3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

合集下载

3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

6
品质来自专业 ②利用二元一次方程组的解讨论平面上两条直线的位置关系 金太阳教育网
信赖源于诚信
已知方程组
A1x+B1y+C1=0
(1)
A2x+B2y+C2=0 当A1,A2,B1,B2全不为零时
(2)
(1)×B2-(2)×B1得(A1B2-A2B1)x=B1C2-B2C1
3x+2y-1=0
y
证明:联立方程 2x-3y-5=0
x=1
解得: y= - 1 代入:x+2y-1+λ(2x-3y-5)= 0 即 M(1,- 1)
x
o
(1, - 1) M
得 0+λ·0=0
∴M点在直线上
A1x+B1y+C1+λ( A2x+B2y+C2)=0是过直A1x+B1y+C1=0 和A2x+B2y+C2=0的交点的直线系方程。
7
上述方程组的解的各种情况分别对应的两条直线的 什么位置关系?
金太阳教育网
品质来自专业 信赖源于诚信
A1 B1 时,两条直线相交,交点坐标为 当——≠ —— A2 B2 B1C2-B2C1 C1A2-C2A1 ( , ) A1B2-A2B1 A1B2-A2B1 A1 B1 C1 当 —— = —— ≠ —— 时,两直线平行; A2 B2 C2 A1 B1 C1 当 —— = —— = —— 时,两条直线重合。 A2 B2 C2
11
金太阳教育网

品质来自专业 信赖源于诚信
④直线A1x+B1y+C1=0与直线A2x+B2y+C2=0重合,则必 有 (A)A1=A2,B1=B2,C1=C2 (B )

高中数学人教a版必修二课件:3.3.1 《直线的交点坐标与距离公式》

高中数学人教a版必修二课件:3.3.1 《直线的交点坐标与距离公式》

提问:
已知两条直线 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
相 交, 如 何 求 这 两 条 直 线 交 点的 坐 标?
几何元素及关系
点A
直线 l
代数表示
A(a, b)
l : Ax By C 0
点 A在直线 l上 Aa Bb C 0
直线 l1与直线 l2的交点 A
为待定系数
此直线系方程少一条直线l2
例3: 求过两直线x-2y+4=0和x+y-2=0的交点,且满足下列条件 的直线l的方程。
(1)过点(2,1);(2)和直线3x-4y+5=0垂直; (3)和直线2x-y+6=0平行
解: (1) 设经过二直线交点的直线方程为:
x 2y 4 (x y 2) 0 (1 )x ( 2) y (4 2) 0
(3) 设经过二直线交点的直线方程为:
x 2y 4 (x y 2) 0
(1 )x ( 2) y (4 2) 0
k 1 1 2
2
2
1
所以直线的方程为:2x y 2 0
说明:这两题也可以直接确定已知直线的斜率,再由平 行或垂直关系直接确定所求直线的斜率。
两点间距离公式
l1 : 3 x 4 y 5 0 , l2 : 6 x 8 y 1 0 0 .
平行
重合
例2. 求l1:3x+4y-2=0与l2:2x+y+2=0的交点.
解:由32xx4yy2200

x y
2 2
∴交点 (- 2,2)
变1.直线 y= - x+b 和 x - y=0 的交点在第一象限, 求b的取值范围.

