基于热电偶的数字温度计的设计
数显温度计设计方案
数显温度计设计方案数显温度计是一种利用热敏电阻或热电偶等传感器来测量温度的仪器,通过将温度转化为电信号,再经过电路处理生成数值,并将其以数字的形式显示出来。
设计方案的硬件部分包括:传感器、模拟信号处理电路、数字信号处理电路、数码显示电路和电源电路。
1. 传感器:选择热敏电阻或热电偶作为温度传感器。
热敏电阻是一种温度传感材料,其电阻值随温度变化而变化。
热电偶是一种通过两种不同金属之间的热电效应来测量温度的传感器。
2. 模拟信号处理电路:将传感器输出的温度电信号进行放大、滤波和线性化处理。
放大电路可以选择运算放大器等器件进行放大处理。
滤波电路可以采用RC滤波器来去除杂散噪声。
线性化电路可以通过对传感器输出特性进行校准来实现温度信号的线性化。
3. 数字信号处理电路:将模拟信号转换为数字信号,并进行AD转换。
使用微控制器或FPGA等数字电路芯片,通过串行或并行接口将模拟信号转换为数字信号,并进行数据处理和存储。
4. 数码显示电路:使用数码管或LCD等显示器件来显示测量到的温度数值。
通过控制数码管的驱动电路,将数字信号转化为可视化的数字显示结果。
5. 电源电路:为整个温度计提供工作电源。
可以通过直流电源或电池来为电路供电。
在设计过程中还需注意以下几点:1. 传感器的选择要考虑到测量范围、精度和响应时间等因素。
2. 模拟信号处理电路应能对传感器输出的小信号进行放大、滤波和线性化。
3. 数字信号处理电路应具备足够的计算能力和存储容量,以便进行温度数据的处理和存储。
4. 数码显示电路应能将数字信号转换为直观可见的温度数值,并保证显示的准确性和稳定性。
5. 电源电路应具备稳定的电源输出,以确保温度计的正常工作。
综上所述,数显温度计的设计方案主要包括传感器选择、模拟信号处理电路设计、数字信号处理电路设计、数码显示电路设计和电源电路设计等方面。
在设计过程中需要考虑传感器的选择、信号处理的精度和稳定性、显示的直观性和可靠性等因素,以确保温度计的准确测量和可靠工作。
基于热电偶的数字式测温仪设计
(1)热电偶输出的热电势信号一般都很小(mV 数量级),在进行 A/D 转换之前,必须经过高增益的 直流放大。
(2)热电偶的热电特性,一般来讲都是非线性的。 欲使显示数和输出脉冲数与被测温度直接相对应, 必须采用线性化措施进行非线性校正。可采用硬件 校正法或软件校正法。在带有计算机或微处理器的 测量系统中,非线性校正(和冷端补偿)工作,都 直接由计算机完成,即所谓“软件校正法”。所谓“硬 件校正法”即采用的是非线性校正装置。
������5
=
100 10
=
10,适当调整������������2
,可使放大倍数
������������ = 100。
图 2-1 温度测量及放大电路
▪2.2 冷端温度补偿电路
根据国际温标规定,热电偶的分度表是以 T0 = 0℃作为基准进行分度的,而在实际使用过程中, 自由端温度T0 往往不能维持在0℃,那么工作温度 为 T 时在分度表中所对应的热电势������������������(������, 0)与热电 偶 实 际 输 出 的 电 势 值 ������������������(������, ������0) 之 间 的 误 差 为 ������������������(������, 0) = ������������������(������, ������0) − ������������������(������0, 0) 。由此可见,差 值������������������(������0, 0)是自由端温度������0 的函数,因此需要对热 电偶自由端温度进行处理。而且在工程测温中,冷 端温度常随环境温度的变化而变化,将引入测量误 差,故对冷端进行处理和补偿十分必要。
(1-2)
由此可知,������������������(������, ������0)与 T 有单值对应关系,这 就是热电偶测温的基本公式。
基于热电偶的温度测试仪设计
基于热电偶的温度测试仪设计摘要:基于热电偶的温度测试仪,该仪器是以AT89C51单片机为核心,由AD590,由热电偶测量热端温度T,该热电偶采用K型热集成温度传感器测量冷端温度T电偶(镍铬-镍硅热电偶)。
它们分别经过I/V转换和线性放大,分时进行A/D转换,转换后的数字信号送入AT89C51单片机,经单片机运算处理,转换成ROM地址,再通过二次查表法计算出实际温度值,此值送4位共阴极LED数码管显示。
该热电偶测温仪的软件用C语言编写,采用模块化结构设计。
关键词:热电偶,冷端温度补偿,89C51单片机,ADC0809,线性化标度变换Abstract:Thermocouple-based temperature testing instrument, the instrument is based on AT89C51 microcontroller as the core, from AD590 integrated temperature sensor measures the cold junction temperature T0, measured by the thermocouple hot-side temperature T, the use of K-Thermocouple Thermocouple ( Ni-Cr - Ni-Si thermocouple). They are through the I / V conversion and linear amplification, time for A / D conversion, the converted digital signal into the AT89C51 microcontroller, microcontroller operation after