高中数学三角函数公式
高中数学-三角函数公式汇总
高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
高中数学三角函数公式大全全解
高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
高中数学三角函数万能公式
高中数学三角函数万能公式
三角函数是高中数学学习的一个重点,那幺,数学三角函数有哪些万能公式呢?下面小编整理了一些相关信息,供大家参考!
1 三角函数有哪些万能公式一、(1)(sinα) +(cosα) =1
(2)1+(tanα) =(secα)
(3)1+(cotα) =(cscα)
证明下面两式,只需将一式,左右同除(sinα) ,第二个除(cosα) 即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
二、设tan(A/2)=t
sinA=2t/(1+t ) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t ) (A≠2kπ+π,k∈Z)
cosA=(1-t )/(1+t ) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA 都可以用tan(A/2)来表示,当要求一串函数式最值的
时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。
三、sinα=[2tan(α/2)]/{1+[tan(α/2)] }
cosα=[1-tan(α/2) ]/{1+[tan(α/2)] }
tanα=[2tan(α/2)]/{1-[tan(α/2)] }
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
1 三角函数相关公式有哪些1.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.。
高中数学 三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限) 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαs i n c o s c o s s i n )s i n (⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαs i n s i n c o s c o s )c o s (⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαt a n t a n 1t a n t a n )t a n (⋅+-=- 五、二倍角公式αααcos sin 22sin = ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-=…)(* ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2s i n 22c o s 1=- 2)c o s (s i n 2s i n 1ααα+=+ 2)c o s (s i n 2s i n 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高中数学三角函数公式大全
2
⑥ 1 cos 2 cos 2
2
8.积化和差公式: (选择记忆) 1 1 sin cos sin( ) sin( ) cos sin sin( ) sin( ) 2 2 1 1 cos cos cos( ) cos( ) sin sin cos( ) cos 2 2 9.和差化积公式:
tan - tg - tg + tg - tg + tg tan + ctg - ctg + ctg - ctg
cot - ctg - ctg + ctg - ctg + ctg cot + tg - tg + tg - tg
- sin + sin - sin - sin + sin sin
2 tan 1 tan 2
7.半角公式: (符号的选择由
所在的象限确定) 2
① s1 cos 2
② sin 2
2
1 cos 2
③ cos
2
1 cos 2
④ cos 2
2
⑤ 1 cos 2 sin 2
① sin sin 2 sin
2 2 cos ③ cos cos 2 cos 2 2
cos
② sin sin 2 cos
2
sin
2 2
④ cos cos 2 sin
2
sin
tan tan 1 tan tan
高中数学常用三角函数公式
高中数学常用三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:xy =αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos (2π-α)= sinα sin (2π+α)= cosα cos (2π+α)= -sinα sin (23π-α)= -cosα cos (23π-α)= -sinα sin (23π+α)= -cosα cos (23π+α)= sinα 奇(二分之α的奇数倍)变(正负改变)偶(二分之α的偶数倍)不变(正负不变)符号看象限(把α当作第一象限,判断括号里的象限)三、两角和差公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-其它公式五、辅助角公式: )sin(cos sin 22ϕ++=+x b a x b x a (其中a b =ϕtan ) 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z)1、正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 2、余弦定理 A bc c b a cos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=3、三角形的面积公式高底⨯⨯=∆21ABC S B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边一夹角)。
高中数学三角函数常用公式
高中数学三角函数常用公式三角函数是高中数学中非常重要的内容,掌握了三角函数的常用公式,能够对解题提供很大的帮助。
下面是一些常用的三角函数公式。
