B合同,记作A?B该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则A?B?二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。

(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得B=P-1AP成立,则称矩阵A,B相似,记为A~B。

2、矩阵相似的性质:AT~BT,Ak~Bk,A-1~B-1(前提,A,B均可逆)|λE-A|=|λE-B|即A,B有相同的特征值(反之不成立)A~B?r(A)=r(B)tr(A)=tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。

②充要条件:A~B?(λE-A)?(λE-B)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵A=(λ1,λ2, ,λn),B=(β1,β2, ,βm)1、若向量组(β1,β2, ,βm)是向量组(λ1,λ2, ,λn)的极大线性无关组,则有m≤n,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

合同矩阵和相似矩阵[工作范文]

合同矩阵和相似矩阵[工作范文]

合同矩阵和相似矩阵篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别20XX09113 李娟娟一、基本概念与性质(一)等价:1、概念。

若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为AB。

2、矩阵等价的充要条件:AB{同型,且人r(A)=r(B) 存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。

(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得ABPTAPB成立,则称A,B合同,记作AB该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则AB二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。

(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~B。

2、矩阵相似的性质:AT~BT,Ak~Bk,A1~B1(前提,A,B均可逆)|E-A||EB|即A,B有相同的特征值(反之不成立)A~Br(A)=r(B)tr(A)tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。

②充要条件:A~B(EA)(EB)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 A(1,2,,n),B(1,2,,m)1、若向量组(1,2,,m)是向量组(1,2,,n)的极大线性无关组,则有mn,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

而矩阵B与A亦不同型,虽然r(A)r(B)但不能得出AB。

2、若m=n,两向量组(1,2,,n)(1,2,,m)则有矩阵A,B同型且r(A)r(B)A~B,AB,ABr(A)r(B)AB。

3、若ABr(A)r(B)两向量组秩相同,两向量组等价,即有AB(1,2,,n)(1,2,,n)综上所述:矩阵等价与向量等价不可互推。

矩阵合同的定义

矩阵合同的定义

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载矩阵合同的定义甲方:___________________乙方:___________________日期:___________________篇一:矩阵的合同,等价与相似的联系与区另U矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。

若矩阵A可以经过有限次初等变换化为B,则称矩阵A 与B等价,记为ABO2、矩阵等价的充要条件:AB(同型,且人r(A)=r(B)存在可逆矩阵P和Q,使得PAQ=E^立3、向虽组等价,两向虽组等价是指两向虽组可相互表出,有此可知:两向虽组的秩相同,但两向虽组各自的线性相关性却不相同。

(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A成立,则称A,B合同,记作AB该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则ABBPAPBT二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。

(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~&2、矩阵相似的性质:A~B,A~B,AA~BTTkkl~B(前提,A,B均可逆)1|E-A||EB|即A,B有相同的特征值(反之不成立)r(A)=r(B)tr(A)tr(B) 即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。

②充要条件:A~B(EA)(EB)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向H组等价的关系:设矩阵A(1,2,,n) , B(1,2,,m)1、若向虽组(1,2,,m )是向虽组(1,2,,n )的极大线性无关组,则有mn,即有两向虽等价,而两向H组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

