变频器制动电阻的确定
变频器制动电阻介绍及计算方法
变频器制动电阻介绍及计算方法1 引言目前市场上器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。
目前关于制动的计算方法有很多种,从工程的角度来讲要精确的计算的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。
目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。
2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是和铝两种:波纹电阻采用表面立式波纹有利于散热减低寄生量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。
3 制动电阻的阻值和算刹车使用率ED%制动使用率ED%,也就是台达说明书中的刹车使用率ED%。
刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让和有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。
刹车使用率ED%=制动时间/ 刹车周期=T1/T2*100%。
(图1)图1刹车使用率ED%定义现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。
制动单元动作电压准位当直流电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。
台达制动电压准位如表1所示。
制动电阻设计(1)工程设计。
实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:其中:制动电压准位电机的额定电流为了保证不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。
变频器刹车电阻参数设置
变频器刹车电阻参数设置简介变频器是一种常用的电力调速设备,用于控制电机的运行速度和输出功率。
在电机运行过程中,刹车电阻是必不可少的一个组成部分。
刹车电阻的参数设置对于电机的制动效果和安全性非常重要。
本文将介绍变频器刹车电阻参数设置的相关知识和注意事项。
刹车电阻参数的含义刹车电阻参数包括电阻值(单位为欧姆)、额定功率(单位为瓦特)和额定电流(单位为安培)。
这些参数决定了刹车电阻的能耗和热功率。
合理设置这些参数可以保证刹车电阻的正常工作,避免超负荷运行或过热现象的发生。
刹车电阻参数的设置方法刹车电阻参数的设置应根据实际应用需求和电机性能来确定。
以下是一些常见的设置方法:1.参考电机性能:首先要了解电机的额定功率和额定电流。
一般情况下,刹车电阻的额定功率应大于电机的额定功率,刹车电阻的额定电流应大于电机的额定电流。
这样可以确保刹车电阻在制动过程中能够承受电机产生的能量。
2.考虑制动时间:刹车电阻的参数设置还应考虑到制动时间。
制动时间越长,刹车电阻的能耗越大,刹车电阻的额定功率和额定电流也要相应增加。
一般来说,制动时间较短的应用可以选择额定功率和额定电流较小的刹车电阻。
3.过载保护:刹车电阻还可以用于过载保护。
在电机超载时,刹车电阻可以吸收多余的能量,保护电机不被损坏。
因此,在设置刹车电阻的参数时,还应考虑到电机的过载能力和保护需求。
注意事项在设置变频器刹车电阻参数时,还需要注意以下几个方面:1.温度上升:刹车电阻在工作过程中会产生大量的热量,因此需要考虑刹车电阻的散热条件。
如果刹车电阻长时间超负荷运行或散热不良,可能会引发电阻高温报警或甚至损坏刹车电阻。
2.外部环境:环境温度、湿度和灰尘等因素会影响刹车电阻的工作效果和寿命。
尽量选择符合环境要求的刹车电阻,并保持刹车电阻周围清洁。
3.制动效果:刹车电阻的参数设置也会影响制动效果。
如果刹车电阻的额定功率和额定电流过小,可能导致制动不力;如果过大,则可能导致刹车电阻过热或烧毁。
制动电阻的功率和阻值如何选择
制动电阻的功率和阻值如何选择制动电阻是电阻器的一种,是根据电阻器的用途来命名。
变频器调速的电动机在快速制动过程中,由于电动机惯性作用,会产生大量的再生电能,会使变频器直流母线电压上升,造成变频器的损坏。
制动电阻的作用是当变频器直流母线电压上升到肯定值时,通过制动单元将电动机产生的再生能量消耗在制动电阻上。
如何选择制动电阻的阻值和功率,制动电阻阻值的计算都是从工程的角度来考虑的,因此在实际的应用时需要结合现场的详细状况进行适当的估算,最终形成一个经济适用的选择方案。