1.基本公式:正弦函数(sin):sin(A+B) = sinA * cosB + cosA * sinBsin(A-B) = sinA * cosB - cosA * sinBsin2A = 2 * sinA * cosA余弦函数(cos):cos(A+B) = cosA * cosB - sinA * sinBcos(A-B) = cosA * cosB + sinA * sinBcos2A = cos^2A - sin^2A = 2cos^2A-1 = 1-2sin^2A正切函数(tan):tan(A+B) = (tanA + tanB) / (1 - tanA * tanB)2.万能公式:sinA = 2tan(A/2) / (1 + tan^2(A/2))cosA = (1 - tan^2(A/2)) / (1 + tan^2(A/2))tanA = 2tan(A/2) / (1 - tan^2(A/2))3.诱导公式:s in(π/2 - A) = cosAcos(π/2 - A) = sinAtan(π/2 - A) = 1 / tanAcot(π/2 - A) = 1 / tanAsec(π/2 - A) = 1 / cosAcsc(π/2 - A) = 1 / sinA 4.任意角公式:sin(-A) = -sinAcos(-A) = cosAtan(-A) = -tanAtan(A + π) = tanAsin(π - A) = sinAcos(π - A) = -cosAsin(A + π) = -sinAcos(A + π) = -cosAsin(2π -A) = -sinAcos(2π - A) = cosAsin(A + 2π) = sinAcos(A + 2π) = cosA5.等差关系:sin(A + nπ) = sinAcos(A + nπ) = cosAtan(A + nπ) = tanA6.倍角公式:sin(2A) = 2sinAcosAcos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan(2A) = (2tanA) / (1 - tan^2A)7.半角公式:sin(A/2) = ±√((1 - cosA) / 2)cos(A/2) = ±√((1 + cosA) / 2)tan(A/2) = ±√((1 - cosA) / (1 + cosA))8.三角恒等式:sin^2A + cos^2A = 11 + tan^2A = sec^2A1 + cot^2A = csc^2A这些是高中数学中常用的三角函数公式,掌握了这些公式,能够在解题过程中准确、快速地计算三角函数的值,帮助解决许多复杂的问题。
高中数学_三角函数公式大全
高中数学_三角函数公式大全一、基本公式1.正弦函数的基本公式:sin(A±B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(A+B) + sin(A-B) = 2sinAcosB2.余弦函数的基本公式:cos(A±B) = cosAcosB ∓ sinAsinBcos2A = cos^2(A) - sin^2(A)cos(A+B) + cos(A-B) = 2cosAcosB3.正切函数的基本公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)tan2A = (2tanA) / (1 - tan^2(A))tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)二、和差化积公式1.正弦函数的和差化积公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB2.余弦函数的和差化积公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB三、倍角公式1.正弦函数的倍角公式:sin2A = 2sinAcosA2.余弦函数的倍角公式:cos2A = cos^2(A) - sin^2(A)3.正切函数的倍角公式:tan2A = (2tanA) / (1 - tan^2(A))四、半角公式1.正弦函数的半角公式:sin(A/2) = ±√[(1 - cosA) / 2]2.余弦函数的半角公式:cos(A/2) = ±√[(1 + cosA) / 2]3.正切函数的半角公式:tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]五、和差化积公式1.正弦函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinB2.余弦函数的和差化积公式:cos(A±B) = cosAcosB ∓ sinAsinB六、和差化积公式的应用1. sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2sin((A-B)/2)cos((A+B)/2)2. cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)3. tanA + tanB = sin(A+B) / cosAcosBtanA - tanB = sin(A-B) / cosAcosB以上是一些常用的三角函数公式,其中涉及到的角度均为弧度制。
高中数学三角函数公式大全
高中数学三角函数公式大全1500字高中数学中的三角函数公式是非常重要且常用的知识点,它们有助于解决各种与三角函数有关的问题。
下面是一个包含一些高中数学三角函数公式的大全,共计1500字。
一、基本公式1. 弦的定义:在单位圆上,点P(x,y)对应的弦为OP,则弦的长度为2y。
2. 弧度制和角度制的转换公式:- 弧度制转角度制:角度 = 弧度× 180°/π- 角度制转弧度制:弧度 = 角度×π/180°3. 余弦函数和正弦函数的关系:cos²θ + sin²θ = 14. 三角函数的互余关系:- 余弦函数和正弦函数的互余关系:cosθ = sin(π/2 - θ),sinθ = cos(π/2 - θ)- 正割函数和余割函数的互余关系:secθ = csc(π/2 - θ),cscθ = sec(π/2 - θ)- 正弦函数和余割函数的互余关系:sinθ = csc(θ),cscθ = sin(θ)- 余弦函数和正割函数的互余关系:cosθ = sec(θ),secθ = cos(θ)- 正弦函数和余弦函数的互余关系:sin(π - θ) = sinθ, cos(π - θ) = -cosθ二、和差角公式1. 余弦函数的和差角公式:- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ2. 正弦函数的和差角公式:- sin(α + β) = sinαcosβ + cosαsinβ- sin(α - β) = sinαcosβ - cosαsinβ3. 