明渠均匀流
明渠均匀流基本公式
明渠均匀流基本公式明渠均匀流是水力学中一个非常重要的概念,它有着一系列的基本公式,这些公式对于我们理解和解决水流问题起着关键作用。
咱先来说说啥是明渠均匀流。
想象一下,一条直直的渠道,水在里面稳稳地流着,速度不变,水深不变,水面线也是平平的,这就是明渠均匀流啦。
明渠均匀流的基本公式里,有一个很关键的,就是谢才公式:$V = C\sqrt{RJ}$ 。
这里的 V 代表流速,C 是谢才系数,R 是水力半径,J 是水力坡度。
那这个水力半径是啥呢?简单说,就是过水断面面积除以湿周。
比如说,一个矩形的渠道,宽是 b,水深是 h,那水力半径 R 就等于 bh / (b + 2h) 。
我记得有一次去郊外考察,看到一条灌溉用的渠道。
那渠道看起来普普通通,但仔细一观察,就能发现其中的门道。
水流很平稳,水深基本一致,这明显就是明渠均匀流的典型特征。
我就拿工具测了测渠道的宽度、水深,还算了算水力半径。
当时旁边有个农民大哥好奇地看着我,问我在干啥。
我就跟他解释,说这是在研究水流,通过这些计算能知道水的流速,对灌溉效率有很大影响。
大哥听了,似懂非懂地点点头,说:“原来这还有这么多学问呢!”再来说说谢才系数 C 。
它的取值跟渠道的粗糙程度有关。
渠道表面越粗糙,C 值就越小,水流阻力就越大。
水力坡度 J 呢,其实就是单位长度渠道上的水头损失。
如果渠道是水平的,那 J 就等于零。
在实际应用中,明渠均匀流的基本公式能帮我们解决很多问题。
比如设计排水渠道的尺寸,计算水流的输送能力等等。
总之,明渠均匀流基本公式虽然看起来有点复杂,但只要咱耐心琢磨,结合实际情况去理解和运用,就能在水力学的世界里游刃有余啦!。
七章明渠均匀流ppt课件
0.24n 0.24 0.03
Q k i 76.55 0.0005 1.71m3 / s
§ 7-3 明渠水力最优断面和允许流速 §7-3 明渠水力最优断面和允许流速
1、水力最优断面
Q Ac Ri Q f i, n,断面形状,尺寸
水力最优断面:当 i、n 及 A 大小一定时,使渠道能通过的
A 为相应于正常水深 h 时的过水断面面积
正常水深(h0):明渠均匀流的水深,沿程不变的水深。
在明渠均匀流中,断面尺寸和n一定, k f h
h0 f 断面尺寸, n,Q,i
对某一给定的渠道,则有 Q f h0
⑴曼宁公式(爱尔兰)
V
1
21
R3J 2
n
C
1
1
R6
n
§ 7-2 明渠均匀流的计算公式
§ 7-4 明渠均匀流水力计算的基本问题
解: Q Ac Ri k i
k Q 40 2305 m3 / s
i 0.0003
5
又 k Ac
R
A
1 n
1
R6
1 R 2
A
R
2 3
n
A3
2
n 3
A b mhh b 1.5 2.65 2.65 b 3.97 2.65
b 2h 1 m2 b 2 2.65 11.52 b 9.54
i z 0.5 0.0005 L 1000
A b mhh 3 1.5 0.8 0.8 3.36m2
b 2 1 m2 h 3 20.8 11.52 5.88m
明渠均匀流的特征及其形成条件
02
明渠均匀流的流态及水流 要素
流态分类
层流
水流分为明显的上下两层,流速分布均匀,无涡流。
湍流