但制动电阻阻值的选定有一个不行违反的原则,应保证流过制动电阻的电流小于制动单元允许的最大电流。
选定了制动电阻的阻值后应确定制动电阻的功率,制动电阻功率的计算同样要依据工程现场详细状况来估算,它与多种因素相关。
我们可依据变频器直流母线的电压和已选定的阻值来确定制动电阻长时间不间断的功率,但实际中这样选取制动电阻的功率会造成很大的铺张。
因在实际应用中制动电阻基本上反复短时间工作,我们可依据制动电阻实际工作状况和通电持续率来确定制动电阻的功率。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:我公司生产的波纹电阻采纳表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效爱护电阻丝不被老化,延长使用寿命被广泛作为制动电阻使用;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,通常应用于高度恶劣工业环境。
变频器制动电阻的功率是这样选的:功率=电阻每工作一次消耗的能量(KJ)/制动(消耗能量)间隔的时间(S).其中电阻每工作一次消耗的能量(KJ)是功率乘以时间.所以变频器制动电阻要选择在电机功率的50%左右,从成本考虑,功率越大确定更平安,但成本就高了.假如选小了,成本是低了,但制动时间长了、制动次数多了、制动间隔短了都会造成制动电阻承受不了施加在它身上的能量而烧毁.假如要选用30%,可以去做试验,多试一下,久试一下就会出结果了.先确定需要的电阻功率,其原理是把机械的动能全部转化为消耗在电阻上的热能。
变频器制动电阻计算
变频器制动电阻计算变频器制动电阻阻值选择制动电阻的选择除受到变频器专用型能耗制动单元最大允许电流的限制外,与制动单元也并无明确的对应关系,其阻值主要依据所需制动转矩的大小选择,功率依据电阻的阻值和使用率确定。
制动电阻阻值的选定有一个不行违反的原则:应保证流过制动电阻的电流IC 小于制动单元的允许最大电流输出力量,即:R 800/Ic其中:800 —— 变频器直流侧所可能消失的最大直流电压。
Ic —— 制动单元的最大允许电流。
为充分利用所选用的变频器专用型制动单元的容量,通常制动电阻阻值的选取以接近上式计算的最小值为最经济、同时还可获得最大的制动转矩,然而这需要较大的制动电阻功率。
在某些状况下,并不需要很大的制动转矩,此时比较经济的方法是选择较大的制动电阻阻值、也因此可以减小制动电阻的功率,从而削减购买制动电阻所需的费用,这样的代价是制动单元的容量没有得到充分利用。
变频器制动电阻功率计算在选定了制动电阻的阻值以后,应当确定制动电阻的功率值,制动电阻功率的选取相对比较繁琐,它与许多因素有关。
制动电阻消耗的瞬时功率按下式计算:P 瞬= 7002 /R按上式计算得到的制动电阻功率值是制动电阻可以长期不间断的工作可以耗散的功率数值,然而制动电阻并非是不间断的工作,这种选取存在很大的铺张,在本产品中,可以选择制动电阻的使用率,它规定了制动电阻的短时工作比率。
制动电阻实际消耗的功率按下式计算:P 额=7002 /R×rB% rB%:制动电阻使用率。
实际使用中,可以根据上式选择制动电阻功率,也可以依据所选取的制动电阻阻值和功率,反过来计算制动电阻所能够承受的使用率,从而正确设置,避开制动电阻过热而损坏。
变频器制动电阻大小计算首先估算出制动转矩制动扭矩=((电机转动惯量+电机负载测折算到电机测的转动惯量)(制动前速度-制动后速度))/375*减速时间-负载转矩一般状况下,在进行电机制动时,电机内部存在肯定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;接着计算制动电阻的阻值制动电阻的阻值制动电阻的阻值=制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。
起重机变频器制动电阻的选用
起重机变频器的选用1,起升机构变频器的容量必须大于负载所需求的输出,即:kPMP0[KVA]≥————ηcosφ式中k——过载系数1.33PM——负载要求的电动机轴输出功率,kWη——电动机效率cosφ——电动机的功率因数起升机构要求的起动转矩为1.3—1.6倍的额定转矩,考虑到需有125%的超载要求,其最大转矩需有1.6—2倍的额定转矩,以确保其安全使用。
对于拖动等额功率电动机的变频器来说,可提供长达60秒、150%额定转矩的过载能力,因此过载系数k=2/1.5=1.33。
在变频器容量选定后,还应做电流验证,即:ICN≥kIM式中k——电流波形修正系数(PWM调制方式时取1.05—1.1)ICN——变频器额定输出电流,AIM——工频电源时的电动机额定电流,A一般的大吨位起重机有两个独立驱动的起升机构,每个起升机构由2台电动机同步驱动各自的钢丝绳卷筒转动,再经过动滑轮组多级减速提升吊钩。
