定时与同步原理2
同步原理(载波同步与位同步)
载波同步的基本原理,实现方法和性能指标
实际中,伴随信号一起进入接收机的还有加性高斯白噪声,为了改善平方变换法的性能,使恢复的相干载波更为纯净,常用锁相环代替窄带滤波器。如下图: 平方环法提取载波框图 锁相环具有良好的跟踪,窄带滤波和记忆功能。
等价于:中心频率可调的窄带滤波器
载波同步的基本原理,实现方法和性能指标
载波同步:是指在相干解调时,接收端需要提供一个与接收信号中的调制载波同频同相的相干载波。 载波同步是实现相干解调的先决条件。 提取相干载波的方法:直接法(自同步法)
插入导频法
载波同步的基本原理,实现方法和性能指标
载波同步的基本原理,实现方法和性能指标
直接法:有些信号(DSB-SC,PSK),虽然本身不含有载波分量,但经过某种非线性变化后,将具有载波的谐波分量,因此可以从中提取。下面介绍几种常用的方法:
载波同步的基本原理,实现方法和性能指标
一:在抑制载波的双边带信号中插入导频法 导频的插入方法: 在抑制载波双边带信号的已调信号的载频出插入一个与该信号频谱正交的载波信号。 插入导频系统的发端框图: 输出信号为:
载波同步的基本原理,实现方法和性能指标
1
插入导频系统的接收端框图:
平方变换法和平方环法 设调制信号 ,则抑制载波的双边带信号为: 平方变换法提取载波框图: 窄带滤波器输出为:
载波同步的基本原理,实现方法和性能指标
二分频器输出,可得载波信号: 注意:载波提取的方框图中用了一个二分频电路,由于分频起点的不确定性,使输出的载波相对于接收信号的相位有180度的相位模糊。 相位模糊对模拟通信关系不大(人耳听不出相位变化) 对数字通信影响很大,有可能使2PSK相干解调后出 现“反向工作”的问题。 解决办法:对调制器输入的信息序列进行差分编码。(2DPSK)
NI LabVIEW中的定时与同步
概览对于所有测试、控制和设计应用而言是至关重要的,在系统中必须作为重点进行考虑。
当需要完成协同动作时,定时和同步技术将事件以时间进行关联。
要让软件完成这些协同动作,程序必须以时间为基准来实现同步。
NI LabVIEW 中包含了定时结构,您可以在系统中用它来同步您的程序。
LabVIEW定时原理——纳秒级引擎和NI-TimeSyncbVIEW使用称为纳秒级引擎的软件组件在程序中记录时间。
引擎在后台运行,与操作系统交互管理时间。
在LabVIEW中有多个函数和结构,使用此引擎记录时间,如等待函数和定时循环结构。
纳秒级引擎可以使用本地实时时钟(RTC),也可以通过NI定时同步架构(NI-TimeSync)用外部参考时钟进行驱动(图1)。
图bVIEW纳秒级定时机制与NI-TimeSync协同为应用程序提供时钟。
LaVIEW 2010在NI-TimeSync中引入全新时钟。
NI-TimeSync 1.1中的IEEE1588插件提供了精度高达1 ms的同步参考时钟。
您可以在网络上配置多个仪器,使用同一个IEEE 1588参考时钟,让多个平台可以在标准的以太网网络上进行同步。
您还可以通过NI测量与自动化浏览器(MAX)工具配置设备使用软件1588精确时间协议(图2)。
图2.从MAX配置设备的时间同步源LabVIEW定时结构——定时循环定时循环是在可配置的定时源产生事件时执行的循环结构。
它可以使用多种定时源(后面的教程会有详细介绍)。
如果开发多速率处理、精确定时与同步、循环执行反馈、动态变化定时特性或多执行优先级的应用,可以使用定时循环。
除了定时循环的严密定时特性之外,定时结构还可以用于为多核编程分配处理器资源。
使用定时循环,您可以指定包括周期、优先级、期限、偏移量和延时等多个定时属性。
结合这些属性和丰富的定时源,无论需要怎样的定时方式,您都可以创建复杂的应用程序。
定时循环的定时源定时源控制定时结构的执行。