流速和压强随时间变化,流线不规则,存在涡流。
水流要素分析
流量
单位时间内流过明渠横截 面的水量。
水深
水流在垂直方向上从渠底 到水面的距离。
流速
水流在某一位置的速度大 小。
水流要素之间的关系
水深与流速
在一定流量下,水深与流速之 间存在反比关系。
能够真实模拟明渠流动,具有实际 应用价值。
• 缺点
实验条件难以控制,对测量设备的 精度要求较高。
研究实例及结果分析
01
DNS方法在明渠均匀流中的应用
通过对明渠流动进行直接数值模拟,得到了流场中的速度分布、涡旋
结构等信息,并分析了流动特性与流速之间的关系。
02
LES方法在明渠均匀流中的应用
使用大型涡模拟方法对明渠流动进行数值模拟,得到了流场中的大尺
渠道坡度
渠道坡度是影响明渠均匀流的另一个重要因素,它会影响重力沿 程变化。控制方法包括调整渠道坡度和改变渠道材质。
水流初速度和流量
明渠均匀流的水流初速度和流量也会影响流速和水深分布。控制方 法包括调整水泵参数和改变渠道流量。
05
明渠均匀流的数值模拟与 实验研究方法
数值模拟方法
直接数值模拟(DNS)
底部
明渠均匀流的底部通常是平坦的,对水流 没有阻碍作用。
结构特征描述
流速沿程不变
明渠均匀流的流速在整个渠道沿程中保持不变。
水深沿程变化
由于摩擦力的作用,明渠均匀流的水深沿程逐渐减小。
渠道断面形状保持不变
明渠均匀流的渠道断面形状保持不变,通常是规则的矩形或梯形 。
明渠均匀流
一、 水力最优断面
1. 定义
当i、n不变时,在断面积相等的各种断 面形状中通过流量最大的那种断面形状 称为水力最优断面。
2. 条件
Q C
问题实质:
Ri
1 R 23i 12
n
i 5/ 3 1/ 2 n 2/3
当 、i、n一定,要使Q最大。 必最小 !
在明渠设计时:水力最优条件只是应考虑的因素
处理:
3.明渠的底坡
1.过水断面可由水流中所取
明渠渠底纵向(沿水流 的铅垂断面代替;
方向)倾斜的程度称为底坡。 2.两断面间的距离可由水平
以i表示。
投影长度来代替。
水面线
i等于渠底线顺与坡水(平或线正夹坡角)明渠
θ按的底正坡弦分,类即:i平=s坡in明θ 渠。 逆坡(或负坡)明渠
底坡线
θ
i>0 顺坡、正坡
断面 参数
(b mh)h b 2h 1 m2
mh 2h 1 m2 最小
h
B
h
1 m
α
b
d 0
dh
d 2
dh2 0
(
b h
)最优
2(
1 m2 m)
特殊地,矩形断面: m=0;即b=h;
第三节 明渠水力最优断面和允许流速
二、允许流速
i=0 平坡
i<0 逆坡、负坡
第一节 概述 基本概念 明渠总结
过水断面面积
只与水深有关
沿程断面形状 尺寸是否变化
棱柱形 渠道
f (h)
断面形 状多样
明渠
底坡i=sinθ
非棱柱 f (h,s)
流体力学第六章明渠恒定均匀流
§6-1 明渠恒定均匀流的特性及其计算公式
明渠水流: 渠槽或河槽中液流具有与大气相 通的自由表面 恒定流:运动要素不随时间变化。
均匀流: 流线为平行直线,运动要素沿程不变。
棱柱形渠道:横断面形状、尺寸均沿程不变 的长直渠道,A=f(h)。
梯形断面:
过水断面面积 A (b mh)h
一断面,然后分别对这些断面进行水力
计算,最后进行叠加。
2 n 1 3 Ri i Ai Ri i i 1 ni