而矩阵B与A亦不同型,虽然r(A)r(B)但不能得出AB。

矩阵的等价,合同,相似的联系与区别

矩阵的等价,合同,相似的联系与区别

目录摘要 (I)引言 (1)1矩阵间的三种关系 (1)1.1 矩阵的等价关系 (1)1.2 矩阵的合同关系 (1)1.3. 矩阵的相似关系 (2)2 矩阵的等价、合同和相似之间的联系 (3)3矩阵的等价、合同和相似之间的区别 (5)结束语 (6)参考文献 (6)摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化.关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件引言:在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量.1矩阵间的三种关系1.1 矩阵的等价关系定义1 两个s n ⨯矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ =由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件:(1)矩阵A 与B 必为同型矩阵(不要求是方阵).(2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =.性质1(1)反身性:即A A ≅.(2)对称性:若A B ≅,则B A ≅(3)传递性:即若A B ≅,B C ≅,则A C ≅定理1 若A 为m n ⨯矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),使得000r m nI PAQ B ⨯⎛⎫== ⎪⎝⎭.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ⨯矩阵,则A B ≅当且仅当()()r A r B =.1.2 矩阵的合同关系定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件:(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵.(2) 存在数域p 上的n 阶矩阵p ,T P AP B =性质2(1)反身性:任意矩阵A 都与自身合同.(2)对称性:如果B 与A 合同,那么A 也与B 合同.(3)传递性:如果B 与A 合同,C 又与B 合同,那么C 与A 合同.因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.定理2 数域F 上两个二次型等价的充要条件是它们的矩阵合同.定理3 复数域上秩为r 的二次型,可以用适当的满秩线性变换化为标准形:22212r f y y y =++ 1.3. 矩阵的相似关系定义3 设,A B 均为数域p 上n 阶方阵,若存在数域p 上n 阶可逆矩阵p 使得B AP P =-1,则称矩阵A 与B 为相似矩阵(若n 级可逆矩阵p 为正交阵,则称A 与B 为正交相似矩阵)由矩阵的相似关系,不难得到矩阵A 与B 相似,必须同时具备两个条件(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵(2) 在数域p 上n 阶可逆矩阵P ,使得B AP P =-1性质3(1)反身性 T A E AE = ;(2)对称性 由T B C AC =即得()11T A C BC --=;(3)传递性 111T A C AC =和2212T A C AC =即得 ()()21212T A C C A C C总之,合同是一种矩阵之间的等价关系,而且经过非退化的线性替换,新二次型的矩阵与原二次型矩阵是合同的.(4) 11111221122()P k A k A P k P A P k P A P ---+=+(其中12,k k 是任意常数); (5)1111212()()()P A A P P A P P A P ---=;(6)若A 与B 相似,则m A 与m B 相似(m 为正整数);(7) 相似矩阵有相同的秩,而且,如果1B P AP -=为满秩矩阵,那么11111()B P AP P A P -----==.即满秩矩阵如果相似,那么它们的逆矩阵也相似.(8)相似的矩阵有相同的行列式;因为如果1B P AP -=,则有:11B P AP P A P A --===(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;设1B P AP -=,若B 可逆,则11111()B P AP PA P -----==从而A 可逆.且1B -与1A -相似.若B 不可逆,则1()P AP -不可逆,即A 也不可逆.下面这个性质是一个重要的结论,因此我们把它写成以下定理定理4 相似矩阵的特征值相同.推论3 相似矩阵有相同的迹.2 矩阵的等价、合同和相似之间的联系(1) 由以上三种矩阵间的关系的定义,可以知道每一种矩阵关系存在所必须具备的条件,但是这三种关系彼此间存在着密切的联系定理5 相似矩阵必为等价矩阵,等价矩阵未必为相似矩阵.证明: 设n 阶方阵,A B 相似,由定义3知存在n 阶可逆矩阵1P ,使得111P AP B -=,此时若记11P P -=,1Q P = ,则有PAQ B =,因此由定义1得到n 阶方阵,A B 等价反过来,对于矩阵100010A ⎛⎫= ⎪⎝⎭,121010B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不相似,即等价矩阵未必相似.定理 6 对于n 阶方阵,A B ,若存在n 阶可逆矩阵,P Q 使PAQ B =,(即A 与B等价),且PQ E = (E 为n 阶单位矩阵),则A 与B 相似.证明: 设对于n 阶方阵A 与B ,若存在n 阶可逆矩阵,P Q ,使PAQ B =,即A 与B 等价.又知PQ E =,若记11P P -= ,那么1Q P =,也即111P AP B -=,则矩阵,A B 也相似.定理7 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.