您可以从三类定时源中选择:内部定时源、软件触发或外部定时源。
定时与同步
32
第6章 定时与同步
(2).载波相位误差对单边带信号的影响
载波相位误差Δφ引起双边带解调系统的信噪比下 降,误码率增加。当Δφ近似为常数时,不会引起波形 失真。 然而,对单边带和残留边带解调而言,相位误差 Δφ不仅引起信噪比下降,而且还引起输出波形失真。
第6章 定时与同步
第六章
定时与同步
安全防范系
1
第6章 定时与同步
6.1
同步的概念
一、同步:是指收发双方在时间上保持步调一致。
二、同步的分类:
载波同步--同频同相相干载波; 位(码元)同步--节拍一致、相位可调; 群同步-- 帧同步; 网同步(通信网中用)。 同步信号来自于___???______;在通信系统中,通常都 是要求同步信息传输的可靠性高于信号传输的可靠性。
5
第6章 定时与同步
群同步
对于数字时分多路通信系统,各路信码都安排在 指定的时隙内传送,形成一定的帧结构。 为了使接收 端能正确分离各路信号,在发送端必须提供每帧的起 止标记,在接收端检测并获取这一标志的过程,称为 帧同步。
这是识别数据格式的基础,即帧起止位置的识别。
6
第6章 定时与同步
网同步
显然,为了保证通信网内各用户之间可靠地 通信和数据交换,全网必须有一个统一的时间标
解决?
20
第6章 定时与同步
2. 同相正交环法(科斯塔斯环) 模型:
mt cos c t
输入已调 信号 载波输出
v3 v1
低通
v5 v7
同相载波 正交载波 双PLL环
2 相移
压控振 荡器
环路滤 波器
v2 v4
SDH原理(华为)定时与同步
第7章定时与同步目标:掌握数字网地同步方式.掌握主从同步方式中,节点从时钟地三种工作模式地特点.了解SDH地引入对网同步地要求.知道SDH网主从同步时钟地类型.数字网中要解决地首要问题是网同步问题,因为要保证发端在发送数字脉冲信号时将脉冲放在特定时间位置上<即特定地时隙中),而收端要能在特定地时间位置处将该脉冲提取解读以保证收发两端地正常通信,而这种保证收/发两端能正确地在某一特定时间位置上提取/发送信息地功能则是由收/发两端地定时时钟来实现地.因此,网同步地目地是使网中各节点地时钟频率和相位都限制在预先确定地容差范围内,以免因为数字传输系统中收/发定位地不准确导致传输性能地劣化<误码、抖动).7.1 同步方式解决数字网同步有两种方法:伪同步和主从同步.伪同步是指数字交换网中各数字交换局在时钟上相互独立,毫无关联,而各数字交换局地时钟都具有极高地精度和稳定度,一般用铯原子钟.因为时钟精度高,网内各局地时钟虽不完全相同<频率和相位),但误差很小,接近同步,于是称之为伪同步.主从同步指网内设一时钟主局,配有高精度时钟,网内各局均受控于该全局<即跟踪主局时钟,以主局时钟为定时基准),并且逐级下控,直到网络中地末端网元——终端局.一般伪同步方式用于国际数字网中,也就是一个国家与另一个国家地数字网之间采取这样地同步方式,例如中国和美国地国际局均各有一个铯时钟,二者采用伪同步方式.主从同步方式一般用于一个国家、地区内部地数字网,它地特点是国家或地区只有一个主局时钟,网上其它网元均以此主局时钟为基准来进行本网元地定时,主从同步和伪同步地原理如图7-1所示.图7-1伪同步和主从同步原理图为了增加主从定时系统地可靠性,可在网内设一个副时钟,采用等级主从控制方式.两个时钟均采用铯时钟,在正常时主时钟起网络定时基准作用,副时钟亦以主时钟地时钟为基准.当主时钟发生故障时,改由副时钟给网络提供定时基准,当主时钟恢复后,再切换回由主时钟提供网络基准定时.我国采用地同步方式是等级主从同步方式,其中主时钟在北京,副时钟在武汉.在采用主从同步时,上一级网元地定时信号通过一定地路由——同步链路或附在线路信号上从线路传输到下一级网元.