processing into ROM address, and then through the second look-up table method to calculate the actual temperature value, this value is sent to four common cathode LED digital tube display. The thermocouple thermometer software with C language, using a modular structure design.Keywords:Thermocouple, cold junction temperature compensation, 89C51 microcontroller, ADC0809, linear scale transformation目录1 前言 (1)2 整体方案设计 (2)2.1方案论证 (2)2.2方案比较 (3)3 单元模块设计 (4)3.1冷端采集和补偿电路模块 (4)3.1.1 AD590介绍 (4)3.1.2冷端采集和补偿电路分析 (6)3.2热端放大电路模块 (6)3.3A/D转换器ADC0809 (7)3.4单片机模块 (8)3.5LED显示模块 (11)4 软件设计 (13)4.1主程序 (13)4.2A/D转换子程序 (13)4.3线性化标度变换子程序 (15)5 系统调试 (18)5.1调试软件介绍 (18)5.1.1 ISIS简介 (18)5.1.2 Keil C51简介 (18)5.2硬件调试 (18)5.3软件调试 (19)5.4硬件软件联调 (20)6系统技术指标及精度和误差分析 (21)7设计小结 (22)8总结与体会 (23)9参考文献 (24)附录1:电路总图 (25)附录2:软件代码 (26)1 前言温度是表征物体冷热程度的物理量,温度传感器是通过物体随温度变化而改变某种特性来间接测量的。
基于热敏电阻的数字温度计设计
目录1 课程设计的目的 (1)2 课程设计的任务和要求 (1)3 设计方案与论证 (1)4 电路设计 (2)4.1 温度测量电路 (3)4.2 单片机最小系统 (6)4.3 LED数码显示电路 (8)5 系统软件设计 (9)6 系统调试 (9)7 总结 (11)参考文献 (13)附录1:总体电路原理图 (14)附录2:元器件清单 (15)附录3:实物图 (16)附录4:源程序 (17)1 课程设计的目的(1)掌握单片机原理及应用课程所学的理论知识;(2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题;(3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧;(4)培养认真严谨的工作作风和实事求是的工作态度;(5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。
2 课程设计的任务和要求(1)采用LED数码管显示温度;(2)测量温度范围为-10℃~110℃;(3)测量精度误差小于0.5℃。
3 设计方案与论证方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。
该方案的原理框图如图3-1所示。
DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。
它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控图3-1方案一系统框图方案二:温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,将热敏电阻与固定电阻串联后分压,经A/D转换器将其转换为单片机可识别得二进制数字量,然后根据程序查表得到温度值,单片机主要控制LED显示器显示正确的温度值,并根据设置的上下限控制继电器动作,从而控制外部负载。
该方案的原理框图如图3-2所示。
基于K型热电偶的数字式测温仪设计
基 于 K 型 热 电偶 的数 字 式测 温仪设 计
梁 波 , 何 小 刚
( 原 理 工 大 学 信 息 工 程 学 院 , 山 西 太 原 太 002) 3 0 4
摘 要 :使 用 K 型 热 电偶 作 为 温 度 测 量传 感器 ,根 据 热 电 偶 的冷 端 温 度 补 偿 设 计 制 作 数 字 式 智 能 测 温 仪 。把 热 电偶 传 来 的 信 号 进 行 放 大 及 线 性 化 处 理 , 并 通 过 矫 正 得 到 被 测 点 的 温 度 值 。 该 温 控 器 测 温 范 围 为
0 引 言
在大量 的热 工仪 器 中, 电偶 作 为 温度 传 感 器 得 热 到 了广泛 的应用 , 它利 用热 电效应 , 根据 冷热端 温度 差 产 生 的热 电动势 进行 测 温 。它 直 接 和被 测 对 象 接触 , 不 受 中间介 质 的 影 响 , 有 测 量 温 度 范 围广 、 确 度 具 精 高 、 造简单 、 构 使用 方便 等优 点 。 K型( 铬 一镍 硅 ) 电偶具 有 热 电势 大、 敏 度 镍 热 灵 高、 响应速度快 、 线性度好 、 测温范 围较宽 、 价低 、 学 造 化 稳 定性好等 优点 , 可在 10 0℃下长 期使 用 , 而是 工 0 因 业 生产制造部 门应 用最 广泛 的 热 电偶 元件 。本 文使 用 K 型热电偶作为温度测量 传感器设计 了数 字式测温仪 。 1 设 计 目 的 及 原 理
第 3 ( 第 1 2期 ) 期 总 7 21 0 2年 6月
机 械 工 程 与 自 动 化
ME CHANI CAL ENGI NEERI NG & AUTOM ATI ON
No .3
J r u1 .