证明: 设n 阶方阵,A B 合同,由定义2有,存在n 阶可逆矩阵1P ,使得11TP AP B =,若记1TP P =,1Q P =,则有PAQ B =因此由定义1得到n 阶方阵,A B 等价反过来对于矩阵1001A ⎛⎫= ⎪⎝⎭,1201B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不合同,即等价矩阵未必合同.定理8 正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵.证明:若存在一个正交矩阵P ,即T P P E =使得1P AP B -=即~A B ,则有1T B P AP P AP -==,即A 与B 合同.同理,若存在一个正交矩阵P ,即T P P E =使得T P AP B =即A 与B 合同,则有1~T B P AP P AP A B -==⇒由此可得1.相似阵、合同阵必为等价阵,但过来必成立2.相似阵为正交相似,合同阵为正交合同时,相似与合同一致.(2)但相似矩阵与合同矩阵有着一定的内在联系,如果两者都具有反身性、对称性和传递性,即两者都是等价关系.另外,在一定条件下,两者是等价的.若矩阵A 与B 正交相似,则它们既是相似也是合同的.对于相似与合同矩阵之等价条件有以下定理,定理9 如果A 与B 都是n 阶实对称矩阵,且有相同的特征根.则A 与B 既相似又合同.证明:设A 与B 的特征根均为n λλλ ,,21因为A 与n 阶实对称矩阵,则一定存在一个n 阶正交矩阵 Q 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n AQ Q λλλ..211同理,一定能找到一个正交矩阵P 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n BP P λλλ..211从而有BP P AQ Q 11--= 将上式两边左乘P 和右乘1-P ,得()()()1111111-------===QP A QP QP AQP PQ B 由于T Q Q E =,T P P E =,1P P E -=有()()()()1111111T T T T QP QP P Q QP P EP PP E -------====,所以,1-P Q 是正交矩阵,由定理8知A 与B 相似.定理10 若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同. 证明:不妨设A 是正交矩阵,则A 可逆,取U A =,有()()111U ABU A ABA A A BA BA ---===,则AB 与BA 相似,又知A 是正交阵,所以AB 与BA 既相似又合同.定理11 若A 与B 相似且又合同,C 与D 相似也合同,则有⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00 既相似又合同. 证明: 因为A 与B ,C 与D 相似,故存在可逆矩阵1P ,2P ,使111122,P AP B P CP D --==,令1200P P P ⎛⎫= ⎪⎝⎭,则1111200P P P ---⎛⎫= ⎪⎝⎭且10000A B P P C D -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00相似. 又因为A 与B 合同,C 与D 合同,故存在可逆矩阵12,Q Q , 122,T T Q AQ B Q CQ D ==令1200Q Q Q ⎛⎫= ⎪⎝⎭而1200T T T Q Q Q ⎛⎫= ⎪⎝⎭11112222000000000000T T T T T Q Q A A Q Q A Q Q Q Q C C Q Q C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11220000T T B Q AQ D Q CQ ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00合同. 3矩阵的等价、合同和相似之间的区别1、矩阵等价:a.同型矩阵而言b.一般与初等变换有关c.秩是矩阵等价的不变量,其次,两同型矩阵相似的本质是秩相等2、矩阵相似:a.针对方阵而言b.秩相等是必要条件c.本质是二者有相等的不变因子3、矩阵合同:a.针对方阵而言,一般是对称矩阵b.秩相等是必需条件c.本质是秩相等且正惯性指数相等,即标准型相同由以上知,秩是矩阵等价的不变量;不变因子是矩阵相似的不变量;特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量,等价关系最弱、合同与相似是特殊的等价关系.由相似和合同一定可以推出等价,而反之不成立.相似与合同不可互推,需要一定的条件.而且等价是经过有限次初等变换变得;相似不一定会都与对角阵相似,相似矩阵可看作是同一线性变换在不同基下的矩阵;合同可以通过二次型的非退化的线性替换来理解.结束语:矩阵中的这三种关系,在高等代数中是至关重要的,他们既包含着联系,又蕴涵着差别.相似矩阵、合同矩阵必为等价矩阵,等价矩阵不一定是相似矩阵也不一定是合同矩阵;相似为正交相似,合同为正交合同时,相似与合同一致;秩是矩阵等价的不变量;不变因子是矩阵相似的不变量,特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量.参考文献:[1]张禾瑞.高等代数[M].北京:高等教育出版社,1983.[2]姚慕生.高等代数学[M].复旦:复旦大学出版社,1999.[3]北大数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社,1988 .[4]李志惠,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2006.[5]同济大学教研室. 线性代数[M].北京:高等教育出版社.,2001.[6]阎家灏.线性代数[M].重庆:重庆大学出版社.,1994.。