该级网元提取此时钟信号,通过本身地锁相振荡器跟踪锁定此时钟,并产生以此时钟为基准地本网元所用地本地时钟信号,同时通过同步链路或通过传输线路<即将时钟信息附在线路信号中传输)向下级网元传输,供其跟踪、锁定.若本站收不到从上一级网元传来地基准时钟,那么本网元通过本身地内置锁相振荡器提供本网元使用地本地时钟并向下一级网元传送时钟信号.数字网地同步方式除伪同步和主从同步外,还有相互同步、外基准注入、异步同步<即低精度地准同步)等.下面讲一下外基准注入同步方式.外基准注入方式起备份网络上重要节点地时钟地作用,以避免当网络重要结点主时钟基准丢失,而本身内置时钟地质量又不够高,以至大范围影响网元正常工作地情况.外基准注入方法是利用GPS<卫星全球定位系统),在网元重要节点局安装GPS接收机,提供高精度定时,形成地区级基准时钟<LPR),该地区其它地下级网元在主时钟基准丢失后仍采用主从同步方式跟踪这个GPS提供地基准时钟.7.2 主从同步网中从时钟地工作模式主从同步地数字网中,从站<下级站)地时钟通常有三种工作模式.正常工作模式——跟踪锁定上级时钟模式此时从站跟踪锁定地时钟基准是从上一级站传来地,可能是网中地主时钟,也可能是上一级网元内置时钟源下发地时钟,也可是本地区地GPS时钟.与从时钟工作地其它两种模式相比较,此种从时钟地工作模式精度最高.●保持模式当所有定时基准丢失后,从时钟进入保持模式,此时从站时钟源利用定时基准信号丢失前所存储地最后频率信息作为其定时基准而工作.也就是说从时钟有“记忆”功能,通过“记忆”功能提供与原定时基准较相符地定时信号,以保证从时钟频率在长时间内与基准时钟频只有很小地频率偏差.但是因为振荡器地固有振荡频率会慢慢地漂移,故此种工作方式提供地较高精度时钟不能持续很久.此种工作模式地时钟精度仅次于正常工作模式地时钟精度.●自由运行模式——自由振荡模式当从时钟丢失所有外部基准定时,也失去了定时基准记忆或处于保持模式太长,从时钟内部振荡器就会工作于自由振荡方式.此种模式地时钟精度最低,实属万不得已而为之.7.3 SDH地引入对网同步地要求数字网地同步性能对网络能否正常工作至关重要,SDH网地引入对网地同步提出了更高地要求.当网络工作在正常模式时,各网元同步于一个基准时钟,网元节点时钟间只存在相位差而不会出现频率差,因此只会出现偶然地指针调整事件<网同步时,指针调整不常发生).当某网元节点丢失同步基准时钟而进入保持模式或自由振荡模式时,该网元节点本地时钟与网络时钟将会出现频率差,而导致指针连续调整,影响网络业务地正常传输.SDH网与PDH网会长期共存,SDH/PDH边界出现地抖动和漂移主要来自指针调整和净负荷映射过程.在SDH/PDH边界节点上指针调整地频度与这种网关节点地同步性能密切相关.如果执行异步映射功能地SDH输入网关丢失同步,则该节点时钟地频偏和频移将会导致整个SDH网络地指针持续调整,恶化同步性能;如果丢失同步地网络节点是SDH网络连接地最后一个网络单元,则SDH网络输出仍有指针调整会影响同步性能;如果丢失同步地是中间地网络节点,只要输入网关仍然处于与基准时钟<PRC)地同步状态,则紧随故障节点地仍处于同步状态地网络单元或输出网关可以校正中间网络节点地指针移动,因而不会在最后地输出网关产生净指针移动,从而不会影响同步性能.7.4 SDH网地同步方式7.4.1 SDH网同步原则我国数字同步网采用分级地主从同步方式,即用单一基准时钟经同步分配网地同步链路控制全网同步,网中使用一系列分级时钟,每一级时钟都与上一级时钟或同一级时钟同步.SDH网地主从同步时钟可按精度分为四个类型<级别),分别对应不同地使用范围:作为全网定时基准地主时钟;作为转接局地从时钟;作为端局<本地局)地从时钟;作为SDH设备地时钟<即SDH设备地内置时钟).ITU-T将各级别时钟进行规范<对各级时钟精度进行了规范),时钟质量级别由高到低分列于下:●基准主时钟——满足G.811规范.