Q Ai C i
i 1
n
Q,求i。
确定渠道的断面尺寸:已知Q、i、n、m,
求断面尺寸b和h。
确定渠道的断面尺寸: (1)b一定,求h 假定若干不同的h值,绘出Q=f(h)曲线, 找出对应的h。 (2)h一定,求b 假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比β m,根据 h=f(β m)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
V 2
明渠均匀流的计算公式: 谢才公式:v C RJ C Ri
1 y 巴甫洛夫斯基公式:C R , y f (n, R) n Q AV AC Ri K i (K:流量模数)
1 曼宁公式: C R n
1 6
粗糙系数n反映河、渠壁面对水流阻力的
大小,与渠道壁面材料、水位高低、施工质
量及渠道修成后的运行管理等有关。
设计n值偏大,设计阻力偏大,断面尺寸
偏大,实际流速>设计流速;
设计n值偏小,设计阻力偏小,断面尺寸
偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小
明渠均匀流能量守恒公式
明渠均匀流能量守恒公式明渠均匀流是水力学中一个非常重要的概念,而其中的能量守恒公式更是理解和解决相关问题的关键。
咱们先来说说啥是明渠均匀流。
想象一下,一条宽敞的水渠,水在里面平稳地流淌,速度和水深在各个位置都差不多,这就是明渠均匀流啦。
比如说,咱们农村灌溉用的那种长长的水渠,要是水流得稳稳当当,那差不多就是明渠均匀流的样子。
那明渠均匀流的能量守恒公式到底是啥呢?其实就是:$H = h_f +h$ 。
这里的$H$ 是总水头,$h_f$ 是水头损失,$h$ 是测压管水头。
听起来有点复杂是不是?别着急,咱们来慢慢捋一捋。
比如说,有一条人工开凿的明渠,水从上游流向下游。
在这个过程中,因为渠道壁面的摩擦、水流内部的阻力等等,一部分能量就会被消耗掉,这部分被消耗的能量就用水头损失$h_f$ 来表示。
而测压管水头$h$ 呢,则反映了水的压力能和位置势能的总和。
咱们就拿学校旁边那条为了排水挖的小水渠来说吧。
有一次下大雨,那水渠里的水哗哗地流。
我就好奇地沿着水渠走,观察水流的情况。
我发现,上游的水明显流得更急,到了下游速度就慢了一些。
这其实就是因为在水流的过程中,有一部分能量被消耗掉啦。
再说说这个公式在实际工程中的应用。
比如在设计渠道的时候,工程师们就得用上这个公式,来确定渠道的坡度、尺寸等等,以保证水流能够顺畅地流动,同时还能节约成本。
要是不考虑能量守恒,那可就麻烦啦。
比如说,渠道设计得太陡,水流速度太快,可能会冲坏渠道;设计得太平缓,水流又流不动,容易积水。
在学习明渠均匀流能量守恒公式的时候,大家可别死记硬背,要多结合实际的例子去理解。
这样,才能真正掌握这个重要的知识,以后遇到相关的问题也能轻松应对。
总之,明渠均匀流能量守恒公式虽然看起来有点复杂,但只要咱们用心去学,多观察多思考,就能把它拿下!。
水利课件第五章明渠恒定均匀流
工程应用前景展望
THANKS
感谢您的观看。
恒定均匀流的条件
在梯形明渠中,要实现恒定均匀流,同样需要满足水流连续性方程和能量守恒方程。
实例分析