起升机构的变频调速传动方案采用一台变频器带一台电动机的“一拖一”方案,为了提高低速传动时的动态特性和高转矩输出能力,每台电动机采用带脉冲编码器的速度闭环控制。
每个起升机构的2台变频器之间采用CHV190变频器提供的具有功率平衡和速度同步控制功能的主从控制方案,这些控制方案可以实现2台电动机精确的转矩平衡分配和2个起升机构的速度同步。
2,平移机构起重机的平移机构分大车机构和小车机构,两种机构一般采用多台电动机传动方案。
由于起重机平移机构的转动惯量较大,为了加速电动机需有较大的起动转矩,因此起重机平移机构所需的电动机轴输出功率PM应由负载功率Pj和加速功率Pa组成,即:PM≥Pj+Pa由于平移机构采用一台变频器拖动多台电动机的通用U/f开环频率控制方式,因此在变频器容量选择时,还要满足以下公式:ICN≥knIM式中k——电流波形修正系数(PWM调制方式时取1.05—1.1)ICN——变频器额定输出电流,AIM——工频电源时单台电动机的额定电流,An——一台变频器拖动的电动机数量由于在变频器“一拖多”通用U/f开环频率控制方式中,变频器提供的电子热继电器保护功能无法实现对单台电动机的过载保护,为此在每台电动机回路中串入带有热过载保护功能的低压断路器,以实现对单台电动机的过载保护,电动机故障信号取自低压断路器的辅助触点。
变频器制动电阻选择和计算方法
Bus Caps
Using a Dynamic Brake or Chopper
In general, the motor power rating, speed, torque, and details of the regenerative duty cycle need to be known.
Example Speed, Torque, and Power Profile
(t)
0
t1 t2 t3
t4
t1+t4
t
t
T(t)
0
t1 t2 t3
t4 t t1+t4
t
P(t)
t
0
t1 t2 t3
t4
t1+t4
t
-Pb
How to Choose a Dynamic Brake / Chopper
09
KC050 - 15.8 ohms, 8000 watts
KA010 - 13.2 ohms, 1650 0 2 watts
04
KB005 - 108 ohms, 1500 watts
06
KB050 - 10.5 ohms, 7000 watts
08
KC010 - 52.7 ohms, 2063 watts
9
10
10
How to Select a Chopper Module and Dynamic Braking Resistor
Chopper
Step 1 - Total Inertia
JTJmG2 RxJL
JT = total inertia reflected to the motor shaft, kilogram-meters2 (kg-m2) or pound-feet2 (lb-ft2) Jm = motor inertia, kilogram-meters2 (kg-m2) or pound-feet2 (lb-ft2) GR = the gear ratio for any gear between the motor and load, dimensionless. 2:1 = 0.5 JL = load inertia, kilogram-meters2 (kg-m2) or pound-feet2 (lb-ft2)
变频器制动电阻的选择
第二个问题,关于铝壳电阻还是波纹电阻谁更合适的问题。变频器的制动电阻要求是无感电阻(也就是纯电阻)。如果两个都满足要求的话,谁便宜就用谁的。目前似乎是波纹电阻相对便宜吧。为什么要无感电阻呢?这正是因为变频器的制动是脉冲形式的,如果有感,就会产生高次谐波导致损害制动单元的IG
变频器制动电阻介绍及计算方法
变频器制动电阻介绍及计算方法变频器制动电阻是一种用于控制变频器输出电压的装置,通过增加电路中的电阻来实现电压的调节和限制。
在变频器控制系统中,制动电阻的作用主要有两个方面:一是限制电流,减小驱动电机的惯性;二是将多余的能量转化为热能散发出去,以保护变频器和电机。
制动电阻的设计和选型需要根据具体的应用需求来确定。
下面介绍一种常见的制动电阻计算方法:1.确定变频器额定电流(Ir)和制动电阻的额定功率(Pr):查阅变频器和电机的技术参数手册,获取变频器的额定电流和电机的额定功率。