新教材高中数学直线的交点坐标与距离公式:两条直线的交点坐标pptx课件新人教A版选择性必修第一册

新教材高中数学直线的交点坐标与距离公式:两条直线的交点坐标pptx课件新人教A版选择性必修第一册
l1∥l2
=0与直线l2:A2x+B2y+C2=0的位置关系是________.
l1∥l2
[方程组无解,则l1与l2无公共点,从而l1∥l2.]
3.直线l1 :4x-y+3=0与直线l2 :3x+12y-11=0的位置关系是
l1⊥l2
________.
l1⊥l2
[由4×3+(-1)×12=0得l1⊥l2.]
15x+5y+16=0
的直线方程为_________________.
2
因此l1与l2的斜率相等,但截距不相等,所以它们平行.
(2)l1:x-2y+1=0,l2:x+2y+5=0.
[解]
− 2 + 1 = 0,
解方程组ቊ
可得x=-3,y=-1,
+ 2 + 5 = 0,
因此,l1与l2相交,而且交点坐标为(-3,-1).
类型3 直线系过定点问题
【例3】 (1)直线mx-3y+2m+3=0,当m变动时,所有直线都经
l1
l2
设这两条直线的交点为P,则点P既在直线__上,也在直线__上.所
以点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的
1 + 1 + 1 = 0,
方程A2x+B2y+C2=0,即点P的坐标就是方程组 ቊ + + = 0
2
2
2
的解.
知识点2 两直线的位置关系和方程组解的个数的关系
第二章
直线和圆的方程
2.3 直线的交点坐标与距离公式
2.3.1 两条直线的交点坐标
1.会用解方程的方法求两条相交直线的交点坐标.(数学
学习 运算)
任务 2.会根据方程解的个数判定两条直线的位置关系.(数学

人教版数学A版必修二教学课件3.两条直线的交点坐标

人教版数学A版必修二教学课件3.两条直线的交点坐标
这些直线.
画图
无论 为何值时,方程
3 x 4 y 2 ( 2 x y 2 ) 0
所表示的直线都经过点( -2,2 )
即两条直线
l1 :3x4y20, l2 :2xy20. 的交点坐标.
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
例2 判断下列各对直线的位置关系.如果相交,求出交 点坐标.

8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。

9巧妙结合故事情节,在尖锐的矛盾冲 突中, 充分深 刻显示 人物复 杂内心 世界, 突出了 对人物 性格的 刻画, 使其有 血有肉 ,栩栩 如生。
②表示同一条直线, l1 与 l2 重合.
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
巩固练习:(练习1、2)
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
课后练习
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
1、直线5x+4y=2m+1与2x+3y=m交于第四象 限,则m的取值范围是__________。

3 2
< m <2
2、已知A(0,0),B(3,0),C(1,2),则 ∆ABC的垂心坐标是___________,外心坐标 是________。
(1,1) ( 1 , 3 ) 22
人教版数学A版必修二教学课件3.两条 直线的 交点坐 标
(1) l1 : x y 0, (2) l1 : 3x y 4 0, (3) l1 : 3x 4 y 5 0,

2.3.1两条直线的交点坐标(教学课件)- 高中数学人教A版(2019)选择性必修第一册

2.3.1两条直线的交点坐标(教学课件)- 高中数学人教A版(2019)选择性必修第一册

两条直线相交
二元一次方程 组有唯一解
直线l,J2还 有 哪些位置关系
平行
重合
问题4.已知直线l₁:A₁x+B₁y+C₁=0,l:A₂x+B₂y+C₂=0
平行,能否判断对应的二元一次方程组的解的情况呢
从形的角度看
直线l₁//l₂
直线lj,J₂没有公共点
从代数的角度看
不 存在点P(xo,y₀)的坐标满足
解 直线l₁,l₂方程化为斜截式,
则k₁=1,k₂=-1,k₁≠k₂,
所以,直线l₁与l₂相交.
例2.判断下列各对直线的位置关系.
(2)l:3x-y+4=0,l ₂:6x-2y-1=0
解 直线l₁,l₂ 方程化为斜截式,
则k₁=k₂=3,b₁≠b₂, l₁/l₂.
所以,
例2.判断下列各对直线的位置关系. (3)l:3x+4y-5=0,l₂:6x+8y-10=0
Q(2,-6)在直线l 上
追问:为什么可以作这样的判断呢?
直线l上的点
对应 关系
直线l 的方程的解
直线l:Ax+By+C=0
点P
在直线l上
C=0
问题2.已知直线 l₁:A₁x+B₁y+C₁=0,l₂:A₂x+B₂y+C₂=0 相交,它们的交点坐标与直线l₁,l₂的方程有他么途系?
从形的角度看
直线l₁,l₂ 相交
的交点且过坐标原点的直线l的方程 .
解 解方程组
,得
所以,两条直线的交点为
所以,直线l的的斜率 故直线l的方程
即4x-3y=0
和l₂ :6x-4y+1=0