矩阵之间的三个关系总结

矩阵之间的三个关系总结

矩阵之间的三个关系总结
来源:文都教育
相信在学习《线性代数》的过程中,同学们和我一样都对矩阵之间的三个关系印象深刻,但又因为这三个关系之间类似的表现形式让人欢喜让人忧,等价矩阵、合同矩阵、相似矩阵每每出现都要经历一番头脑风暴。

为了在考试中不再因此带来困扰,本文将这三种关系列出,理清每种关系的特征,使同学们再也不用担心碰到三种关系时不知所措。

以上总结了等价矩阵、相似矩阵和合同矩阵的定义和一些性质,在具体的题目中往往会将其结合起来进行考查,因此掌握他们的本质特征至关重要。

通过比较记忆再结合一些有针对性的习题,相信与这部分内容有关的题目可以迎刃而解。

矩阵的合同与相似及其等价条件讲解

矩阵的合同与相似及其等价条件讲解

矩阵的相似与合同及其等价条件研究(数学与统计学院 09级数学与应用数学一班) 指导老师:王晶晶引言矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助.1 矩阵的等价与相似及其合同的基本概念1.1矩阵等价的定义[1]定义 1.1 如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的.由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到:定义1.2 如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的.根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述:定义1.3 设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2]定义 1.4 设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B .1.2.1 n 阶矩阵的相似关系,具有下列性质[3]:性质1.1 反身性,即任一n 阶矩阵A 与自身相似. 性质1.2 对称性,即如果A ~B ,则B ~A . 性质1.3 传递性,如果A ~B ,B ~C ,则A ~C .性质1.4 P A k AP P k P A k A k P 221122111)(+=+--. (21,k k 是任意常数)性质1.5 ))(()(2111211P A P P A P P A A P ---=.性质1.6 若矩阵A 与矩阵B 相似,则m A 与m B 相似. (m 为正整数) 证明 存在一个可逆矩阵P ,使得B AP P =-1,那么()P A P B AP P m m m11--==,故可以得到m A 与相m B 相似.性质1.7 如果矩阵A 、B 都是满秩,则A ~B ,那么1-B ~1-A . 证明 存在一个可逆矩阵P ,使得B AP P =-1,那么()P A P B AP P 11111-----==,故可以得到1-B ~1-A .性质1.8 如果矩阵A ~B ,那么B A =.证明 存在一个可逆矩阵P ,使得B AP P =-1,又因为B AP P =-1,11=-P P ,故可以得到B A =.性质1.9 相似矩阵或者都可逆,或者都不可逆.并且当它们都可逆时候,它们的逆矩阵也相似.证明 设AP P B 1-=,若矩阵B 可逆,()P A P AP P B 11111-----==,从而1-B 和1-A 也相似.若B 不可逆,则AP P 1-不可逆,即A 也不可逆.性质1.10 相似矩阵有相同的特征值.证明 设AP P B 1-=,AP P EP P B E 11---=-λλ ()PA E P -=-λ1A E -=λ故矩阵A 的特征值与矩阵B 有相同的特征值.性质1.11 相似矩阵有相同的迹.证明 可以设矩阵A 与矩阵B 相似,那么存在一个可逆矩阵P ,使得B AP P =-1,()()AP P t B t r r 1-=()PA P t r 1-= ()A t r =例1 ⎪⎪⎭⎫ ⎝⎛=3002A ,⎪⎪⎭⎫⎝⎛=2003B ,求分别求矩阵A 、B 的特征多项式,特征值秩,迹,行列式,矩阵A 与B 是否相似,它们之间有什么关系?解 从已知可知63002==A ,,2)(=A Rank 5)(=A t r 对于A 的特征多项式3002--=-λλλA E )3)(2(--=λλ 故A 的特征值为2和3.对于矩阵B ,62003==B ,,2)(=B Rank 5)(=B t r 矩阵B 的特征多项式)3)(2(23--=--=λλλλB .故矩阵B 的特征值是2和3.存在一个可逆矩阵⎪⎪⎭⎫ ⎝⎛=0110P 使得B AP P =-1,从定义矩阵B 与矩阵A 相似. 从结果看到相似矩阵有相同的特征多项式、相同的特征值、相等的行列式的值、相等的迹[2-4].例2 设实数域上的3级实对称矩阵⎪⎪⎪⎭⎫⎝⎛------=124242421A ,对角矩阵⎪⎪⎪⎭⎫⎝⎛-=400050005B .求矩阵A 、B 的特征值,特征多项式并且矩阵A 与矩阵B 相似吗?如果相似求出可逆矩阵P .解 由矩阵A 的特征多项式为11020242421124242421-+---=---λλλλλλλ1242421---=λλλ )4()5(2+-=λλ 故矩阵A 的特征值为5和—4.容易知道矩阵B 的特征多项式和矩阵A 的相同,故矩阵B 的特征值为5和-4.那么存在一个可逆矩阵P ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=325310315152552325154551P 验证得到B AP P =-1,那么矩阵A 与矩阵B 相似,它们有相同的特征值和特征多项式. 1.3 矩阵合同的定义[2]定义1.5 设A ,B 为n 阶矩阵,如果存在一个n 阶可逆矩阵C ,使得B AC C T =,则称A 与B 合同,记作B A ≅.n 阶矩阵的合同关系具有下列性质:⑴ 反身性: 即任一n 级矩阵与自身合同. ⑵ 对称性: 即如A 与B 合同,则B 与A 合同. ⑶ 传递性: A 与B 合同,B 与C 合同,则A 与C 合同. ⑷ 合同的两矩阵有相同的二次型标准型. ⑸ 任何一个实对称矩阵合同于一个对角矩阵.⑹ 两个实对称矩阵合同,它们的秩相等,而且正惯性指数相等.2. 合同矩阵与相似矩阵的关系2.1 矩阵的相似与合同的相同点[5].