热电偶温度计的设计
热电偶温度计的设计本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March热电偶温度计的设计Xxxxxxxxxxx 计算机科学与工程学院计算机科学与技术xxxxx班学号:xxxxxx邮编:xxxxx摘要热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。
在本实验中利用点热偶测量温度,其基本原理就是热电效应。
将两种不同的金属两端分别连接起来,构成一个闭合回路,一端加热一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。
因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计测量温度。
关键字热电偶,温度差,电动势,水浴锅前言在做热电偶温度计设计这一实验中时,了解了热电偶和温度差现象,引发了我对它的兴趣,经过自己的查阅资料成功设计出该实验的设计方案。
实验仪器介绍铜-康铜温差电偶、数字电压表、水浴锅、保温杯实验原理1)温度差现象把两种不同的导体(称为热电偶丝材或热电极)两端接合连接成回路,并使两接点处于不同温度,则回路中就产生电动势。
这种现象称为塞贝克效应(热电效应)。
这种电动势与两接点的温度及两材料性质有关,所以称为热电动势温差电现是由温差而引起电动势以及由电流而引起吸热和放热的现象,又称热电现象。
它包括塞贝克、珀耳帖及汤姆孙等三个效应。
塞贝克效应将两个不同导体(或半导体)两端相连,组成一回路,当两个接头处在不同温度时,在回路中有电动势产生的现象。
1821年由德国物理学家T.塞贝克发现。
这电动势称为温差电动势。
金属的塞贝克效应常被应用于测量温度,而半导体的塞贝克效应常可被用来将热能直接转化成电能,即制成半导体温差发电器。
珀耳帖效应当有电流通过由两种不同材料组成的回路时,在两种材料的接头处会发生吸热或放热的现象。
1834年由法国物理学家J.珀耳帖发现。
数字式温度计的设计与制作
设计三数字式温度计的设计与制作一、目的和要求1.目的(1)通过本次综合设计,进一步了解智能传感与检测技术的基本原理、智能检测系统的建立和智能检测系统的设计过程。
(2)学生设计制作出数字式温度计,提高学生有关工程系统的程序设计能力,。
(3)进一步熟悉掌握单片机技术、c 语言、汇编语言等以及在智能检测设计中的应用。
2.要求(1)充分理解设计内容,并独立完成综合设计报告。
(2)综合设计报告要求:综合设计题目,综合设计具体内容及实现功能,结果分析、收获或不足,程序清单,参考资料。
二、实验设备及条件热电偶Easypro编程软件热电偶或智能传感器DS18B20Keil c安装盘PC机、剥线钳、面包板、镊子、导线、电源、示波器、万用表、频率计单片机及其外围电路所需元器件烙铁、焊接板等焊接工具万用表电源TEKTRONIX TDS1002 60MHZ示波器三、实验原理、内容本实验培养学生了解便携式数字仪表的制作,数字式显示仪表是一种以十进制数形式显示被测量值的仪表,与模拟式的显示仪表相比较,数字显示仪表具有读数直观方便,无读数误差准确度高,响应速度快,易于和计算机联机进行数据处理等优点。
数字式显示仪表的基本构成方式如下,图中各基本单元可以根据需要进行组合,以构成不同用途的数字式显示仪表。
将其中一个或几个电路制成专用功能模块电路,若干个模块组装起来,即可以制成一台完整的数字式显示仪表。
其核心部件是模拟/数字转换器,可以将输入的模拟信号转换成数字信号,以A/D转换器为中心,可将显示仪表内部分为模拟和数字两大部分。
仪表的模拟部分一般设有信号转换和放大电路,模拟切换开关等环节。
信号转换电路和放大电路的作用是将来自各种传感器或变换器的被测信号转换成一定范围内的电压值并放大到一定幅值,以供后续电路处理。
仪表的数字部分一般由计数器,译码器,时钟脉冲发生器,驱动显示电路以逻辑控制电路等组成。
经放大后的模拟信号由A/D转换器转换成相应的数字量后,译码,驱动,送到显示器件去进行数字显示。
基于热电偶的智能温度表软件设计-机械、力学-毕业论文
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要本次课题设计所选用的温度测量元件是热电偶,它以AT89C51单片机为核心组成部分,并通过AD590集成温度传感器的作用下进行测量,并以一端温度0℃为标准,即冷端温度T0,再对热量较高的另一端进行测量,即热端温度T。
本次设计所使用的是K型热电偶,它是目前使用量比较大的一种廉金属热电偶,它的工作原理是通过I/V转换,再结合线性放大,使其完成分时A/D转换,在转换完成后所输出的数字信号会传递给单片机,经由单片机进行计算,进而得到ROM地址,此时便可以进行二次查表,得出最终的温度值,该值会通过LED 数码管来显示。
热电偶软件需要用到C语言、模块化设计来实现。