人教版高中数学必修二《3.3.1 两条直线的交点坐标》

人教版高中数学必修二《3.3.1 两条直线的交点坐标》
x 2 y 4 0, 法一:联立方程组 x y 2 0,
x 0y+10=0和3x+4y-2=0的交点坐标为(0,2) 又因为所求直线过点(2,1)
所以所求直线方程为x+2y-4=0
法二:设经过两直线交点的直线方程为:
当直线斜率不存 在时,如何判断?
( 1 )k1 k 2 , b1 b2
(2)k1 k 2 , b1 b2

l1 // l2
l1与l 2 重合
l1与l2相交
(3)k1 k 2
二、新课讲授
y P(a,b)
直线l : 2 x y 3 0
(1)点15 , 在直线上吗? (2)点 2, 7 在直线上吗? (3)点3, 8 在直线上吗?
点P(a,b)在直线l上,那么 P(a,b)满足直线l的方程 即2a-b+3=0
l : 2x y 3 0
x
l1:A1x+B1y+C1=0 l2:A2x+B2y+C2=0 y
l1
y
l2
y A(a,b)
l1
A(a,b) x l1:A1x+B1y+C1=0 A1a+B1b+C1=0
A(a,b)
(3)l1:3x+4y-5=0, l2:6x+8y-10=0 x-y=0 解( : 1)解方程组 3x+3y-10=10 x= 5 得: 3 所以l1与l2相交, 5 y= 3 5 5 交点坐标为( 3 ,3 ).
3x y 4 0, (2) 解方程组 6 x 2 y 1 0,
问题4:方程组 两条直线的位置关系有何关系?

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修

高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修
A.x+3y=0

2

3
C. + =1
答案:C
1
3
1
D.y=- x+4
3
B.y=- x-12
)
S 随堂练习
UITANG LIANXI
首 页
1
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2
2.两点间的距离公式
已知平面上两点 P1(x1,y1),P2(x2,y2)间的距离为|P1P2|,则
-1
2-1
=
-(-3)
,
2-(-3)
首 页
探究一
探究二
探究三
探究四
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究五
探究四坐标法的应用
将几何问题代数化,即用代数的语言描述几何要素及其关系,并最终解决几
何问题,这种处理问题的方法叫作坐标法(或解析法),通过这种方法,把点与
坐标、曲线与方程联系起来,实现空间形式与数量关系的结合.
坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.
坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有
两点:
①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相
垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑
ICHU ZHISHI
HONGDIAN NANDIAN
探究五
解:(1)设所求直线方程为 x+2y-2+λ(3x-2y+2)=0.