⑴ 从上面可以看到,相似关系满足反身性、对称性、传递性;合同关系也具有反身性、对称性、传递性.⑵ 相似 、合同矩阵均有相同的秩.若矩阵A 相似与矩阵B ,则)()(B Rank A Rank =,若矩阵A 合同于矩阵B ,则)()(B Rank A Rank =.可见,如果两个矩阵相似或合同,那么它们的秩相同.⑶ 相似与合同的矩阵要求是同型的方阵.若矩阵A 于矩阵B 相似,则要求A 、B 都是方阵;若A 合同与B ,则要求A 、B 都方阵.就是说相似与合同的矩阵要求是同型矩阵,而且都是方阵. 2.2 矩阵的相似与合同的不同点[5].矩阵的相似与合同有一些不同之处,如A ~B ,则B A =,A 与B 有相同的特征值.但若A ≅B ,那么A 与B 的行列式的值不一定相等;A 与B 也不一定有相同的特征值.例1 设⎪⎪⎪⎭⎫ ⎝⎛----=542452222A ,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32455032454513145252T ,⎪⎪⎪⎭⎫⎝⎛=1000010001B , 不难验证:B AT T T =,有B A ≅.我们可以知道上面的矩阵等式满足矩阵的合同同时满足矩阵的相似,能够知道矩阵T 为正交矩阵,故A ~B ,矩阵A 的行列式可以等于B 的行列式,下面举出合同但是行列式不等的情况.例2 ⎪⎪⎭⎫ ⎝⎛=3221A ,⎪⎪⎭⎫ ⎝⎛--=12441B ,⎪⎪⎭⎫⎝⎛-=2001C . 经过验证可以知道1-=A ,4-=B ,然而B AC C T =,B A ≠,可以得到矩阵A 合同于B ,但是行列式可以不等.我们知道矩阵相似具有相同的特征值,这是因为相似矩阵有相同的特征多项式. 我们设A ~B ,则有可逆矩阵P ,使得AP P B 1-=,于是111()E B E P AP P E P P AP λλλ----=-=-=1()P E A P λ--=E A λ-故特征值相同.然而对于矩阵A 合同与矩阵B ,但是它们的特征值不一定相同:例3 设⎪⎪⎪⎪⎭⎫⎝⎛=121211A ,⎪⎪⎭⎫⎝⎛=43001B ,⎪⎪⎭⎫ ⎝⎛-=10211C 不难验证B AC C T =,即B A ≅,但是A 的特征值为21和23,B 的特征值为1和43显然,矩阵的相似与矩阵的合同是不同的概念. 2.3 矩阵等价、合同与相似的联系[7].结论2.1 相似矩阵一定是等价矩阵,等价矩阵未必为相似矩阵.证明 设n 级矩阵A 、B 相似,从定义知道存在n 阶矩阵P ,使得B AP P =-1,从等价的定义B A ≅.反过来,对于矩阵⎪⎪⎭⎫ ⎝⎛=010001A ,⎪⎪⎭⎫⎝⎛=010121B ,A 与B 等价,但是A 与B 并不相似.结论2.2 合同矩阵一定是等价矩阵,等价矩阵未必是合同矩阵.证明 设n 阶方阵B A ,合同,由定义1.5有,存在n 阶可逆矩阵1P ,使得B AP P T =1,若记11,P Q P P T== ,则有B PAQ =因此由定义1.3得到n 阶方阵B A ,等价.反过来对于矩阵⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=1021B 等价,但是A 与B 并不合同,即等价矩阵未必合同.2.4矩阵合同与相似的关系[7]结论2.3 如果M 与N 都是n 级对称矩阵,且有相同的特征值,则M 与N 既合同又相似.证明 设M 、N 的特征值均为1λ 、2λ、 n λ,因为M 与N 都是n 级实对称矩阵,则一定存在n 阶正交矩阵P ,使得:⎪⎪⎪⎭⎫ ⎝⎛=-n MP P λλ 11同理,可以找到一个正交矩阵Q ,使得:⎪⎪⎪⎭⎫ ⎝⎛=-n NQ Q λλ 11从上面两式有:NQ Q MP P 11--=将上式两边分别左乘Q 和又乘1-Q ,得:MPQ QP N 1`-= ()()11`1---=PQ M PQ由于 E QQ E PP T T ==, 故 T PQ 可逆,又由于:(1111)()()T TPQ PQ PQ Q P ----=T T QP PQ =E =所以1-PQ 是正交矩阵故M ~N N M ≅,结论2.4 若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同. 证明 不妨A 是正交矩阵,则A 可逆取,A P =, 有()()BA BA A A ABA A ABP P ===---111,则AB 与BA 相似, 又A 是正交阵,所以AB 与BA 既相似又合同.结论2.5 若A ~B ,且B A ≅,C ~D 且D C ≅,则⎪⎪⎭⎫ ⎝⎛C A 00~⎪⎪⎭⎫ ⎝⎛D B 00,⎪⎪⎭⎫⎝⎛≅⎪⎪⎭⎫ ⎝⎛D B C A 0000证明 从已知,C ~B , C ~D ,故存在可逆矩阵1P ,2P 使得BAP P =-111D CP P =-212令 ⎪⎪⎭⎫ ⎝⎛=210P P P 则 ⎪⎪⎭⎫ ⎝⎛=---1211100P P P且 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---21211110000CP P AP P P C A P⎪⎪⎭⎫ ⎝⎛=D B 00故 ⎪⎪⎭⎫ ⎝⎛C A 00~⎪⎪⎭⎫⎝⎛D B 00又因为D C B A ≅≅,,,故存在可逆矩阵1T ,2T ,使得 1122,T TT AT B T CT D ==令⎪⎪⎭⎫ ⎝⎛=2100T T T则 ⎪⎪⎭⎫ ⎝⎛=T TTT T T 2100 然而 112200000000T TT T A A T T T T C C T ⎛⎫⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11220000TT T T T T ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 11220000T TBT AT D T CT ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故 ⎪⎪⎭⎫ ⎝⎛C A 00≅⎪⎪⎭⎫⎝⎛D B 003 相似矩阵的应用3.1 相似矩阵的简单应用[8]在矩阵m A 的求解过程中,很难得到它的值,然而可以找到与矩阵A 相似的简单的矩阵,可把矩阵化简为对角矩阵,使得BP P A 1-=,其中P 为可逆矩阵,B 对角矩阵,可知矩阵A 与矩阵B 相似,那么()P B P BPP A m mm 11--==,从而可以使得不宜求的矩阵简单化。