通过给定的梯形明渠尺寸、糙率、流量等参数,可以计算出水深、流速、过水断面面积等水力要素,并分析水流特性。与矩形明渠相比,梯形明渠的水力计算更为复杂。
实例二:梯形明渠恒定均匀流
实例三:复杂形状明渠恒定均匀流
实验数据处理与分析方法
06
CHAPTER
明渠恒定均匀流在工程应用中的意义与价值
明渠恒定均匀流是水利工程中常见的流动状态,具有稳定的流动特性和水力要素。
在实际工程中,明渠恒定均匀流被广泛应用于渠道、堤防、水库等水利设施的规划、设计和运行中。
掌握明渠恒定均匀流的基本原理和计算方法,对于水利工程师来说具有重要意义。
明渠恒定均匀流特点
02
CHAPTER
明渠恒定均匀流基本方程
表示明渠中水流的质量守恒,即单位时间内流入和流出控制体的质量差等于控制体内质量的变化率。
A1v1=A2v2,其中A为过水断面面积,v为断面平均流速。
连续方程
连续性方程的表达形式
连续性方程的物理意义
动量方程的物理意义
表示明渠中水流的动量守恒,即单位时间内流入和流出控制体的动量差等于作用在控制体上的外力之和。
确定渠道底坡、糙率和横断面形状、尺寸等参数。
根据已知的水位或流量,利用水力学公式计算水面线。
绘制水面线图,表示不同位置的水面高程。
《明渠均匀流》课件
通过水力学模型试验或数值模拟,验 证溢洪道是否满足明渠均匀流的条件 ,确保设计的有效性。
城市排水系统的明渠均匀流优化
优化目标
城市排水系统在雨季需要快速 、有效地排放雨水,避免内涝 灾害,明渠均匀流是实现这一
目标的关键。
管道布局
根据城市地形和雨水排放需求 ,合理规划排水管道的布局, 确保水流顺畅。
流量计算
根据已知的水头和管道截面积计算流量。
水头损失计算
根据伯诺里方程计算水头损失。
阻力损失计算
根据达西公式计算沿程阻力损失,根据谢 才公式计算局部阻力损失。
水力效率计算
根据水头损失和流量计算水力效率。
参数选择与校核
01 参数选择
根据实际工程需要选择合适的管道材料、管径、 粗糙度等参数。
02 校核内容
02 斯拉egan cheer堞
05
明渠均匀流的案例分析
某河流的明渠均匀流分析
案例概述
某河流在某一河段呈现出明渠均匀流 的特征,该河段具有代表性的地理、 水文条件,适合进行明渠均匀流的分
析。
水深确定
根据流速分布和水力学原理,确定该 河段的合理水深,以满足明渠均匀流
的条件。
流速分布
通过实测数据或模拟计算,分析该河 段内的流速分布,探究流速与断面宽 度的关系。
动量方程
总结词
描述水流受到外力作用时的运动变化
详细描述
动量方程是关于水流动量的守恒方程,它反映了水流在外力作用下的运动变化 规律。在明渠均匀流中,由于流速分布均匀,动量方程可以简化为一个简单的 形式,便于分析和计算。
能量方程
总结词
描述水流能量的转化和损失
详细描述
能量方程是描述水流能量转化和损失的方程,它包括了水流的重力势能、动能和 阻力损失等能量要素。在明渠均匀流中,由于流速分布均匀,能量方程可以简化 为一个简单的形式,便于分析和计算。
水力学6 明渠均匀流
3.2
b
i =1/6500,渠底到堤顶
高程差为3.2m,电站引水流量 Q = 67m3/s。因工业发
展需要,要求渠道供给工业用水。试计算超高0.5m条
件下,除电站引用流量外, 还能供给工业用水若干?