【全优课堂】2014年秋高中数学 3.3.1-2两点间的距离课件 新人教A版必修2

【全优课堂】2014年秋高中数学 3.3.1-2两点间的距离课件 新人教A版必修2

2.已知△ABC 的顶点坐标是 A(0,5),B(-2,-1),C(6,7).求 BC 边上的中线 AM 的长和 AM 所在直线的方程.
解:先求出 BC 边的中点 M 的坐标,再求|AM|,最后由两点式 写出 AM 所在直线的方程. 设 M(x,y),∵M 是 BC 的中点, -2+6 -1+7 ∴x= 2 =2,y= 2 =3.∴M(2,3). ∴|AM|= 2-02+3-52= 8=2 2. y-5 x-0 由两点式得 AM 所在直线的方程为 = . 3-5 2-0 即 x+y-5=0.
)
【答案】C
2.已知点 A(1,2),B(a,6),且|AB|=5,则 a 的值为( A.4 B.-4 或 2 C.-2 D.-2 或 4
)
【答案】D
3.经过两条直线 2x+y+2=0 和 3x+4y-2=0 的交点,且垂 直于直线 3x-2y+4=0 的直线方程为________.
【答案】2x+3y-2=0
2.两点间的距离公式 设 P1(x1,y1),P2(x2,y2),则 P1,P2 两点间的距离为
2 2 x - x + y - y 2 1 2 1 |P1P2|=___________________________.
自主探究 探究 1:两点 P1(x1,y1),P2(x2,y2)间的距离公式是否可以写 成|P1P2|= x1-x22+y1-y22的形式?
消 y 得(A1B2-A2B1)x=C2B1
-C1B2,当 A1B2-A2B1≠0 时,方程组有唯一解,则直线 l1 与 l2 相 交.
预习测评 1. 直线 x+2y-2=0 与直线 2x+y-3=0 的交点坐标为( A.(4,1) B.(1,4)
4 1 C. , 3 3 1 4 D. , 3 3

人教A版高中数学《直线的交点坐标与距离公式》PPT公开课课件1

人教A版高中数学《直线的交点坐标与距离公式》PPT公开课课件1

人教A版高中数学《直线的交点坐标与 距离公 式》PP T公开 课课件1
一般地,对于直线
l1: A1x+B1 y +C1=0和 l2: A2x+B2 y +C2=0,
方程组:
A1x+B1 A2x+B2
y y
+C1=0,( +C2=0.
A1B1C1≠
0
,
A2B2C2≠
0
)
则方程组无解 l1∥l2
A1 A2

1
m2
6

m2 3m 2m
m=-1
l1
/
/l2
.

1 m2 6
m2 3m 2m

m=3时,∴ l1,l2重合.

1
m2
得 m≠3且m≠-1时,
m 2 3m
∴ l1与l2相交.
综上:(1)当m≠-1且m≠3且m≠0时, l1与l2相交;
(2)当m=-1或m=0时, l1//l2;
人教A版高中数学《直线的交点坐标与 距离公 式》PP T公开 课课件1
人教A版高中数学《直线的交点坐标与 距离公 式》PP T公开 课课件1
人教A版高中数学《直线的交点坐标与 距离公 式》PP T公开 课课件1
解:
(1) 2 4
2x 4x
2y2y17 1 l1与lxy2相 1851交 3.
4
交 点 (15 8
,
13 ). 4
( 2 ) l 1 : 2 x 6 y 4 0 ,l 2 : x 3 y 2 0
a1 a2
人教A版高中数学《直线的交点坐标与 距离公 式》PP T公开 课课件1

新课标人教A版数学必修2全部课件:3.3.1两直线的交点坐标

新课标人教A版数学必修2全部课件:3.3.1两直线的交点坐标

3
问题2:如何根据两直线的方程系数之间的关 系来判定两直线的位置关系? l1 : A1 x B 1 y C 1 0
l 2 : A2 x B 2 y C 2 0
A1 A2 B1 B2 C1 C2
l1与l2平行 l1与l2相交
A1 A2

B1 B2
4
例题分析
例2、判定下列各对直线的位置关系,若相交, 则求交点的坐标 l1 : x y 0 (1) l 2 : 3 x 3 y 10 0
l1 : 3 x y 4 0 (2) l2 : 6 x 2 y 0 l1 : 3 x 4 y 5 0 (3) l 2 : 6 x 8 y 10 0
5
练习
已知两直线 l1:x+my+6=0,l2:(m-2)x+3y+2m=0, 问当m为何值时,直线l1与l2: (1)相交,(2) 平行,(3) 垂直
6
当变化时, 方程 3 x 4 y 2 (2 x y 2) 0 表示什么图形 ?图形有何特点 ?
练习:求经过原点及两条直线l1:3x+4y-2=0, l2:2x+y+2=0的交点的直线的方程.
7
§3.3.1两直线的交点坐标
1
已知两条直线 l1 : A1 x B1 y C 1 0 l 2 : A2 x B 2 y C 2 0 相交 , 如何求这两条直线交点 的坐标 ?
2
问题1:方程组解的情况与方程组所表示的两条 直线的位置关系有何对应关系?
l1 , l2相交 唯一解 直线l1 , l2解方程组 无解 l , l 平行 1 2