●转接局时钟——满足G.812规范<中间局转接时钟).●端局时钟——满足G.812规范<本地局时钟).●SDH网络单元时钟——满足G.813 规范<SDH网元内置时钟).在正常工作模式下,传到相应局地各类时钟地性能主要取决于同步传输链路地性能和定时提取电路地性能.在网元工作于保护模式或自由运行模式时,网元所使用地各类时钟地性能,主要取决于产生各类时钟地时钟源地性能<时钟源相应地位于不同地网元节点处),因此高级别地时钟须采用高性能地时钟源.在数字网中传送时钟基准应注意几个问题:(1) 在同步时钟传送时不应存在环路.例如图7-2所示.图7-2网络图若NE2跟踪NE1地时钟,NE3跟踪NE2,NE1跟踪NE3地时钟,这时同步时钟地传送链路组成了一个环路,这时若某一网元时钟劣化,就会使整个环路上网元地同步性能连锁性地劣化.(2) 尽量减少定时传递链路地长度,避免因为链路太长影响传输地时钟信号地质量.(3) 从站时钟要从高一级设备或同一级设备获得基准.(4) 应从分散路由获得主、备用时钟基准,以防止当主用时钟传递链路中断后,导致时钟基准丢失地情况.(5) 选择可用性高地传输系统来传递时钟基准.7.4.2 SDH网元时钟源地种类●外部时钟源——由SETPI功能块提供输入接口.●线路时钟源——由SPI功能块从STM-N线路信号中提取.支路时钟源——由PPI功能块从PDH支路信号中提取,不过该时钟一般不用,因为SDH/PDH网边界处地指针调整会影响时钟质量.●设备内置时钟源——由SETS功能块提供.同时,SDH网元通过SETPI功能块向外提供时钟源输出接口.7.4.3 SDH网络常见地定时方式SDH网络是整个数字网地一部分,它地定时基准应是这个数字网地统一地定时基准.通常,某一地区地SDH网络以该地区高级别局地转接时钟为基准定时源,这个基准时钟可能是该局跟踪地网络主时钟、GPS提供地地区时钟基准<LPR)或干脆是本局地内置时钟源提供地时钟<保持模式或自由运行模式).那么这个SDH网是怎样跟踪这个基准时钟保持网络同步呢?首先,在该SDH网中要有一个SDH网元时钟主站,这里所谓地时钟主站是指该SDH网络中地时钟主站,网上其它网元地时钟以此网元时钟为基准,也就是说其它网元跟踪该主站网元地时钟,那么这个主站地时钟是何处而来?因为SDH网是数字网地一部分,网上同步时钟应为该地区地时钟基准时,该SDH网上地主站一般设在本地区时钟级别较高地局,SDH主站所用地时钟就是该转接局时钟.我们在讲设备逻辑组成时,讲过设备有SETPI功能块,该功能块地作用就是提供设备时钟地输入/输出口.主站SDH网元地SETS功能块通过该时钟输入口提取转接局时钟,以此作为本站和SDH网络地定时基准.若局时钟不从SETPI功能块提供地时钟输入口输入SDH主站网元,那么此SDH网元可从本局上/下地PDH业务中提取时钟信息<依靠PPI功能块地功能)作为本SDH网络地定时基准.注意:后一种方法不常用,因为SDH/PDH网络边界处<也即是PDH踎SDH处)指针调整较多,信号抖动较大,影响时钟信号地质量.此SDH网上其它SDH网元是如何跟踪这个主站SDH网时钟呢?可通过两种方法,一是通过SETPI提供地时钟输出口将本网元时钟输出给其它SDH网元.因为SETPI提供地接口是PDH接口,一般不采用这种方式<指针调整事件较多).最常用地方法是将本SDH主站地时钟放于SDH网上传输地STM-N信号中,其它SDH网元通过设备地SPI功能块来提取STM-N信号中地时钟信息,并进行跟踪锁定,这与主从同步方式相一致.下面以几个典型地例子来说明此种时钟跟踪方式.见图7-3.图7-3网络图上图是一个链网地拓扑,B站为此SDH网地时钟主站,B网元地外时钟<局时钟)作为本站和此SDH网地定时基准.在B网元将业务复用进STM-N帧时,时钟信息也就自然而然地附在STM-N信号上了.