矩阵的合同-等价与相似的联系与区别

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。

若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ≅。

2、矩阵等价的充要条件:3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。

(二)合同:1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ≅P T AP B =成立,则称A,B 合同,记作A B ≅该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ≅⇔二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。

(三)相似1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。

2、矩阵相似的性质:3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B 有相同的不变因子或行列式因子。

②充要条件:~()()A B E A E B λλ⇔-≅-二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ=1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ≅。

2、若m=n ,两向量组(12,,,n λλλ)≅(12,,,m βββ)则有矩阵A,B同型且()()~,,r A r B A B A B A B =⇒≅r()()A r B A B =⇒≅。

3、若r()()A B A r B ≅⇒=⇒两向量组秩相同,⇐两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ≅≠>≅综上所述:矩阵等价与向量等价不可互推。

矩阵的合同与相似及其等价条件汇总

矩阵的合同与相似及其等价条件汇总

矩阵的相似与合同及其等价条件研究(数学与统计学院(数学与统计学院 09 09级数学与应用数学一班)指导老师:王晶晶引言矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助. .1 矩阵的等价与相似及其合同的基本概念1.1矩阵等价的定义[1]定义 1.1 1.1 如果矩阵如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的.由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到:定义1.2 1.2 如果如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的是等价的. .根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述:定义1.3 1.3 设矩阵设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2]定义 1.4 1.4 设矩阵设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B .1.2.1 n 阶矩阵的相似关系,具有下列性质[3]:性质1.1 1.1 反身性,即任一反身性,即任一n 阶矩阵A 与自身相似与自身相似. .性质1.2 1.2 对称性,即如果对称性,即如果A ~B ,则B ~A . 性质1.3 1.3 传递性,如果传递性,如果A ~B ,B ~C ,则A ~C . 性质1.4P A k AP P k P A k A k P 221122111)(+=+--. . ((21,k k 是任意常数)性质1.5 ))(()(2111211P A P P A P P A A P ---=.性质1.6 若矩阵A 与矩阵B 相似,则m A 与mB 相似相似. . . ((m 为正整数)为正整数)证明证明 存在一个可逆矩阵存在一个可逆矩阵P ,使得B AP P =-1,那么,那么()P A P B APPmmm11--==,故可以得到mA 与相mB 相似相似. .性质1.7 1.7 如果矩阵如果矩阵A 、B 都是满秩,则A ~B ,那么1-B ~1-A . 证明证明 存在一个可逆矩阵P ,使得B AP P =-1,那么()P A P B APP11111-----==,故可以得到1-B ~1-A .性质1.8 1.8 如果矩阵如果矩阵A ~B ,那么B A =.证明证明 存在一个可逆矩阵存在一个可逆矩阵P ,使得B AP P =-1,又因为B AP P =-1,11=-P P ,故可以得到B A =.性质1.9 1.9 相似矩阵或者都可逆,或者都不可逆相似矩阵或者都可逆,或者都不可逆相似矩阵或者都可逆,或者都不可逆..并且当它们都可逆时候,它们的逆矩阵也相似逆矩阵也相似. .证明证明 设AP P B 1-=,若矩阵B 可逆,()P A P APPB 11111-----==,从而1-B 和1-A也相似也相似. .若B 不可逆,则AP P 1-不可逆,即A 也不可逆也不可逆. .性质1.10 相似矩阵有相同的特征值相似矩阵有相同的特征值. .证明证明 设AP P B 1-=,AP P EP P B E 11---=-l l()P A E P -=-l 1AE -=l故矩阵A 的特征值与矩阵B 有相同的特征值有相同的特征值. .性质1.11 相似矩阵有相同的迹相似矩阵有相同的迹. .证明证明 可以设矩阵A 与矩阵B 相似,那么存在一个可逆矩阵P ,使得B AP P =-1,()()AP Pt B t rr 1-=()PAPt r1-=()A t r =例 1 ÷÷øöççèæ=3002A ,÷÷øöççèæ=2003B ,求分别求矩阵A 、B 的特征多项式,特征值秩的特征多项式,特征值秩,,迹,行列式,矩阵A 与B 是否相似,它们之间有什么关系?是否相似,它们之间有什么关系?解 从已知可知从已知可知63002==A ,,2)(=A Rank 5)(=A t r对于A 的特征多项式32--=-l l l A E )3)(2(--=l l故A 的特征值为2和3.对于矩阵B ,62003==B ,,2)(=B Rank 5)(=B t r矩阵B 的特征多项式)3)(2(23--=--=l l l l B .故矩阵B 的特征值是2和3.存在一个可逆矩阵存在一个可逆矩阵÷÷øöççèæ=0110P 使得B AP P =-1,从定义矩阵B 与矩阵A 相似相似.. 从结果看到相似矩阵有相同的特征多项式、相同的特征值、相等的行列式的值、相等的迹[2-4].例2 设实数域上的3级实对称矩阵÷÷÷øöçççèæ------=124242421A ,对角矩阵÷÷÷øöçççèæ-=400050005B .求矩阵A 、B 的特征值,特征多项式并且矩阵A 与矩阵B 相似吗?如果相似求出可逆矩阵P .解 由矩阵由矩阵A 的特征多项式为11020242421124242421-+---=---l l l l l l l100242421---=l l l )4()5(2+-=l l 故矩阵A 的特征值为5和—和—4. 4.容易知道矩阵B 的特征多项式和矩阵A 的相同,的相同,故矩阵B 的特征值为5和-4.-4.那么存在一个可逆矩阵那么存在一个可逆矩阵P ,÷÷÷÷÷÷øöççççççèæ--=325310315152552325154551P 验证得到B AP P =-1,那么矩阵A 与矩阵B 相似,它们有相同的特征值和特征多项式相似,它们有相同的特征值和特征多项式. . 1.3 矩阵合同的定义[2]定义1.5 设A ,B 为n 阶矩阵,如果存在一个n 阶可逆矩阵C ,使得B AC C T=,则称A 与B 合同,记作B A @. n 阶矩阵的合同关系具有下列性质:阶矩阵的合同关系具有下列性质:⑴ 反身性反身性: : : 即任一即任一n 级矩阵与自身合同级矩阵与自身合同. . ⑵ 对称性对称性: : : 即如即如A 与B 合同,则B 与A 合同合同. .