关键词:热电偶冷端温度补偿 89C51单片机线性化标度变换AbstractThe temperature measuring element selected for this project design is a thermocouple. It uses the AT89C51 single-chip microcomputer as the core component and measures through the AD590 integrated temperature sensor. The temperature at one end is 0°C, which is the cold end temperature T0 Then measure the other end with higher heat, namely the hot end temperature T. This design uses a K-type thermocouple, which is a cheap metal thermocouple with a large amount of current use. Its working principle is through I/V conversion, combined with linear amplification to complete time-sharing A/ D conversion, after the conversion is completed, the digital signal output will be passed to the single-chip microcomputer, and then calculated by the single-chip microcomputer, and then the ROM address can be obtained. At this time, a second lookup table can be performed to obtain the final temperature value, which will be passed through the LED Tube to display. Thermocouple software needs to use C language, modular design to achieve.Keywords: Thermocouple cold junction temperature compensation 89C51 microcontroller linear scale transformation目录第一章绪论 (4)1.1 前言 (4)1.2 国内外智能温度检测技术的发展 (5)1.2.1国内外测温技术现状 (5)1.2.2 国内外温度检测技术发展 (5)1.3 课题研究内容 (6)第二章整体方案设计 (6)2.1 设计原则 (6)2.2 整体设计思路 (6)2.3 整体设计框图 (7)第三章系统的硬件电路设计 (7)3.1 单片机模块 (7)3.2 冷端采集和补偿电路模块 (11)3.2.1 AD590介绍 (12)3.3 热端放大电路模块 (14)3.4 A/D转换模块 (16)3.5 LED显示模块 (18)第四章系统的软件设计 (19)4.1 系统的综述 (19)4.2 系统主程序 (20)4.3 A/D转换子程序 (20)4.4 线性化标度变换子程序 (22)第五章系统的分析与调试 (24)5.1调试软件介绍 (24)5.1.1 protues仿真 (25)5.1.2 Keil C51 (25)5.2 硬件调试 (25)5.3 软件调试 (25)5.4 软硬件联合调试 (27)5.5 总结 (27)第一章绪论1.1 前言温度作为一种常见的物理量,用来反映的是某物体的冷热程度。
实验四 热电偶数字温度计的设计与定标1
实验四 热电偶数字温度计的设计与定标
【实验目的】
1、了解热电偶测温的基本原理和方法。
2、掌握数字温度计的设计和调试技巧。
【实验仪器】
热学综合实验平台、加热井、单端热电偶传感器、热电偶数字温度计设计实验模板。
【实验原理】
1、温差电效应
在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。
其优点是不仅使测量方便、迅速,而且可提高测量精密度。
温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。
如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图4-1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。
图4-1
2、热电偶
两种不同金属串接在一起,其两端可以和仪器相连进行测温(图4-2)的元件称为温差电偶,也叫热电偶。
图
4-2 A 金属:铜 B 金属:康铜
t 0 0t t。
实验-热电偶温度计的设计
【实验仪器】
铜-康铜温差电偶、数字电压表(或电位差计)、 保温杯、水浴锅(含温度显示)等。
a
热电偶温度计的设计
铜-康铜温差电偶 a
热电偶温度计的设计
数字电压表
a
热电偶温度计的设计
水浴锅
a
热电偶温度计的设计
保温杯
a
【实验提示】
热电偶温度计的设计
热电偶测量温度的基本原理是热电效应(或 温差效应),将两种不同材料的导体首尾相连 接成闭合回路,如两接点的温度不等,则在回 路中就会产生热电动势,这种现象称之为热电 效应(或温差效应)。
③为便于作图,每次温差的测量点宜取在 5℃或10℃的整数倍位置。
a
【思考题】
热电偶温度计的设计
①当热电偶回路中串联了其它的金属(比如测量 仪器等),是否会引入附加的温差电动势从而影响热 电偶原来的温差电特性?