余弦函数和正弦函数的和差角公式的整理形式:- cos(α + β) = cosαcosβ - sinαsinβ = cosαcosβ - cosαsinβtanβ = cosβ(cosα - sinαtanβ)- cos(α - β) = cosαcosβ + sinαsinβ = cosαcosβ + cosαsinβtanβ = cosβ(cosα + sinαtanβ)- sin(α + β) = sinαcosβ + cosαsinβ = cosαsinβ/cosβ + sinα = (sinαcosβ + cosαsin β)/cosβ = (sinαsecβ + cosαtanβ)/cosβ- sin(α - β) = sinαcosβ - cosαsinβ = cosαsinβ/cosβ - sinα = (sinαcosβ - cosαsin β)/cosβ = (sinαsecβ - cosαtanβ)/cosβ4. 正切函数的和差角公式:- tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)- tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)5. 反余弦函数的和差角公式:- arccos(cosαcosβ - sinαsinβ) = α + β或 2π - (α + β)- arccos(cosαcosβ + sinαsinβ) = α - β或 2π - (α - β)6. 反正弦函数的和差角公式:- arcsin(sinαcosβ + cosαsinβ) = α + β或π - (α + β) - arcsin(sinαcosβ - cosαsinβ) = α - β或π - (α - β)三、倍角公式1. 余弦函数和正弦函数的倍角公式:- cos2θ = 2cos²θ - 1- sin2θ = 2sinθcosθ2. 余弦函数和正切函数的倍角公式:- cos2θ = 1 - 2sin²θ = (1 - tan²θ)/(1 + tan²θ)3. 正弦函数和正切函数的倍角公式:- sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ)4. 正切函数的倍角公式:- tan2θ = (2tanθ)/(1 - tan²θ)5. 反余弦函数的倍角公式:- arccos(2cos²θ - 1) = 2θ或 2π - 2θ- arccos((1 - tan²θ)/(1 + tan²θ)) = 2θ或 2π - 2θ6. 反正弦函数的倍角公式:- arcsin(2sinθcosθ) = 2θ或π - 2θ- arcsin(2tanθ/(1 + tan²θ)) = 2θ或π - 2θ四、半角公式1. 余弦函数的半角公式:- cos(θ/2) = ±√((1 + cosθ)/2)2. 正弦函数的半角公式:- sin(θ/2) = ±√((1 - cosθ)/2)3. 正切函数的半角公式:- tan(θ/2) = sinθ/(1 + cosθ) = (1 - cosθ)/sinθ4. 反余弦函数的半角公式:- arccos((1 + cosθ)/2) = θ/2 或 -θ/2- arccos((1 - cosθ)/2) = θ/2 或 -θ/25. 反正弦函数的半角公式:- arcsin(√((1 - cosθ)/2)) = θ/2 或π/2 - θ/2- arcsin(-√((1 - cosθ)/2)) = -θ/2 或π/2 + θ/2六、特殊角值1. 30°和150°的正弦、余弦和正切值:- sin30° = 1/2,cos30° = √(3)/2,tan30° = 1/√(3)- sin150° = 1/2,cos150° = -√(3)/2,tan150° = -1/√(3) 2. 45°和135°的正弦、余弦和正切值:- sin45° = √(2)/2,cos45° = √(2)/2,tan45° = 1- sin135° = √(2)/2,cos135° = -√(2)/2,tan135° = -13. 60°和120°的正弦、余弦和正切值:- sin60° = √(3)/2,cos60° = 1/2,tan60° = √(3)- sin120° = √(3)/2,cos120° = -1/2,tan120° = -√(3)以上是一些高中数学三角函数公式的大全。
高中数学 三角函数公式大全
高中数学三角函数公式大全高中数学三角函数公式大全三角函数这一章公式很多,尤其是归纳公式有20多个,很难全部记住。
基础薄弱的同学要把这些公式记好,掌握这些公式就抓住了本章的重点。
复习事半功倍。
两角和sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)2倍角tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanA tanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍(sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。
高中数学 三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高中数学_三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高中数学三角函数公式大全(三角函数的公式)
高中数学三角函数公式大全(三角函数的公式)高中数学三角函数公式大全公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数8个基本关系式是什么sin^2(A)+cos^2(A)=11+tan^2(A)=sec^2(A)1+cot^2(A)=csc^2(A)sin(A/2)=(1±cos(A))/2tan(A/2)=(±cos(A)-1)/(1+cos(A))cot(A/2)=(±cos(A)+1)/(1-cos(A))tan(A)+cot(A)=(2sin(A))/(cos(A)-sin(A)) tan(A)-cot(A)=(2cos(A))/(cos(A)+sin(A)) 三角函数的定义是什么?三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
高中数学三角函数公式大全
高中数学三角函数公式大全高中数学三角函数推导方法定名法则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。
90°的偶数倍+α的三角函数与α的三角函数绝对值相同。