2.根据额定电流和功率计算制动电阻的额定阻值(Rr):使用下面的计算公式进行计算Rr=Ur^2/Pr其中,Ur为变频器的直流母线电压。
3.确定制动电阻的额定电流(Ir):使用下面的计算公式进行计算Ir=Ur/Rr4.确定制动电阻的额定电压(Ur):根据应用需求和变频器的技术参数,确定制动电阻的额定电压。
一般来说,制动电阻的额定电压应该大于变频器的最高输出电压。
5.确定制动电阻的额定功率(Pr):根据制动电阻的额定电流和额定电压Pr=Ur*Ir6.根据计算结果选购合适的制动电阻:按照上述计算结果选购合适的制动电阻,注意要选择符合应用需求的型号和规格。
需要注意的是,上述计算方法只是一种基本的参考方法,实际的计算和选型过程可能会涉及更复杂的因素,如空气流动、工作环境温度等。
因此,在实际应用中,建议与专业的电气工程师或制动电阻供应商进行沟通和协商,以确保制动电阻的计算和选型符合实际需求。
总之,制动电阻是变频器控制系统中的重要组成部分,通过控制电压和限制电流,可以实现对驱动电机的控制和保护。
在计算和选型制动电阻时,需要综合考虑应用需求、技术参数和实际环境等因素,确保制动电阻的设计和选型符合实际需求。
如何计算变频器制动电阻的功率
如何计算变频器制动电阻的功率
要计算变频器制动电阻的功率,需要考虑电阻的阻值和电流。
以下是详细的计算步骤:
1.确定电阻的阻值(R):电阻的阻值可以通过变频器制动电阻的技术参数或者电阻器上标示的数值获得。
通常以欧姆(Ω)为单位。
2.确定电流(I):根据需要制动的负载和制动时间来估算电流。
可以通过变频器的额定电流和制动时间来计算,也可以通过实际测量得到。
3.使用欧姆定律计算功率(P):功率可以通过以下公式计算:
P=I²*R
其中,P为功率(单位为瓦特),I为电流(单位为安培),R为阻值(单位为欧姆)。
请注意,功率的单位通常以千瓦(千瓦特)为单位。
如果需要转换为千瓦,将瓦特除以1000即可。
4.示例计算:假设电阻的阻值为10欧姆,电流为5安培。
那么根据公式:
P=5²*10=250瓦特=0.25千瓦特
这样计算得到的功率为250瓦特,或者0.25千瓦特。
特别需要注意的是,制动电阻产生的功率会被转化为热能散失,电阻可能会过热,所以在计算和选择制动电阻时要考虑电阻的功率承受能力。
5.根据实际情况和需求进行调整:实际制动电阻的功率通常由设计需求和负载特性决定。
在实际应用中,需要检查制动电阻是否符合相关标准和设备规格,以确保电阻安全可靠。
总之,计算变频器制动电阻的功率需要考虑电阻的阻值和电流。
根据欧姆定律,通过乘积计算得到功率。
但是,需要注意电阻功率是否超过电阻的承受能力,以确保安全可靠。
变频器配制动电阻计算公式
变频器配制动电阻计算公式在工业自动化领域中,变频器配制动电阻可是个相当重要的环节。
这其中涉及到的计算公式,就像是一把神奇的钥匙,能帮助我们准确地配置制动电阻,确保系统稳定运行。
先来说说为啥要用制动电阻。
想象一下,一台高速运转的电机,突然要停下来,那多余的能量往哪儿去?这时候制动电阻就派上用场啦,它能把这部分能量消耗掉,避免电机出现过压故障。
那怎么计算制动电阻的阻值和功率呢?咱们先来看阻值的计算。
一般来说,制动电阻的阻值可以通过这个公式来算:R = Uc² / (0.1047 ×(T × P) )。
这里的 Uc 是变频器的直流母线电压,T 是制动时间,P 是电机功率。
比如说,有一台 5.5kW 的电机,变频器直流母线电压是 700V,制动时间设定为 5s。
那咱们来算算制动电阻的阻值:R = 700² / (0.1047× (5 × 5500) )≈ 17.7Ω 。
再说说功率的计算。
制动电阻的功率可以用这个公式:P = Uc² / R 。
还是刚才那个例子,算出来的阻值约为17.7Ω ,那功率 P = 700² / 17.7≈ 2880W 。
我记得有一次,在一个工厂里调试设备。
那台设备的电机功率挺大,变频器在制动的时候总是出问题,要么就是停得太慢,要么就是出现过压报警。
我就开始琢磨,是不是制动电阻没配好。
于是,我按照上面的公式重新计算了一下制动电阻的阻值和功率,发现之前选用的制动电阻阻值偏小,功率也不够。
重新换了合适的制动电阻后,再启动设备,嘿!电机制动的时候稳稳当当,既不会慢悠悠地停不下来,也不会出现过压的情况。
那一刻,我心里那个美呀,就像解决了一道超级难题一样有成就感。
总之,掌握好变频器配制动电阻的计算公式,就能让我们在工业控制中更加得心应手,让设备运行得更加稳定可靠。
可别小看这几个公式,它们可是能为我们解决不少实际问题呢!。
变频器制动电阻分析
变频器制动电阻分析首先,我们来讨论变频器制动电阻的工作原理。
在无刹车器的情况下,当电机运行过程中需要停止或改变方向时,电机会产生反电动势。