2.3.1两条直线的交点坐标课件(人教版)

2.3.1两条直线的交点坐标课件(人教版)

点P在直线l上 直线l1与l2的交点是P
Ax0+By0+C=0
点P的坐标是方程组的解
A1 x B1 y C1 0
A2
x
B2
y
C2
0
学习新知 两条直线的交点:
如果两条直线A1 x B1 y C1 0和A2 x B2 y C2 0相交, 由于交点同时在两条直线上,交点坐标一定是它们的方程
若方程组
A1 A2
x x
B1 y B2 y
C1 C2
0 0
有唯一解,有无数组解,无解,则两直线的位置关系如何?
直线l1、l2联立得方程组
唯一解 无穷多解 无解
转化
l1 l1 l1
, , ,
l2相交, l2重合, l2平行.
(代数问题)
(几何问题)
学习新知
一般地,对于直线l1 : A1 x B1 y C1 0,l2 : A2 x B2 y C2 0 ( A1B1C1 0, A2B2C2 0),有方程组
证明:联立方程
3x+2 y 2x 3 y
1 0, 5 0,
解得
ห้องสมุดไป่ตู้
x 1, 即M y 1,
(1,
1).
代入:3x 2 y 1 (2x 3 y 5) 0,
y
x
o M(1, - 1)
得0 ·0 0, ∴M点在直线上.
A1x+B1y+C1+λ(A2x+B2y+C2)=0是过直线A1x+B1y+C1=0和 A2x+B2y+C2=0的交点的直线系方程.
段的中点为P(-1,2),则直线l的方程为 3x+y+1=0 .

人教A版数学选择性必修第一册第二章-3-1 两条直线的交点坐标 两点间的距离公式(课件PPT)

 人教A版数学选择性必修第一册第二章-3-1 两条直线的交点坐标 两点间的距离公式(课件PPT)



学 习
[注意]此公式与两点的先后顺序无关.



强 研 习 重 点 难 点 要 突 破
重 效 果 学 业 测 试 速 达 标 课 时 作 业
第7页



[重点讲解]

梳 理
1.两直线的位置关系


学 习 固 基
方程组AA12xx++BB12yy++CC12==00, 的解
一组 无数组 无解

直线 l1 与 l2 的公共点的个数



主 学
[自主记]证明:方法一:(特殊值法)取 λ=0,得到直线 l1:2x+y+3=0,

效 果 学


固 基
取 λ=1,得到直线 l2:x=-3,
测 试

故 l1 与 l2 的交点为 P(-3,3).
速 达


将点 P(-3,3)代入方程左边,
研 习
得(λ+2)×(-3)-(λ-1)×3=-6λ-3,

自 主
则直线(λ+2)x-(λ-1)y=-6λ-3 通过直线 2x+y+3=0 与 x-y+6=0 的交点.
效 果



习 固 基 础
由方程组x2-x+y+y+6=3=00, 得yx==3-. 3,
业 测 试 速

∴直线(λ+2)x-(λ-1)y=-6λ-3 恒过定点(-3,3).