⑶ 传递性传递性: : A 与B 合同,B 与C 合同,则A 与C 合同合同. . ⑷ 合同的两矩阵有相同的二次型标准型合同的两矩阵有相同的二次型标准型. . ⑸ 任何一个实对称矩阵合同于一个对角矩阵任何一个实对称矩阵合同于一个对角矩阵. .⑹ 两个实对称矩阵合同,它们的秩相等,而且正惯性指数相等两个实对称矩阵合同,它们的秩相等,而且正惯性指数相等. .2. 合同矩阵与相似矩阵的关系2.1 矩阵的相似与合同的相同点[5].⑴ 从上面可以看到,相似关系满足反身性、对称性、传递性;合同关系也具有从上面可以看到,相似关系满足反身性、对称性、传递性;合同关系也具有反身性、对称性、传递性反身性、对称性、传递性. .⑵ 相似相似相似 、合同矩阵均有相同的秩、合同矩阵均有相同的秩. .若矩阵若矩阵A 相似与矩阵B ,则)()(B Ra n k A Ra n k=,若矩阵A 合同于矩阵B ,则)()(B Ra n k A Ra n k =.可见,如果两个矩阵相似或合同,那么它们的秩相同可见,如果两个矩阵相似或合同,那么它们的秩相同. .⑶ 相似与合同的矩阵要求是同型的方阵相似与合同的矩阵要求是同型的方阵相似与合同的矩阵要求是同型的方阵. . 若矩阵若矩阵A 于矩阵B 相似,则要求A 、B 都是方阵;若A 合同与B ,则要求A 、B 都方阵方阵..就是说相似与合同的矩阵要求是同型矩阵,而且都是方阵就是说相似与合同的矩阵要求是同型矩阵,而且都是方阵. . 2.2 矩阵的相似与合同的不同点[5].矩阵的相似与合同有一些不同之处,如矩阵的相似与合同有一些不同之处,如A ~B ,则B A =,A 与B 有相同的特征值征值..但若A @B ,那么A 与B 的行列式的值不一定相等;A 与B 也不一定有相同的特征值征值..例1 1 设设÷÷÷øöçççèæ----=542452222A ,÷÷÷÷÷÷÷øöçççççççèæ---=32455032454513145252T ,÷÷÷øöçççèæ=1000010001B , 不难验证:不难验证:B AT T T=,有B A @.我们可以知道上面的矩阵等式满足矩阵的合同同时满足矩阵的相似,能够知道矩我们可以知道上面的矩阵等式满足矩阵的合同同时满足矩阵的相似,能够知道矩阵T 为正交矩阵,故A ~B ,矩阵A 的行列式可以等于B 的行列式,下面举出合同但是行列式不等的情况行列式不等的情况. .例2 ÷÷øöççèæ=3221A ,÷÷øöççèæ--=12441B ,÷÷øöççèæ-=2001C .经过验证可以知道经过验证可以知道1-=A ,4-=B ,然而B AC C T=,B A ¹,可以得到矩阵A 合同于B ,但是行列式可以不等,但是行列式可以不等. .我们知道矩阵相似具有相同的特征值,这是因为相似矩阵有相同的特征多项式我们知道矩阵相似具有相同的特征值,这是因为相似矩阵有相同的特征多项式我们知道矩阵相似具有相同的特征值,这是因为相似矩阵有相同的特征多项式. .我们设A ~B ,则有可逆矩阵P ,使得AP P B 1-=,于是,于是111()E B E P AP P E P P AP l l l ----=-=-=1()P E A P l --=E A l -故特征值相同故特征值相同. .然而对于矩阵然而对于矩阵A 合同与矩阵B ,但是它们的特征值不一定相同,但是它们的特征值不一定相同::例3 设÷÷÷÷øöççççèæ=121211A ,÷÷øöççèæ=43001B ,÷÷øöççèæ-=10211C 不难验证不难验证B AC C T=,即B A @,但是A 的特征值为21和23,B 的特征值为1和43 显然,矩阵的相似与矩阵的合同是不同的概念显然,矩阵的相似与矩阵的合同是不同的概念. .2.3 矩阵等价、合同与相似的联系[7].结论2.1 2.1 相似矩阵一定是等价矩阵,等价矩阵未必为相似矩阵相似矩阵一定是等价矩阵,等价矩阵未必为相似矩阵相似矩阵一定是等价矩阵,等价矩阵未必为相似矩阵. .证明 设n 级矩阵A 、B 相似,从定义知道存在n 阶矩阵P ,使得B AP P =-1,从等价的定义B A @.反过来,对于矩阵÷÷øöççèæ=010001A ,÷÷øöççèæ=010121B ,A 与B 等价,但是A 与B 并不相似.结论2.2 2.2 合同矩阵一定是等价矩阵,等价矩阵未必是合同矩阵合同矩阵一定是等价矩阵,等价矩阵未必是合同矩阵合同矩阵一定是等价矩阵,等价矩阵未必是合同矩阵. .证明证明 设设n 阶方阵B A ,合同,由定义1.5有,存在n 阶可逆矩阵1P ,使得B AP P T=1, 若记11,P Q P P T== , ,则有则有B PAQ =因此由定义1.3得到n 阶方阵B A ,等价等价. .反过来对于矩阵÷÷øöççèæ=1001A ,÷÷øöççèæ=1021B 等价,但是A 与B 并不合同,即等价矩阵未必合同.矩阵未必合同.2.4矩阵合同与相似的关系[7]结论 2.3 2.3 如果如果M 与N 都是n 级对称矩阵,且有相同的特征值,则M 与N 既合同又相似同又相似. .证明证明 设设M 、N 的特征值均为1l 、2l 、 n l ,因为M 与N 都是n 级实对称矩阵,则一定存在n 阶正交矩阵P ,使得:÷÷÷øöçççèæ=-n MP P l l 11同理,可以找到一个正交矩阵Q ,使得:,使得:÷÷÷øöçççèæ=-n NQ Q l l 11从上面两式有:从上面两式有:NQ Q MP P 11--=将上式两边分别左乘Q 和又乘1-Q ,得:,得:MPQ QP N 1`-= ()()11`1---=PQ M PQ由于由于 E QQ E PP TT==, 故 TPQ 可逆,又由于:可逆,又由于:(1111)()()TTPQ PQ PQ Q P ----=TTQP PQ =E =所以1-PQ 是正交矩阵是正交矩阵故M ~N N M @,结论2.4 2.4 若若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同.相似且合同. 证明证明 不妨不妨A 是正交矩阵是正交矩阵,,则A 可逆取可逆取,,A P =, 有()()BA BA A A ABA A ABP P ===---111,则AB 与BA 相似,相似, 又A 是正交阵,所以AB 与BA 既相似又合同既相似又合同. .结论2.5 2.5 若若A ~B ,且B A @,C ~D 且D C @,则,则÷÷øöççèæC A 00~÷÷øöççèæD B 00,÷÷øöççèæ@÷÷øöççèæD B C A 0000证明证明 从已知,从已知,C ~B , C ~D ,故存在可逆矩阵1P ,2P 使得使得B APP=-111 DCP P =-212令 ÷÷øöççèæ=2100P P P 则 ÷÷øöççèæ=---1211100P P P且 ÷÷øöççèæ=÷÷øöççèæ---21211110000CP P APP P C A P÷÷øöççèæ=D B00 故 ÷÷øöççèæC A 00~÷÷øöççèæD B 00 又因为D C B A @@,,,故存在可逆矩阵1T ,2T , 使得使得 1122,TT T AT B T CT D ==令÷÷øöççèæ=2100T T T 则 ÷÷øöççèæ=T TTT T T 2100 然而然而 112200000000T TT T A A T T T T C C T æöæöæöæö=ç÷ç÷ç÷ç÷èøèøèøèø 11220000TT T T T T æöæö=ç÷ç÷èøèø 11220000T T B T AT D T CT æöæö==ç÷ç÷èøèø 故 ÷÷øöççèæC A 00@÷÷øöççèæD B 003 相似矩阵的应用3.1 相似矩阵的简单应用[8]在矩阵mA 的求解过程中,很难得到它的值,然而可以找到与矩阵A 相似的简单的矩阵,可把矩阵化简为对角矩阵,使得BP P A 1-=,其中P 为可逆矩阵为可逆矩阵,,B 对角矩阵,可知矩阵A 与矩阵B 相似,那么()P B P BP P A mmm11--==,从而可以使得不宜求的矩阵简单化。