此时,反电动势的大小会超过时常数,这样就会使电机的速度变慢,但不会完全停止。
而如果我们加入制动电阻,它可以吸收部分电能并将其转化为热能,从而减缓电机速度的下降。
制动电阻的阻值会根据电机的负载和运行速度来确定,一般由变频器的控制系统进行调整。
其次,我们来评估制动电阻的性能。
制动电阻的主要性能指标包括功率耗散能力、额定电压和额定电流。
功率耗散能力是指制动电阻能够承受的功率,通常以瓦特(W)为单位。
额定电压和额定电流是指制动电阻能够稳定工作的电压和电流范围。
此外,制动电阻还应具备良好的散热性能,以确保长时间高功率运行时不会超过温度限制。
最后,我们来看一些变频器制动电阻的应用案例。
首先是电梯变频器制动电阻。
电梯在运行中会产生大量的反电动势,如果没有制动电阻来吸收这些能量,可能会导致电梯的速度控制不稳定,甚至发生危险。
其次是机械设备变频控制系统中的制动电阻。
例如,当机械设备需要紧急停止或改变运行方向时,制动电阻可以快速吸收电能,避免设备失控。
最后是轨道交通系统中的变频器制动电阻。
在地铁、高铁等轨道交通系统中,为了确保列车的安全停车,制动电阻通常会与变频器配合使用,以提供稳定的制动力。
综上所述,变频器制动电阻是一种用于限制电机速度降低的设备,通过将电能转化为热能来达到制动的目的。
它可以提供安全、稳定的制动性能,适用于各种工业和交通设备中。
未来随着科技的进步,制动电阻可能会进一步提高能耗效率,减少能源浪费,为工业生产和交通运输等领域提供更好的支持。
变频器制动电阻的计算方法
变频器制动电阻的计算方法收藏此信息打印该信息添加:不详来源:未知A、首先估算出制动转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;B、接着计算制动电阻的阻值在制动单元工作过程中,直流母线的电压的升降取决于常数R C,R即为制动电阻的阻值,C为变频器内部电解电容的容量。
这里制动单元动作电压值一般为710V。
C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下:D、最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率= 制动电阻降额系数X 制动期间平均消耗功率X 制动使用率% 2.6 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。
制动力矩计算要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。
制动力矩越大,制动能力越强,制动性能约好。
但是制动力矩要求越大,设备投资也会越大。
制动力矩精确计算困难,一般进行估算就能满足要求。
按100%制动力矩设计,可以满足90%以上的负载。
对电梯,提升机,吊车,按100% 开卷和卷起设备,按120%计算离心机100% 需要急速停车的大惯性负载,可能需要120%的制动力矩普通惯性负载8 0% 在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器本身。
超过1 50%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限,没有增大的余地了。
电阻制动单元的制动电流计算(按100%制动力矩计算)制动电流是指流过制动单元和制动电阻的直流电流。
三种计算制动电阻参数的方法对比
三种计算制动电阻参数的方法对比引言制动电阻,是波纹电阻的一种,主要用于变频器控制电机快速停车的机械系统中,帮助电机将其因快速停车所产生的再生电能转化为热能。
变频器的制动电阻是用于将电动机产生的再生能量以热能方式消耗的载体,电机减速时,如果变频器的输出频率对应的转速小于电机的实际转速,那么电动机将工作在发电状态,向变频器直流部分的电容充电,当电压高于阀值电压,制动回路将被接通,电流通过制动电阻放电产生热量,达到消耗再生能量的目的。
选择使用制动电阻需要考虑电阻阻值和电阻功率容量两个参数,变频器厂家推荐的制动电阻的参数仅满足一般情况,不能满足特殊工况条件下的应用要求。
另外变频器厂家为了减少制动电阻的档次,经常对若干不同容量的电动机提供相同的制动电阻,使制动电阻的选择不够准确,且相对保守。
制动电阻的选择除受到变频器专用型能耗制动单元最大允许电流的限制外,与制动单元也并无明确的对应关系,其阻值主要根据所需制动转矩的大小选择,功率根据电阻的阻值和使用率确定。
制动电阻阻值的选定有一个不可违背的原则:应保证流过制动电阻的电流IC小于制动单元的允许最大电流输出能力,即:R > 800/Ic ,其中:800 -- 变频器直流侧所可能出现的最大直流电压。