②热电偶为什么能测温度?它与水银温度计比较 有哪些优点?
③升温和降温测量有什么差别?是否需要升温和 降温各测一次测量?目的是什么?
④如果热电偶与数字电压表的正负极反接,会出 现什么现象?
a
【参考资料】
热电偶温度计的设计
①本教材实验4 电偶的标定与测温。 ②大学物理实验,马黎君主编,中国建材工业出版社,2004。
a
论文格式
标题
热电偶温度计的设计
姓名
学校专业班级学号邮编
摘要 关键词
• 1、引言 • 2、实验原理(含公式、原理图) • 3、实验内容 • 4、实验数据 • 5、数据处理与实验结果 • 6、结束语(对实验结果的分析与讨论) • 参考文献
a
论文格式
热电偶温度计的设计
• 实验题目(小2号黑体) • 班级、学号、姓名(小4号宋体) • 摘要(小4号黑体)(要求100~200字) • 摘要内容(小4号宋体,1.5倍行距) • <摘要是论文内容的简短陈述,应以第三人称陈述。
基于热电偶的测温系统设计_毕业设计完整版
温度是一个十分重要的物理量大于它的测量与控制又十分重要的意义。随着现 代工弄也技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温 度:如大气及空调房中的温度高低直接影响着人们的身体健康;在大规模集成电路 生产线上环境温度不适当会严重影响产品的质量。
测温技术在生产过程中,在产品质量控制和检测设备在线故障诊断和安全保护 以及节约能源等方面发挥了重要作用。
本设计是将两者结合,利用单片基结合传感器技术而开发设计出一个温度监控 系统。该设计的预期结果就是设计出一套基于单片机控制的热电偶测温数字显示系 统并能 proteus 实现仿真。根据要求编写出应用程序,绘制出 protel 电路图,动 手完成实物设计。
4
XXXXXX 毕 业 设 计
2 总设计方案
本系统以 AT89S52 作为处理器,使用 MAX6675 作为温度传感器,配以温度显示。 整个系统力求结构简单,功能完善。使用温度传感器 MAX6675+AT89S52,MAX6675 将 热电偶测温应用时复杂的线性化、冷端补偿及数字化输出等问题集中在一个芯片上 解决,简化了将热电偶测温方案应用于嵌入式系统领域时复杂的软硬件设计,因而 该器件是将热电偶测温方案应用于嵌入式系统领域的理想选择。
数字温度计研究与设计论文
数字温度计研究与设计论文引言数字温度计是一种现代化的温度测量设备,它可以通过数字显示直观地反映当前的温度值。
在各个领域中,数字温度计被广泛应用于温度的监测与控制,例如气象测量、医疗设备、工业自动化等。
本篇论文旨在研究数字温度计的工作原理、实现方式及其在实际应用中的设计要点等方面内容。
1. 数字温度计的工作原理数字温度计通常采用数字传感器来测量温度值,并通过显示屏以数字形式输出。
它们的工作原理有以下几种常见类型:1.1 热敏电阻温度计热敏电阻温度计采用热敏电阻作为温度传感器。
随着温度的变化,热敏电阻的电阻值也会发生相应变化,通过测量电阻值的变化来确定温度值。
常见的热敏电阻温度传感器有NTC (负温度系数)和PTC(正温度系数)两种类型。
1.2 热电偶温度计热电偶温度计利用由两种不同金属组合而成的热电偶丝产生的热电势来测量温度。
随着温度的变化,热电势也会发生变化,通过测量热电势的变化来推导出温度的值。
热电偶温度计具有广泛的测量范围和快速的响应速度。
1.3 热电阻温度计热电阻温度计利用热敏电阻的电阻随温度变化的特性来测量温度。
它由金属或合金制成,具有较高的精度和稳定性。
常见的热电阻材料有铂金(PT100、PT1000)和镍铬合金。
2. 数字温度计的实现方式数字温度计可以通过多种方式实现,以下是几种常见的实现方式:2.1 单片机实现单片机是一种具有强大的运算能力和IO口的集成电路。
通过将数字传感器连接到单片机的IO口,并编程实现温度的读取和显示功能,可以实现一个简单的数字温度计。
```c #include <stdio.h>// 定义温度传感器引脚 #defineTEMPERATURE_SENSOR_PIN A0void setup() { // 初始化串口 Serial.begin(9600); }void loop() { // 读取温度值 int temperature = analogRead(TEMPERATURE_SENSOR_PIN);// 转换为摄氏度 float celsius = (5.0 * temperature * 100) / 1024;// 打印温度值 Serial.print(。
基于热电偶温度传感器的高速测温系统设计--毕业论文-毕业设计资料