渠中水深 过水断面 湿周 水力半径
谢才系数 流量
h 3.2 0.5 2.7m
A b mhh 35 1.5 2.7 2.7 105 .44m2
一般根据土质、或衬砌材料用经验法确定
水力计算任务 给定Q、b、h、i 中三个,求解另一个
计算类型
校核渠道的过流能力 求水深 求底宽 求底坡 设计断面尺寸
校核渠道的过流能力
已知断面形状、b、h、m、底坡 i、糙率n
校核流量 Q
一电站已建引水渠
为梯形断面, m =1.5,
超高
底宽b=35m,n = 0.03, m =1.5
b 2h 1 m2 35 2 2.7 1 1.52 44.74m
R A 105 .44 44.74 2.36m
C 1 R1 6 1 2.361 6 38.5 m1 2 s
n
0.03
Q AC Ri 105.4438.5 2.36 6500 77.4m3 s
保证电站引用流量下,
实际渠中总有各种建筑物。因此,多数明渠流 是非均匀流。
严格说,不存在明渠均匀流,均匀流是对明渠流 动的一种概化。
近似符合这些条件的人工渠、河道中一些流段可 认为是均匀流。
• 离开渠进口、或水工建筑物一定距离远的顺直 棱柱体明渠恒定流
• 天然河道某些顺直、整齐河段在枯、平水期
均匀流段
非均匀流段
非均匀流段
i>0
i=0
i<0
明渠均匀流
A——过流断面面积,A=(b+mh)h;
χ——湿周, b
R——水力半径,R
2hA
1
m2
明渠均匀流
B
h
b
a
1.2 过流断面的几何要素
边坡系数m的大小决定于渠壁土壤或护面的性质,如表6-1所示。
土壤种类 边坡系数m
土壤种类
细粒沙土
3.0~3.5
重壤土、密实黄土、 普通黏土
砂壤土或松散土 壤
2.0~2.5
明渠均匀流
最大允许流速(m3/s) 0.6~0.8 0.65~0.85 0.70~1.0 0.75~0.95
最大允许流速(m3/s) 0.35~0.45 0.45~0.6 0.60~0.75 0.75~0.90 0.90~1.10 1.10~1.30
1.4 明渠均匀流水力计算
【例6-1】有一顺直的梯形断面棱柱形排水土渠,其底宽b=3.5m,边坡系数m=1.25, 粗糙系数n=0.023,渠底坡度i=0.000 5,设计正常水深h0=1.5m,试校核渠道的输 水能力和流速。
密实重黏土
密实砂壤土、轻 黏壤土
1.5~2.0
各种.5
边坡系数m 1.0~1.5
1.0 0.5~1.0
明渠均匀流
1.3 明渠均匀流基本公式
明渠水流一般属于湍流粗糙区,其流速公式通常采用谢才公式,即
C RJ
式中式中C为谢才系数。此外,因明渠均匀流的水力坡度J和渠底坡的坡度i 相等,故流速还可表示为
4.5
5.0
6.0
8.0
10.0
明渠均匀流
1.4 明渠均匀流水力计算
均质黏性土
轻土壤 中土壤 重土壤 黏土 均质无黏性土
明渠均匀流计算公式
第一节明渠均匀流的基本公式
一、明渠均匀流水力计算的基本公式
1.明渠均匀流水力计算的基本公式
连续性方程(4-7):
谢才公式(6-29)及式(9-1),明渠均匀流的基本公式为:
(9-2)
(9-3)
式中:R——水力半径(m),R=A/P;
P——过水断面湿周,是过水断面固体壁面与液体接触部分的周长(m);
J——水力坡度;
C——谢才系数(m1/2/s)。
——明渠均匀流的流量模数,
——相应于明渠均匀流正常水深时的过水断面面积。
选择:流量模数K0的量纲为:你的回答: A.无量纲 B.L3/T C.L2/T
D.L3/2/T
2. 谢才系数的计算
(1)曼宁公式:
(6-31)
(2)巴甫洛夫斯基公式:
(6-32)
式中:
二、梯形断面的几何计算(图9-7)
1.基本量
b——底宽;h——水深;
m——边坡系数m =ctan。