矩阵等价相似合同

矩阵等价相似合同

矩阵等价相似合同矩阵等价相似合同是线性代数中的一个重要定理,它描述了在一定条件下,两个矩阵可以通过相似变换互相转换而保持其性质不变。

本文将对矩阵等价相似合同进行详细的介绍。

矩阵等价相似合同是线性代数中的一个基本定理,它在矩阵论和相关领域中有着广泛的应用和重要性。

矩阵的等价相似合同主要包括两部分内容:等价变换和相似变换。

等价变换是指通过一系列基本行列变换,将一个矩阵转换为标准形矩阵的过程。

这些基本行列变换包括互换两行(列)、某一行(列)乘以一个非零常数、某一行(列)加上(减去)另一行(列)的若干倍。

经过等价变换后的标准形矩阵具有某些特定的性质,如行阶梯形矩阵和行最简形矩阵等。

相似变换是指通过一个可逆矩阵P,将一个矩阵A转换为PAP^(-1)的过程。

这个过程将A通过线性变换P变换为另外一个矩阵,而且P具有可逆性。

相似变换后的矩阵PAP^(-1)与原矩阵A具有相同的特征值和特征向量,从而保持了矩阵的重要性质。

根据矩阵等价相似合同定理,如果两个矩阵A和B可以通过相似变换P,即PAP^(-1)=B,那么它们必然具有相同的特征值。

这意味着它们在某种程度上可以看作是“相等”的,因为特征值是矩阵的一个重要属性。

具体来说,对于一个n阶矩阵A,如果存在一个可逆矩阵P使得PAP^(-1)是一个对角矩阵D,那么A与D是相似的。

这个对角矩阵D的主对角线上的元素就是A的特征值。

这个过程称为矩阵的特征值分解(eigenvalue decomposition)。

矩阵等价相似合同定理的应用非常广泛。

在物理学中,矩阵等价相似合同定理可以用于描述量子力学中的态矢量和算符矩阵之间的关系。

在电路理论和控制工程中,矩阵等价相似合同定理可以用于系统的稳定性分析和控制设计。

在图像处理和模式识别中,矩阵等价相似合同定理可以用于特征提取和聚类分析。

总之,矩阵等价相似合同定理是线性代数中的一个重要定理,它描述了在一定条件下,两个矩阵可以通过相似变换互相转换而保持其特征值和特征向量不变。

【精编范文】矩阵的合同与相似-范文word版 (18页)

【精编范文】矩阵的合同与相似-范文word版 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==矩阵的合同与相似篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别201X09113 李娟娟一、基本概念与性质(一)等价:1、概念。

若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为A?B。

2、矩阵等价的充要条件:A?B?{A.B同型,且人r(A)=r(B) 存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。

(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A?BPTAP=B成立,则称A,B合同,记作A?B该过程成为合同变换。

2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则A?B?二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。

(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得B=P-1AP成立,则称矩阵A,B相似,记为A~B。

2、矩阵相似的性质:AT~BT,Ak~Bk,A-1~B-1(前提,A,B均可逆)|λE-A|=|λE-B|即A,B有相同的特征值(反之不成立)A~B?r(A)=r(B)tr(A)=tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。

②充要条件:A~B?(λE-A)?(λE-B)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵A=(λ1,λ2, ,λn),B=(β1,β2, ,βm)1、若向量组(β1,β2, ,βm)是向量组(λ1,λ2, ,λn)的极大线性无关组,则有m≤n,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵等价相似合同的关系
等价指的是两个矩阵的秩一样。

合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样。

相似是指两个矩阵特征值一样。

相似必等价,合同必等价。

1.等价矩阵:同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个。

2.相似矩阵的定义是:存在可逆矩阵P,使得P--1AP=B,则称B是A的相似矩阵。

原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|
所以|B-aE|=|P--1||A-aE||P|,所以|B-aE|=|P--1AP-aP--1EP|,即|B-aE|=|P--1AP-aE|所以B=P--1AP
3.合同矩阵定义:若存在可逆矩阵C,使得C T AC=B,即A与B合同。

对于合同矩阵要从二次型说起,二次型为:f=X T AX。

可通过X=CY变换,即把X=CY带入,
于是f=(CY)T A(CY)=Y T[C T AC]Y,其中令C T AC=B,即A与B合同。

首先相似不一定合同,合同也不一定相似,但是如果相似或者合同则必然等价,而等价却不能反推出相似或者合同,原因是前者只能是对方阵,而后者则只需要同型。

相似合同和等价都具有反身性。

对称性和传递性,合同和相似能推出等价是因为他们的秩相等。

而对于矩阵A只有当他是实对称矩阵时,存在C T AC=C--1AC,即这个时候矩阵合同和相似可以等价,这个时候C是正交矩阵,然而当C 不是正交矩阵时,则只能满足其中一个条件,或者说如果P--1AP=B,即A与B相似,但如果P不是正交矩阵,则不能称A与B合同,如果P T AP=B,即A与B合同,但是PP T≠I,则一样不能推出相似。

相似必合同,合同必等价。

等价就是矩阵拥有相同的r。

矩阵合同,C T AC=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(C T AC)=r(AC)=r(A),等价。

同理两矩阵相似一定等价。

矩阵相似一定合同,因为两矩阵相似,有相同的特征多项式和特征根,就一定有相同的r,惯性系数一定相同,可以化成相同的标准形,矩阵合同的充要条件是有相同的r和规范形(A、B都有其对应的对角形矩阵,结合定义即可推出),标准形相等规范形一定相等,所以相似一定合同。

三种矩阵的比较:等价,A=PBQ; 相似,A=PBP--1; 合同,A=P T BP。

相关文档
最新文档