也就是“奇余偶同,奇变偶不变”。
定号法则将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。
也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。
在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。
正负号看原函数中α所在象限的正负号。
关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。
或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。
还可简记为:sin上cos右tan/cot对角,即sin 的正值都在x轴上方,cos的正值都在y轴右方,tan/cot的正值斜着。
比如:90°+α。
定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。
所以sin(90°+α)=cosα,cos(90°+α)=-sinα这个非常神奇,屡试不爽~ 还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cos α。
三角函数知识三角函数包括两个部分:三角与三角函数、解三角形分析。
重点的知识点包括:任意角的三角函数;同角三角函数的基本关系式;诱导公式;三角函数的图象及其变换;三角函数的性质及其应用;三角函数的求值与化简;正弦、余弦定理;解三角形及其综。
三角与三角函数包括任意角及其三角函数、同角关系式和诱导公式、正弦及正弦型函数、余与正切函数、三角恒等变换和三角综合。
高中数学三角函数的公式(详细)
高中数学三角函数的公式(详细)高中数学三角函数的公式sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαcot(3π/2-α)=tanα(以上k∈Z)sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)数学学习技巧错题本必须要有。
有人经常说,数学学霸们的学习方法并不适合所有人,但错题本学习法确实是人人都应该掌握的一个高效学习法。
(完整版)高中数学三角函数公式大全全解
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.常见三角不等式
(1)若(0,
)2x π∈,则sin tan x x x <<. (2) 若(0,)2
x π
∈
,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式
22sin cos 1θθ+=,tan θ=
θ
θcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式 212(1)sin ,sin()2(1)s ,n n n co απαα-⎧-⎪+=⎨⎪-⎩ 212(1)s ,s()2(1)sin ,n n co n co απαα+⎧-⎪+=⎨⎪-⎩
2.和角与差角公式
sin()sin cos cos sin αβαβαβ±=±;
cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ
±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);
22cos()cos()cos sin αβαβαβ+
-=-.
sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决
定,tan b a
ϕ= ). 3.二倍角公式
sin 2sin cos ααα=.
2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα
=-. 49. 三倍角公式
3sin 33sin 4sin 4sin sin()sin()33
ππθθθθθθ=-=-+. 3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.
323tan tan tan 3tan tan()tan()13tan 33
θθππθθθθθ-==-+-. 4.三角函数的周期公式
函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ
为常数,且A ≠0,
ω>0)的周期2T π
ω=;函数tan()y x ωϕ=+,,2x k k Z π
π≠+∈(A,ω,ϕ为常数,且A
≠0,ω>0)的周期T πω
=
. 5.正弦定理 2sin sin sin a b c R A B C
===. 52.余弦定理
2222cos a b c bc A =+-;
2222cos b c a ca B =+-;
2222cos c a b ab C =+-.
6.面积定理
(1)111222
a b c S ah bh ch =
==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222
S ab C bc A ca B ===. (3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅. 7.三角形内角和定理
在△ABC 中,有()A B C C A B ππ++=⇔=-+
222
C A B π+⇔=-222()C A B π⇔=-+. 8. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.
s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.
tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.
特别地,有
sin sin (1)()k k k Z αβαπβ=⇔=+-∈.
s cos 2()co k k Z αβαπβ=⇔=±∈.
tan tan ()k k Z αβαπβ=⇒=+∈.
9.最简单的三角不等式及其解集
sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.
sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.
cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z π
ππ>∈⇒∈++∈.
tan ()(,arctan ),2x a a R x k k a k Z π
ππ<∈⇒∈-+∈。