m越大,边坡越缓;m越小,边坡越陡;m=0时是
矩形断面。
m根据边坡岩土性质及设计范围来选定。
2.导出量
B——水面宽,B=b+2mh
A——过水断面面积,A=(b+mh)h
P
——过水断面湿周,
R ——水力半径,
图9-7。
明渠均匀流的特征
明渠均匀流的特征
明渠均匀流是指在水流中没有明显的湍流,流速和流量在渠道中处处相等的一种情况。
明渠均匀流的特征包括:
1. 定常性:明渠均匀流的流速和流量在时间上保持不变,没有明显的波动。
2. 水面平稳:在明渠均匀流中,水面维持一个稳定的水位高度,没有明显的波浪。
3. 流速均匀:明渠均匀流中,流速在横截面上的分布是均匀的,即流速处处相等。
4. 流量均等:明渠均匀流中,流量在渠道的不同截面上保持不变,即流量处处相等。
5. 流速与水位高度成正比:在明渠均匀流中,流速与水位高度之间存在一定的关系,通常遵循曼宁方程。
需要注意的是,明渠均匀流的假设是在忽略湍流等复杂因素的前提下得出的,并且只在特定条件下成立。
在实际情况中,由于各种因素的影响,明渠中的流动往往是不均匀的。
明渠均匀流
上二式中消去db/dh后,解得
b m 2( 1 m 2 m) f ( m) h
不难证明,矩形或梯形水力最优断面实际上是半圆的外 切多边形断面。
在一般土渠中,边坡系数m>l,则按水力最优断面求得宽深比<1;
即梯形水力最佳断面通常都是窄而深的断面。这种断面虽
然工程量最小,但不便于施工及维护;所以,无衬护的大型土渠不 宜采用梯形水力最优断面。
明渠的几何特性
1.明渠的底坡
明渠渠底纵向(沿水流方向)倾 斜的程度称为底坡,以i表示。
i等于渠底线与水平线夹角θ的正 弦,即i=sinθ。 按底坡分类:顺坡(或正坡)明渠 平坡明渠 逆坡(或负坡)明渠
水面线 底坡线
θ
顺坡、正坡 i > 0 平坡 i = 0 逆坡、负坡i < 0
在平坡渠道中i=0,流段重力在顺流方向分力Gsinθ=O;在逆坡渠道中,流 段重力的分力Gsinθ与摩阻力Ff的方向一致;因而都不可能满足Gsinθ=Ff
i=J
5 3 1
1 12 2 3 1 A i 2 K i Q AC Ri Ai R 2 n n 3
从经济的观点来说,总是希望所选定的横断面形状和尺寸在通过已 知流量时面积最小,或者是过水面积一定时通过的流量最大。符合 这种条件的断面,其工程量最小,过水能力最强,称为水力最优
断面。水力最优断面是湿周最小的断面。
产生均匀流的条件: 1.水流应为恒定流。因为在明渠非恒定流中必然伴随着波浪的产生,流 线不可能是平行直线。 2.流量应沿程不变,即无支流的汇入或分出。 3.渠道必须是长而直的棱柱体顺坡明渠,底坡、粗糙系数沿程不变。 4.渠道中无闸、坝或趺水等建筑物的局部干扰。
明渠均匀流的计算公式The Formula of uniform flow
明渠均匀流 计算公式
明渠均匀流计算公式明渠均匀流是水力学中的一个重要概念,咱们今天就来好好聊聊它的计算公式。
先给大家举个小例子,就说咱们村头那条灌溉渠吧。
每到灌溉的时候,水就顺着渠道哗哗地流。
如果这水流的速度、水深啥的在整个渠道里都差不多,那这就是明渠均匀流啦。
明渠均匀流的计算公式有好几个,其中最常用的就是谢才公式。
这个公式是这样的:V = C * √(RJ) 。
这里的 V 表示流速,C 是谢才系数,R 是水力半径,J 是水力坡度。
咱先来说说这水力半径 R 。
它等于过水断面面积 A 除以湿周 X 。
比如说一个矩形的渠道,宽是 b ,水深是 h ,那过水断面面积 A 就是b * h ,湿周 X 就是 b + 2h ,算出来的 R 就是 (b * h) / (b + 2h) 。
再讲讲水力坡度 J 。
简单说就是渠道底坡的坡度。