重 点 难 点 要

2.3.1 两条直线的交点坐标
业 测





两条直线的交点坐标 两点间的距离公式 课件

两条直线的交点坐标 两点间的距离公式 课件
[规律总结] 两点间的距离公式与两点的先后顺序无关,也就 是说公式既可以写成|P1P2|= x2-Байду номын сангаас12+y2-y12,也可以写成 |P1P2|= x1-x22+y1-y22,利用此公式可以将有关的几何问题 转化为代数问题进行研究.
在直角坐标系中,我们求线段的长度时,常常使用两点间的 距离公式.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
解法二:∵l 过 l1 与 l2 的交点, ∴设 l 的方程为 x-2y+3+λ(2x+3y-8)=0, 即(2λ+1)x+(3λ-2)y+(3-8λ)=0, ∵l 与直线 3x+4y-2=0 平行,
∴83-λλ--32λλ-32+≠2112=-34
,∴λ=10,
∴l 的方程为 x-2y+3+10(2x+3y-8)=0, 即 3x+4y-11=0.
直线恒过定点问题
求证:不论 m 为何实数,直线(m-1)x+(2m-1)y =m-5 恒过一个定点.
[思路分析] 既然 m 不论取何值,直线恒过定点,可以任取 m 的两个不同值,得到两条直线都过定点,再利用两直线交点求出 定点,最后证明直线恒过该点.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
[解析] 解法一:取 m=1,得直线 y=-4. 取 m=12,得直线 x=9. 故两直线的交点为(9,-4),下面验证直线(m-1)x+(2m-1)y =m-5 恒过点(9,-4). 将 x=9,y=-4 代入方程, 左边=(m-1)·9-4·(2m-1)=m-5=右边, ∴直线恒过点(9,-4).
(2)上面的直线系方程可改写成(A1x+B1y+C1)+λ(A2x+B2y +C2)=0(其中λ为参数).这个参数形式的方程在解题中较为常 用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)×B1得(A1B2-A2B1)x=B1C2-B2C1
讨论:⒈当A1B2-A2B1≠0时,方程组有唯一解 B1C2-B2C1 x = —————— A1B2-A2B1 C1A2-C2A1 y= —————— A1B2-A2B1
⒉当A1B2-A2B1=0, B1C2-B2C1≠0 时,方程组无解 ⒊当A1B2-A2B1=0, B1C2-B2C1=0 时,方程组有无 穷多解。
5
例3:求直线3x+2y-1=0和2x-3y-5=0的交点M的 坐标,并证明方程3x+2y-1+λ(2x-3y-5)=0 (λ为任意常数)表示过M点的所有直线(不包括 直线2x-3y-5=0)。
3x+2y-1=0 证明:联立方程 2x-3y-5=0 x y
x=1
解得: y= - 1 代入:x+2y-1+λ(2x-3y-5)= 0 即 M(1,- 1)
13
例2 当 k 为何值时,直线 y kx + 3
过直线 2 x - y + 1 0 与 y x + 5 的交点?
14
例4、两条直线y=kx+2k+1和x+2y-4=0,的交点 在第四象限,则的取值范围是
15
问题1:方程组解的情况与方程组所表示的两条 直线的位置关系有何对应关系?
l1 , l2相交 唯一解 直线l1 , l2解方程组无穷多解 l1 , l2重合 l , l 无解 1 2平行
16
17
3
(二)讲解新课:
①两条直线的交点: 如果两条直线A1x+B1y+C1=0和A2x+B2y+C2=0 相交,由于交点同时在两条直线上,交点坐标一定 A1x+B1y+C1=0 是它们的方程组成的方程组 A x+B y+C =0 2 2 2 A x+B1y+C1=0 的解;反之,如果方程组 1 A2x+B2y+C2=0 只有一个解,那么以这个解为坐标的点就是直线 A1x+B1y+C1=0和A2x+B2y+C2=0的交点。
11
④直线A1x+B1y+C1=0与直线A2x+B2y+C2=0重合,则必 有 (A)A1=A2,B1=B2,C1=C2 (B)
A 1 B1 C1 A 2 B2 C2
(C)两条直线的斜率相等截距也相等 (D)A1=mA2,B1=mB2,C1=mC2,(m∈R,且m≠0)
12
例1、求经过原点及两条直线L1:x-2y+2=0, L2:2x-y-2=0的交点的直线的方程.
解法一:解方程组
x=3 x+2y-1=0, 得 y= -1 2x-y-7=0 ∴这两条直线的交点坐标为(3,-1)
又∵直线x+3y-5=0的斜率是-1/3 ∴所求直线的斜率是3 所求直线方程为y+1=3(x-3)即 3x-y-10=0
解法二:所求直线在直线系2x-y-7+λ(x+2y-1)=0中 经整理,可得(2+λ)x+(2λ-1)y-λ-7=0 2+λ ∴ - ———— =3 解得 λ= 1/7 2λ-1 因此,所求直线方程为3x-y-10=0
3.3.1 两条直线的交点坐标
1
教学目标
使学生了解两条直线交点坐标的求法,会联立两条直线所表示的方程成 方程组求交点坐标。 教学重点:两直线交点坐标的求法。 教学难点:两直线交点坐标的求法。
2
(一)新课引入: 二元一次方程组的解有三种不同情况(唯一 解,无解,无穷多解),同时在直角坐标系中两条 直线的位置关系也有三种情况(相交,平行,重 合),下面我们通过二元一次方程组解的情况来 讨论直角坐标系中两直线的位置关系。
10
㈢巩固:
①两条直线x+my+12=0和2x+3y+m=0的交点在y轴上,则m 的值是 (A)0 (B)-24 (C)±6 (D)以上都不对 ②若直线kx-y+1=0和x-ky = 0相交,且交点在第二象限, 则k的取值范围是 (A)(- 1,0) (B)(0,1] (C)(0,1) (D)(1,+∞) ③若两直线(3-a)x+4y=4+3a与2x+(5-a)y=7平行, 则a的值是 (A)1或7 (B)7 (C)1 (D)以上都错
4
例1:求下列两条直线的交点:l1:3x+4y-2=0;
l2:2x+y+2=0.
解:解方程组
3x+4y-2 =0 2x+y+2 = 0