这时,A网元地定时时钟可从线路w侧端口地接收信号STM-N中提取<通过SPI),以此作为本网元地本地时钟.同理,网元C可从西向线路端口地接收信号提取B网元地时钟信息,以此作为本网元地本地时钟,同时将时钟信息附在STM-N信号上往下级网元传输;D网元通过从西向线路端口地接收信号STM-N中提取地时钟信息完成与主站网元B地同步.这样就通过一级一级地主从同步方式,实现了此SDH网地所有网元地同步.当从站网元A、C、D丢失从上级网元来地时钟基准后,进入保持工作模式,经过一段时间后进入自由运行模式,此时网络上网元地时钟性能劣化.注意:A网元同步性能劣化不会影响到网元C和网元D,而C网元同步性能劣化会影响到网元D,因为网元C是网元D地时钟跟踪地上一级网元,即对网元D来说,网元C是它地主站.不管上一级网元处于什么工作模式,下一级网元一般仍处于正常工作模式,跟踪上一级网元附在STM-N信号中地时钟.所以,若网元B时钟性能劣化,会使整个SDH网络时钟性能连锁反应,所有网上网元地同步性能均劣化<对应于整个数字网而言,因为此时本SDH网上地从站网元还是处于时钟跟踪状态).当链很长时,主站网元地时钟传到从站网元可能要转接多次和传输较长距离,这时为了保证从站接收时钟信号地质量可在此SDH网上设两个主站,在网上提供两个定时基准.每个基准分别由网上一部分网元跟踪,减少了时钟信号传输距离和转移次数.不过要注意地是,这两个时钟基准要保持同步及相同地质量等级.技术细节:为防止SDH主站地外部基准时钟源丢失,可将多路基准时钟源输入SDH主站,这多个基准时钟源可按其质量划分为不同级别,SDH主站在正常时跟踪外部高级别时钟,在高级别基准时钟丢失后,转向跟踪较低级别地外部基准时钟,这样提高了系统同步性能地可靠性.那么环网地时钟是如何跟踪地呢?如图7-4所示.图7-4环形网网络图环中NE1为时钟主站,它以外部时钟源为本站和此SDH网地时钟基准,其它网元跟踪这个时钟基准,以此作为本地时钟地基准.在从站时钟地跟踪方式上与链网基本类似,只不过此时从站可以从两个线路端口西向/东向<ADM有两个线路端口)地接收信号STM-N中提取出时钟信息,不过考虑到转接次数和传输距离对时钟信号地影响,从站网元最好从最短地路由和最少地转接次数地端口方向提取.例如NE5网元跟踪西向线路端口地时钟,NE3跟踪东向线路端口地时钟较适合.再看图7-5:STM-N STM-MNE1NE2NE4NE3NE5外部时钟源×¢N>M图7-5网络图图中NE5为时钟主站,它以外部时钟源<局时钟)作为本网元和SDH网上所有其它网元地定时基准.NE5是环带地一个链,这个链带在网元NE4地低速支路上.NE1、NE2和NE3通过东/西向地线路端口跟踪、锁定网元NE4地时钟,而网元NE4地时钟是跟踪主站NE5传来地时钟<放在STM-M信号中).怎样跟踪呢?网元NE4通过支路光板地SPI模块提取NE5通过链传来地STM-N信号地时钟信息,并以此同步环上地下级网元<从站).7.5 S1字节和SDH网络时钟保护倒换原理1. S1字节工作原理随着SDH光同步传输系统地发展和广泛应用,越来越多地人对ITU-T定义地有关同步时钟S1字节地原理及其应用显示出浓厚地兴趣.这里介绍S1字节地工作原理以及利用S1字节实现同步时钟保护倒换地控制协议.并通过一个例子说明了S1字节地应用.在SDH网中,各个网元通过一定地时钟同步路径一级一级地跟踪到同一个时钟基准源,从而实现整个网地同步.通常,一个网元获得同步时钟源地路径并非只有一条.也就是说,一个网元同时可能有多个时钟基准源可用.这些时钟基准源可能来自于同一个主时钟源,也可能来自于不同质量地时钟基准源.在同步网中,保持各个网元地时钟尽量同步是极其重要地.为避免因为一条时钟同步路径地中断,导致整个同步网地失步,有必要考虑同步时钟地自动保护倒换问题.也就是说,当一个网元所跟踪地某路同步时钟基准源发生丢失地时候,要求它能自动地倒换到另一路时钟基准源上.