要是渠道底坡没有啥变化,那这 J 就等于底坡的坡度 i 。
谢才系数 C 呢,它的计算有点复杂,一般可以用曼宁公式来算:C= (1 / n) * R^(1/6) 。
这里的 n 是糙率,反映渠道壁面的粗糙程度。
糙率越大,水流受到的阻力就越大,速度就越慢。
就像我之前去参观一个水利工程,看到他们设计的渠道。
工作人员拿着各种仪器测量数据,然后就在那算啊算的。
我凑过去看,他们就是在根据这些公式来确定渠道的尺寸和水流速度,以保证水能顺利地流到需要灌溉的地方,还不浪费水资源。
实际应用这些公式的时候,可得仔细啦。
比如说测量数据得准确,一点小误差可能就会导致结果大不同。
还有就是要根据具体情况选择合适的公式和参数。
总之,明渠均匀流的计算公式虽然看起来有点复杂,但只要咱们搞清楚每个参数的含义,多结合实际情况练习练习,就一定能掌握好,让水流乖乖地按照我们的想法流动,为生产生活服务。
希望今天讲的这些能对大家理解明渠均匀流的计算公式有点帮助,大家加油学,以后说不定还能自己设计渠道呢!。
流体力学第六章明渠恒定均匀流
找出对应的h。 (2)h一定,求b
假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比βm,根据
h=f(βm)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
流的汇入与分出; (3)渠道表面粗糙系数沿程不变; (4)渠道中无闸门、坝体或跳水等建筑物
对水流的干扰。
明渠均匀流的特性: (1)流线均为相互平行的直线; (2)过水断面上的流速分布、断面平均流
速沿程不变,V 2不变; 2g
(3)水面线、总水头线及底坡线三者相互 平行。
明渠均匀流的计算公式:
谢才公式:v C RJ C Ri
设计n值偏小,设计阻力偏小,断面尺寸 偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小
或者过水断面一定时流量最大。
51
Q AC
Ri
A
3i n
2
•
1
2
3
n,i,A一定时,湿周χ越小,Q越大; n,i,Q一定时,湿周χ越小,A越小。
梯形水力最佳断面: n,i,A一定时,湿周
χ最小。
dA dh
d
dh
0
0
m
R
2( A
1 m2 m) hm
m 2
§6-2 简单断面明渠均匀流的水力计算
➢ 验算渠道的输水能力:已知断面形状、 尺寸、n、i,求Q。
➢ 确定渠道底坡:已知断面形状、尺寸、n、 Q,求i。
➢ 确定渠道的断面尺寸:已知Q、i、n、m, 求断面尺寸b和h。
确定渠道的断面尺寸:
例1:某矩形断面渠道,粗糙系数
水力学(第六章明渠均匀流)
二、明渠横断面 常 表5-2
断面形状
B
见 断 面 水 力 要 素 矩形、梯形、圆形过水断面的水力要素
水面宽度 B
过水断面积
A
湿周
x
水力半径
R
h
b
b 2mh
b
B
bh
b 2h
bh b 2h
2
m
m
h
b mhh
b 2h 1 m
b m hh
b 2h 1 m 2
b
P
2
AFLeabharlann f0D四、明渠均匀流产生的条件
必要条件 恒定流
流量沿程不变(无分叉和汇流情况)
渠道为长、直的棱柱体顺坡渠
渠中无闸、坝、跌水等建筑物的局部干扰 底坡、糙率沿程不变
六、明渠计算公式
谢才公式:
v C RJ
总结了一系列渠道水流实测 资料的基础上, 提出明渠均匀流 流速与流量的经验公式-谢才公
一、明渠的定义
明渠是一种人工修建或自然形成的渠槽。明渠中流动的 液体称为明渠水流。 当液体通过明渠流动时,形成与大气相接触的自由水面,
表面各点压强均为大气压强,所以明渠水流为无压流。
明渠水流可分为恒定流与非恒定流、均匀流与非均匀流、