Ic -- 制动单元的最大允许电流。
为充分利用所选用的变频器专用型制动单元的容量,通常制动电阻阻值的选取以接近上式计算的最小值为最经济、同时还可获得最大的制动转矩,然而这需要较大的制动电阻功率。
在某些情况下,并不需要很大的制动转矩,此时比较经济的办法是选择较大的制动电阻阻值、也因此可以减小制动电阻的功率,从而减少购买制动电阻所需的费用,这样的代价是制动单元的容量没有得到充分利用。
本文介绍了三种计算制动电阻两个参数的方法,并对此进行分析比较。
1 通过转动惯量确定制动电阻1)计算制动力矩。
制动力矩为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器制动电阻的确定
0 引言
在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。
传动系统中所储存的机械能经异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。
如果电动机的制动并不快,电容器的电压升高就不十分明显。
相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。
目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。
对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。
反之,则需要选择制动电阻来耗散电动机再生的这部分能量。
1 变频器动力制动原理
1.1 变频器电压检测及驱动电路
为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。
图1为一种电压检测电路的工作原理图。
电压检测电路主要由电压采样电阻R1、R2、R3,滞环比较器LM399,逻辑转
换器件等组成。
电压采样回路直接检测变频器直流侧电容器C 两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0 V,经逻辑转换后,触发制动晶体管V 导通,经过电阻R0释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。
特别强调的是,滞环比较器上下限值的设定很重要。
一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。
1.2 变频器制动单元
如图2 虚线框所示为制动单元PW 的实际电路,包括晶体管V、二极管D1、D2和制动电阻RB。
如果回馈能量较大或要求强制动时,还可以选用接于H、G两点间的外接制动电阻REB。
当电机制动能量经逆变器回馈到直流侧时,通过V的导通消耗在制动电阻RB或RB//REB上,实现限制电压保护动作的目的。
因此,外接电阻REB正常时不消耗能量,是间歇式工作。
2 制动电阻的选择
2.2 制动电阻的计算
在用外接制动电阻进行制动时,外接电阻应能吸取负载位能所转变的电能的80%,其中20%可通过电机以热能耗散的形式被消耗,此时制动电阻值
由于V 和RB、REB构成的放电回路中,其最大电流受到V的最大允许电流IC(已考虑安全系数)的限
2.3 制动时平均消耗功率的计算
如2.2中所述,制动中电动机自身消耗的功率相当于20%额定制动功率,则制动电阻上消耗的平均功率
2.4 制动电阻额定功率PR的计算
视电动机是否重复减速,制动电阻额定功率的选择是不同的,图3所示为电动机减速模式。
当非重复减速时,制动电阻的间歇时间(T-tS)>600 s。
通常采用连续工作制电阻器,当间歇制动时,电阻器的允许功率将增加。
允许功率增加系数m与减速时间的关系如图4(a)所示。
重复减速情况下,允许功率增加系数m和制动电阻使用率D越tS / T之间的关系曲线
如图4(b)所示。
根据电动机运行的模式,可以确定制动时平均消耗功率和电阻器的允许功率增加系数,据此可以得
3 结语
制动单元电阻的正确选择应用,可以缩短大惯量负载的自由停车时间,实现快速停车或准确停车;还可以在位能负载下放时,实现再生运行。
我厂电解车间多功能机组设计时没有考虑增设制动电阻,造成大车行走自由停车时间过长,滑行距离长,存在生产作业安全隐患;工具小车、出铝小车很难实现准确定位,影响作业效率。
经过制动电阻的增设改造,以上问题迎刃而解。
但需要注意的是,在选择制动电阻时,不但要考虑各个厂家变频器制动电阻的选择要求,而且根据用户
控制要求和使用环境的不一样,必须通过速度、转矩等测量,再进行计算,正确选用制动电阻,才能达到用户的控制要求。