本科毕业设计题目基于热电偶温度传感器的高速测温系统设计学生姓名专业班级学号院(系)指导教师目录中文摘要 (I)英文摘要 (II)1绪论 (1)2系统原理概述 (3)2.1快速测温的算法实现 (3)2.2热电偶测温基本原理 (4)2.3热电偶冷端补偿方案确定 (5)2.3.1分立元气件冷端补偿方案 (5)2.3.2集成电路温度补偿方案 (6)2.3.3方案确定 (7)2.4硬件组成原理 (7)2.5软件系统工作流程 (7)3硬件设计 (9)3.1热电偶简介 (9)3.1.1热电效应 (9)3.1.2热电偶基本定律 (11)3.1.3热电偶温度补偿 (11)3.1.4热电偶的结构形式 (12)3.1.5K型热电偶概述 (13)3.1.6K型热电偶特点 (14)3.2具有冷端补偿的数字温度转换芯片MAX6675功能简介.. 143.2.1冷端补偿专用芯片MAX6675性能特点 (15)3.2.2冷端补偿专用芯片MAX6675温度变换 (16)3.2.3冷端补偿专用芯片MAX6675的冷端补偿问题 (17)3.2.4冷端补偿专用芯片MAX6675的热补偿跟噪声补偿问题 (17)3.2.5冷端补偿专用芯片MAX6675测量精度的提高方法 (17)3.2.6冷端补偿专用芯片MAX6675的温度读取 (17)3.3单片机选择及部分功能简介 (18)3.3.1AT89C51单片机的SPI实现 (20)3.4路同相三态双向总线收发器74LS245 (21)3.5硬件电路详细设计 (21)3.5.1温度采集电路 (21)3.5.2显示电路 (22)3.5.3报警电路 (24)3.5.4单片机控制电路 (25)4软件设计 (26)4.1主程序设计 (27)4.2温度采集转换程序设计 (28)4.3显示程序设计 (30)5系统仿真 (31)5.1Proteus概述 (31)5.2系统仿真结果 (31)结束语 (33)致谢 (34)参考文献 (35)附录 (36)基于热电偶温度传感器的高速测温系统设计摘要本文主要介绍了基于热电偶温度传感器的快速测温系统的设计。
基于热电偶的温度测量电路设计报告
基于热电偶的温度测量电路设计报告基于热电偶的温度测量电路设计报告基于热电偶的温度测量电路设计第一章摘要 (1)第二章引言 (1)第三章电路结构设计 (2)3.1 热电偶的工作原理 (2)3.2 冷端补偿电路设计 (3)3.3 运算放大器的设计 (4)第四章参数的计算 (5)4.1 补偿电路的计算 (5)4.2 运算放大器的计算 (7)4.3 仿真器仿真图示 (8)第五章基于DXP2021的电路设计 (11)5.1 PCB工程的建立及原理图的绘制 (11)5.2 PCB板图的生成以及布线 (12)5.3 PCB格式输出制电路板...................................................12 心得体会..............................................................................13 参考文献 (13)本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。
所要设计包括三部分,热电偶,冷端补偿,运算放大器。
热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。
本文从电路的原理开始,从电路的设计到参数的设计,从电路Multisim仿真图到DXP原理图的绘制及PCB工程的输出,最后制出电路板,涵盖设计各个方面。
关键词:热电偶冷断补偿放大器仿真图 DXP2021 PCB工程在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。
另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道内的气体或液体的温度及固体的表面温度。
热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。
热电偶温度计实验报告
热电偶温度计实验报告热电偶温度计实验报告引言:热电偶温度计是一种常用的温度测量仪器,通过测量两种不同金属的热电势差来确定被测物体的温度。
本实验旨在通过热电偶温度计测量不同温度下的电动势,并分析其特性和应用。
实验步骤:1. 实验器材准备:热电偶、数字温度计、恒温水槽、电源等。
2. 搭建实验装置:将热电偶的两个端口分别接入数字温度计和电源,将热电偶的探头置于恒温水槽中。
3. 实验操作:将恒温水槽的温度调节至20℃,记录此时数字温度计显示的温度和热电偶的电动势。
随后,逐渐增加恒温水槽的温度,每隔10℃记录一次温度和电动势,直到水槽温度达到100℃。
4. 数据处理:根据实验记录的温度和电动势数据,绘制温度和电动势的关系曲线,并进行分析。
实验结果:根据实验记录的数据,我们可以绘制出温度和电动势的关系曲线。
从曲线上可以观察到以下几个特点:1. 线性关系:在实验范围内,温度和电动势呈现出良好的线性关系。
随着温度的升高,电动势也随之增加。
这是因为热电偶的工作原理是基于两种不同金属的热电效应,温度升高会引起金属离子的热运动增加,从而增加热电势差。
2. 稳定性:在恒温水槽中,热电偶温度计的电动势在达到稳定状态后变化较小。
这说明热电偶温度计具有较好的稳定性和重复性,适用于长时间稳定温度测量。