x= -2 y=2
∴l1与l2的交点是M(- 2,2)
例2:求经过原点且经过以下两条直线的交点的直线方程: l1:x-2y+2=0,l2:2x-y-2=0.
x= 2 x-2y+2=0 得 y=2 解:解方程组 2x-y-2=0 ∴l1与l2的交点是(2,2) 设经过原点的直线方程为 y=k x 把(2,2)代入方程,得k=1,所求方程为 y= x
8
例4、判断下列各对直线的位置关系,如果相交,求 出交点的坐标:
(1)l1:x-y=0, (2)l1:3x-y+4=0, (3)l1:3x+4y-5=0, l2:3x+3y-10=0; l2:6x-2y=0; l2:6x+8y-10=0;
9
例5:求经过两条直线x+2y-1=0和2x-y-7=0的交点, 且垂直于直线x+3y-5=0的直线方程。
o
(1, - 1) M
得 0+λ·0=0
∴M点在直线上
A1x+B1y+C1+λ( A2x+B2y+C2)=0是过直A1x+B1y+C1=0 和A2x+B2y+C2=0的交点的直线系方程。
6
②利用二元一次方程组的解讨论平面上两条直线的位置关系
已知方程组 A1x+B1y+C1=0 (1)
A2x+B2y+C2=0 当A1,A2,B1,B2全不为零时
7
上述方程组的解的各种情况分别对应的两条直线的 什么位置关系?
A1 B1 当——≠ —— 时,两条直线相交,交点坐标为 A2 B2 B1C2-B2C1 C1A2-C2A1 ( , ) A1B2-A2B1 A1B2-A2B1 A1 B1 C1 当 —— = —— ≠ —— 时,两直线平行; A2 B2 C2 A1 B1 C1 当 —— = —— = —— 时,两条直线重合。 A2 B2 C2
相关文档
最新文档