渐变流与急变流等。
一、明渠的定义
明渠水流
明渠恒定流
明渠恒定均匀流
三、明渠的底坡 明渠底坡有三种类型 正坡 i > 0
平坡 i = 0
渠底高程沿流程降低
渠底高程沿程不变
负坡 i < 0
渠底高程沿流程增加
i > 0 顺坡
i = 0 平坡
i < 0 逆坡
四、明渠均匀流产生的条件
水力学 明渠均匀流
z
i0
渠底i
L/ z 渠道底坡 i sin tan L
(2)过水断面等要素不变,为 棱柱形渠道
(3)恒定流
三、明渠均匀流的基本公式
流速公式
v C Ri 1 R n
流量公式
1 6
模数
2 3 1 2
W C R
v I
1 Ri R I n
1 Q C Ri R i n
cos1 (1 2
水力半径
R
D sin (1 ) 4
h h h D (1 2 ) (1 ) D D D D h 4 2 cos1 (1 2 ) D
sin
2
cos1 (1 2
h ) D
2
D D ( ) 2 (h ) 2 2 2 2 h (1 h ) D D D 2
2 1 3 2
模数
K C R
Q i
四、水力最优断面
1 i C Ri R i n n 2 3 min
2 1 3 2 5 3
水面宽度 B
Qmax
水 深 h
边坡系数
d bh mh 2 2 m 2 1 m2 2 m 2 1 m2 dh h h h 2m 2 1 m 2 0 b
第二节 明渠均匀流 水力计算
求输水能力 (例4-1)
求低坡I (例4-2)
确定断面尺寸
已知b求h (例4-3) 或已知h求b
按水力最优断面 (例4-4) 给定流速 (例4-5)
三、 无压圆管均匀流 (一)、计算的基本公式
V C 1 RI R 6 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成明渠均匀流的条件:
1、恒定流 2、顺坡,底坡沿程不变,棱柱形渠道 3、糙率沿程不变 4、渠道充分长,渠道中没有建筑物的局部
干扰
• 明渠均匀流的基本公式
• 谢才公式
V C Ri
Q CA Ri K i
K称为流量模数 曼宁公式
C
1
1
R6
n
Q
1
2
R 3J
1 2
A
n
正常水深h0,与其相应的水力要素可写为 A0、χ0、R0、C0和K0
§7.1 概述
明渠水流是一种具有自由液面的水流, 水流的表面压强为大气压强,即相对压强 为零,明渠水流也称为无压流。
• 明渠的横断面 • 与渠道中心线相垂直的铅垂面与渠底及渠壁的交线, 构成明渠的横断面 • 横断面与过流断面的区别
二、明渠均匀流和非均匀流
• 以梯形断面为例, 各水力要素的关系
水面宽度
Vmin V Vmax
§8.2 明渠均匀流的水力特性和基本公式
• 明渠均匀流的水力特征及其形成条件
• 明渠均匀流是流速沿程不变,流线为一 系列相互平行的直线,明渠的水深和断 面的流速分布均沿流不变的流动
• 明渠均匀流的特性
J JP i
分析明渠均匀流流段的受力
P1 G sin P2 T 0
B b 2mh
过流断面面积
A 1 h(b 2mh b) (b mh)h 2
湿周 b 2h 1 m2
水力半径
R A (b mh)h
b 2h 1 m2
• z2 dzo sin
L
ds
顺坡
平坡
逆坡
• 渠道的允许流速 最大允许流速、最小允许流速
V C0 R0i
Q C0 A0 R0i K0 i
§8.3 梯形断面明渠均匀流的水力计算
• 梯形断面明渠均匀流的三类基本问题
明渠水力计算
Q CA Ri
计算流量 h0 A0 0 R0 C0 Q
计算正常水深
试算图解法
试算图解法:
• 使用Excel软件计算 • 正常水深试算.xls
三类基本问题: 1 验证渠道的输水能力 2 确定渠道底坡 3 设计渠道断面尺寸