3. 精度:通过实验数据的分析,我们可以计算出热电偶温度计的精度。
根据实验结果,我们可以得出该热电偶温度计的精度为±0.5℃。
这个精度对于一般实验和工程应用已经足够满足需求。
应用:热电偶温度计由于其较好的线性关系、稳定性和精度,被广泛应用于各个领域的温度测量中。
以下是一些常见的应用场景:1. 工业过程控制:在工业生产中,热电偶温度计被用于监测和控制各种工艺的温度,如炉温、液体流量等。
其高精度和稳定性能保证了生产过程的稳定性和质量。
2. 实验室研究:在科学研究中,热电偶温度计被广泛应用于各种实验室测量中,如化学反应温度、材料热性质等。
数显温度计原理
数显温度计原理
数显温度计是一种常见的温度测量仪器,其工作原理基于热电偶原理或其他温度敏感元件原理。
热电偶原理是利用两种不同金属或合金的热电势差随温度变化的特性来测量温度的方法。
具体来说,数显温度计使用了一个热电偶传感器。
传感器中包含两种不同金属或合金的线材,一端相连而在另一端开放。
当传感器的开放端与被测温度接触时,温度会引起传感线的热电势差,此热电势差通过连接电缆传送到温度计的电路中。
温度计的电路中,有一个专用的放大器用于放大传感器产生的微弱热电势差。
然后,该放大的信号经过一系列的处理和转换,最终被转化成一个可读取的数字,显示在数显温度计的液晶屏幕上。
为了保证测量的精确度和稳定性,数显温度计通常还包括一个参考焊点。
参考焊点是一个已知温度的点,在温度计内部与传感器焊接。
通过与参考焊点的温度进行比较,数显温度计可以校准和修正测量值,提高测量的准确性。
总的来说,数显温度计使用热电偶原理或其他温度敏感元件原理,通过测量热电势差来获取被测温度,并将其转化为数字信号显示在屏幕上。
通过引入参考焊点和一系列的校准和修正措施,数显温度计可以提供准确和稳定的温度测量结果。
基于热电偶传感器的智能测温仪设计
XXXXXXXXXXX本科毕业论文(设计)二〇一四 年 五 月 十日题 目 基于热电偶传感器的智能 测温仪设计作 者 XXXXX 学 院信息科学与工程学院 专 业电子信息科学与技术 学 号 XXX 指导教师 XXX湖南涉外经济学院本科毕业论文(设计)诚信声明本人声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立开展工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或创作过的作品成果。
对本文工作做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业论文(设计)作者签名:二0一四年五月十日摘要在工农业生产过程中,温度是一个非常重要的物理参数,温度检测类仪表作为温度测量工具也因此得到了广泛应用。
热电偶有成本低、准确度高和测温范围宽等优势,自然成为工业应用中优先考虑的方案。
为获得准确的测温值,本论文将微机技术与热电偶传感器结合起来,设计了较高精度较高集成度的智能测温仪表。
跟传统热电偶测温方案相比该设计采用了数字集成芯片MAX6675,该芯片集成了A/D转换器、冷端补偿及SPI 串口的热电偶放大器与数字转换器,这使得仪表的精度跟集成度得到提升的同时也降低了设计的复杂度。
该论文主要由测量仪表的软件设计、硬件设计两个部分组成。
热电偶测温仪表硬件主要由单片机最小系统电路、MAX6675数据采集与转换电路、数码管显示电路、串口通信电路、报警电路五个部分组成。
软件部分主要由数据读取程序、串口通讯程序、数码管动态扫描显示程序等程序模块组成。
设计的测温软件程序可以在51单片机上移植。
关键词:智能仪表;K型热电偶;温度测量;MAX6675;AT89S51ABSTRACTIn the industrial and agricultural production process, the temperature is a very important physical parameters , temperature detection instrumentation for temperature measurement tool class and therefore widely used . Thermocouple low cost , high accuracy and wide temperature range and other advantages, will naturally become a priority in industrial applications programs . In order to obtain an accurate temperature measurement value , this paper will microcomputer technology and thermocouple sensors combine high precision design of a high degree of integration of