WirelessPowerTransfer无限能量传输理论核心分析总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论
现今,科技高速发展,知识迅猛爆炸,人类对电力的需求日益增加。随着个人的移动通讯设备及各种电力客户端越来越向小而精的方向发展,“无线充电”这一概念被迅速地推向科学研究前沿。很大程度上说,目前我们的绝大部分电器产品仍需要连接一跟电线才能进行高效的能量传输,在日常生活中会给人类生活带来许多的不便。想象一下当无须电线即可充电的场景,就如同你的电脑找到一个无线网络一般那么的简单随意。
实际上,无线能量传输已经存在,如十九世纪末,特斯拉已经实现了无线能量传输,但其实现条件过于苛刻危险,所以并没有被人们所接收。无线能量传输技术目前还处于起步阶段,因为它还存在一系列亟待解决的问题,其中最大的问题就是传输效率不高,比如大量能量被损耗甚至耗散如空气中,这不仅牵扯到一个能源利用的问题,也会对人类安全造成一定的伤害。
直到2007年,来自麻省理工学院的Marin Soljacic教授课题组在《科学》杂志上首次提出了一种高效的无线能量传输方式-磁谐振耦合无线能量传输(wireless power transfer via magnetic resonance),这一发现为无线能量传输领域的研究提供了无限的思考空间。学者们为了进一步提高能量传输效率以及稳定性,研制了一大批工程上的优化器件与算法,例如各种新型的阻抗匹配电路,频率追踪电路等。
美特材料(metamaterials)是近年来十分火热的一种亚波长人工电磁微结构材料,其中最著名的效应即是具有负折射效应(negative refraction),这一类材料也被称为左手材料(left-handed materials, LHM)。此外,美特材料也包含其他特性的材料,如高阻抗表面(high-impedance surface)、梯度材料(gradient-index materials)等等,在医疗与军工等应用上也十分广泛。
通过美特材料来调控磁谐振耦合无线能量传输系统已经屡见不鲜了,但其用法还较为单一,
主要集中在利用磁单负材料放大传输能量所用的准静磁场;还有少部分工作详细了讨论了美特
材料平面通过调整阻抗对近场分量包络进行重塑,从而达到聚焦等等有利于提高效率的事。
本文首先从原理仿真和实验解释了磁谐振耦合无线能量传输以及美特材料;随后通过仿真
和实验分析了磁美特材料对磁谐振耦合无线能量传输系统的调控作用;最后简要阐述了由美特
材料衍生出的变换光学(transformation optics)和磁耦合波(magneto-inductive wave)的
原理以及各自对磁谐振耦合无线能量传输系统可能的应用。
1.1 无线能量传输系统简介
自从第二次工业革命以来,人类开启了电气工业时代,一批又一批的电气产品铺天盖地地不满市场,大至世界各地的电缆、电网以及工业用电设备,小至家庭电气设备,无不例外都需要一根根长长的电导线输送必须的能源以支持自身的正常运转。这样一来就会带来许多问题,例如,劣质电线容易老化导致供电不稳定,摩擦起火容易引发火灾;而就方便角度来说,电线也始终不是长久之计;又如现代社会电子产品的普及,充电电线始终成为必备之物,这使得人们的出行看似十分累赘;又如在一些特殊场合如矿井,机场,植入体内的医疗充电等等,电线总显得那么苍白无力。随着小型可移动电气电子器件的繁荣发展,这些需求都在呼唤着人们甩掉电线,无线供能便显得尤为重要,这也就是本文要着重介绍的无线能量传输系统。
图1-1 无线能量传输系统大致分类
1.11 传统无线能量传输系统
如图1-1所示,传统无线能量传输系统主要包括辐射式,电场耦合式,磁场耦合式中的磁感应式以及声波等传能系统。通常我们区分近场和远场以一个波长的范围来区分,研究距离离激励源大于一个波长,我们称其为远场;研究距离小于一个波长,我们称其为近场。远场有推迟效应存在,且能量是以辐射方式发出;近场无推迟效应,且其电场和磁场的分布规律与静电磁场相同,所以它不向外辐射能量,而是电能和磁能在近场范围内交变,平均功率为零。
无线电波传输和激光传输是依靠电磁波辐射来工作的,对于无线电波传输来说,它所能传达能量的距离远远大于传输器件的几何尺寸,并且在远距离传输中,它的使用也比同样是辐射传输的激光要普遍得多,但相较于激光传能,其定向性较差,虽然在其覆盖区域范围内均能接收到电能,但其能量密度衰减十分快,通常以1/r2的速度下降,不能支持较高功率,因为若如此会对周边环境以及人体健康有不利影响;而激光传能相反,它能支持高功率传输,且方向性好,且效率十分高,但是它不成熟的地方是它必须是点对点传输,对传输环境要求较高。
与辐射式传能截然相反的是近场耦合式传能,其主要包括电耦合与磁耦合,其中电耦合是靠发射端和接收端之间形成电容器进行能量传输,电场对人体和周边环境影响过大,所以一般情况下不会选择使用电耦合式;传统的磁耦合式为纯感应式传能,发射线圈在工作频率附近非谐振,其中的交变电流产生交变的磁场并激励离其不远处的接收线圈,其中接收线圈在工作频率附近亦不谐振,接收线圈内部感应出交变电动势从而产生电能。纯磁感应式传能所能允许的范围十分之近,传输距离远小于其器件最大尺寸,原因是因为其磁感力线发散过快,一般磁感应式传能会加入铁芯以引导更多的磁通穿过接收线圈(变压器)。但磁感应式的好处是它可以允许较大功率的传能,有不俗的传输效率并且安全。
1.12 磁谐振耦合无线能量传输系统
不同于上面所述的非辐射近场耦合式传能,这里我们要介绍的是一种依靠发射端与接收端谐振并且磁场耦合的方式进行中距离能量传输,理论上传输距离能达到传输装置几何尺寸的好几倍。这种能量传输方式相较于辐射式传能的主要优点是磁谐振式传能能支持稍大功率的传输,因为其亚波长(亚波长结构是指结构的特征尺寸与工作波长相当或更小的周期(或非周期)结构)特性使其辐射能力并不突出;相比于感应式传能,磁谐振式在实现相同传输效率的条件下所允许的传输距离远远大于感应式的,并且不具备磁响应的物体对能量传输过程不造成影响,另外一点,磁谐振式传能对周边环境也是十分友好的,综合以上优点,其较为适合于民用。
当然,任何东西都是有利有弊的,磁谐振式传能也不例外,首先,其目前还不能支持与感应式传能相当的功率,因为其辐射特性并不是完全没有;其次,它并不像感应式传能一样,随着距离越近,效率越高,相反,随着距离越近,谐振式传能随着距离由远到近,效率是先上升后下降,原因是进入强耦合区,频率劈裂现象,关于这点在下文中会详细介绍。