intelligent Thermometer . Compared with the conventional thermocouple program designed using digital integrated chip MAX6675, the chip integrates the A / D converter , serial interface SPI cold junction compensation and thermocouple amplifier and digital converter. This makes integration with precision instrumentation has been improved , while also reducing the complexity of the design. The paper mainly consists of measuring instruments software design, hardware design of the two parts. In this design , first introduced the hardware part of the thermocouple thermometer table. Thermocouple Thermometer hardware consists of five parts: the smallest single-chip system circuit , MAX6675 data acquisition and conversion circuits , digital display circuit , serial communication circuit , alarm circuit . Software part consists of the following modules: data reading program , serial communication program , the digital display dynamic scanning procedures routines. Software program designed temperature can be used in the 51 MCU .Keywords:intelligent instrument; K-type thermo-couple; temperature measurement;MAX6675; AT89S51目录诚信声明 (I)摘要 (II)ABSTRACT (III)第一章绪论 (1)1.1 研究背景和意义 (1)1.1.1 研究背景 (1)1.1.2 研究意义 (1)1.2研究现状及发展趋势 (1)1.2.1国内外测温研究现状 (1)1.2.2发展趋势 (2)1.3研究思路及主要内容 (3)第二章系统方案论证与总体设计 (4)2.1 系统方案论证 (4)2.1.1 热电阻测温系统 (4)2.1.2红外测温系统 (4)2.1.3热电偶测温系统 (4)2.2方案选型与总体设计 (4)2.3本章小结 (5)第三章仪表的硬件设计 (5)3.1温度的数据采集与前期数据处理模块 (6)3.1.1 K型热电偶 (6)3.1.2 K型热电偶串行模数转换器MAX6675 (7)3.1.3 MAX6675与AT89S51 单片机的接口 (9)3. 2 AT89S51与PC机串口通讯模块 (10)3.2 .1 RS-232C标准 (10)3.2.2 MAX232芯片简介 (10)3.2.3单片机的串行口工作方式 (11)3.2.4接口电路 (11)3.3蜂鸣器报警与报警温度值设定模块 (12)3.4 LED数码管显示模块 (12)3.5 AT89S51单片机最小系统模块 (12)3.5.1 AT89S51单片机 (12)3.5.2片内振荡器和时钟电路 (13)3.5.3单片机复位电路 (13)3.6 本章小结 (14)第四章软件设计 (15)4.1 KeilC51集成开发环境简介 (15)4.2 基于KeilC51软件编程设计 (15)4.2.1 主程序流程图 (15)4.2.2 读取MAX6675数据程序 (15)4.2.3 报警温度值设定程序 (17)4.2.4串口通讯程序 (17)4.2.5数码管显示子程序 (17)4.3本章小结 (19)第五章仿真 (20)5.1proteus简介 (20)5.2仿真步骤 (20)5.2.1建立仿真电路原理图 (20)5.2.2导入程序 (20)5.3仿真结果 (21)5.3.1测温模块与报警模块 (21)5.3.2 串口通讯模块仿真 (22)结论 (24)参考文献 (25)致谢 (26)附录A 硬件原理图 (27)附录B 设计程序 (28)第一章绪论1.1 研究背景和意义1.1.1 研究背景温度是所有物理现象中一个最基本的物理现象,它是应用于生产过程中最基础、最普通的工艺参数。