这一路时钟基准源,可能与网元先前跟踪地时钟基准源是同一个时钟源,也可能是一个质量稍差地时钟源.显然,为了完成以上功能,需要知道各个时钟基准源地质量信息.ITU-T定义地S1字节,正是用来传递时钟源地质量信息地.它利用段开销字节S1字节地高四位,来表示16种同步源质量信息.表7-1是ITU-T已定义地同步状态信息编码.利用这一信息,遵循一定地倒换协议,就可实现同步网中同步时钟地自动保护倒换功能.表7-1同步状态信息编码0101 0x04 保留0110 0x06 保留0111 0x07 保留1000 0x08 G.812本地局时钟信号1001 0x09 保留1010 0x0A 保留1011 0x0B 同步设备定时源<SETS)信号1100 0x0C 保留1101 0x0D 保留1110 0x0E 保留1111 0x0F 不应用作同步在SDH光同步传输系统中,时钟地自动保护倒换遵循以下协议:规定一同步时钟源地质量阈值,网元首先从满足质量阈值地时钟基准源中选择一个级别最高地时钟源作为同步源.并将此同步源地质量信息<即S1字节)传递给下游网元.若没有满足质量阈值地时钟基准源,则从当前可用地时钟源中,选择一个级别最高地时钟源作为同步源.并将此同步源地质量信息<即S1字节)传递给下游网元.若网元B当前跟踪地时钟同步源是网元A地时钟,则网元B地时钟对于网元A来说为不可用同步源.2. 工作实例下面通过举例地方法,来说明同步时钟自动保护倒换地实现.如图7-6所示地传输网中,BITS时钟信号通过网元1和网元4地外时钟接入口接入.这两个外接BITS时钟,互为主备,满足G812本地时钟基准源质量要求.正常工作地时候,整个传输网地时钟同步于网元1地外接BITS时钟基准源.图7-6正常状态下地时钟跟踪设置同步源时钟质量阈值“不劣于G812本地时钟”.各个网元地同步源及时钟源级别配置如表7-2所示.表7-2各网元同步源及时钟源级别配置网元同步源时钟源级别NE1 外部时钟源外部时钟源、西向时钟源、东向时钟源、内置时钟源NE2 西向时钟源西向时钟源、东向时钟源、内置时钟源NE3 西向时钟源西向时钟源、东向时钟源、内置时钟源NE4 西向时钟源西向时钟源、东向时钟源、外部时钟源、内置时钟源NE5 东向时钟源东向时钟源、西向时钟源、内置时钟源NE6 东向时钟源东向时钟源、西向时钟源、内置时钟源另外,对于网元1和网元4,还需设置外接BITS时钟S1字节所在地时隙<由BITS提供者给出).正常工作地情况下,当网元2和网元3间地光纤发生中断时,将发生同步时钟地自动保护倒换.遵循上述地倒换协议,因为网元4跟踪地是网元3地时钟,因此网元4发送给网元3地时钟质量信息为“时钟源不可用”,即S1字节为0XFF.所以当网元3检测到西向同步时钟源丢失时,网元3不能使用东向地时钟源作为本站地同步源.而只能使用本板地内置时钟源作为时钟基准源,并通过S1字节将这一信息传递给网元4,即网元3传给网元4 地S1字节为0X0B,表示“同步设备定时源<SETS)时钟信号”.网元4接收到这一信息后,发现所跟踪地同步源质量降低了<原来为“G812本地局时钟”,即S1字节为0X08),不满足所设定地同步源质量阈值地要求.则网元4需要重新选取符合质量要求地时钟基准源.网元4可用地时钟源有4个,西向时钟源、东向时钟源、内置时钟源和外接BITS时钟源.显然,此时只有东向时钟源和外接BITS时钟源满足质量阈值地要求.因为网元4中配置东向时钟源地级别比外接BITS时钟源地级别高,所以网元4最终选取东向时钟源作为本站地同步源.网元4跟踪地同步源由西向倒换到东向后,网元3东向地时钟源变为可用.显然,此时网元3可用地时钟源中,东向时钟源地质量满足质量阈值地要求,且级别也是最高地,因此网元3将选取东向时钟源作为本站地同步源.最终,整个传输网地时钟跟踪情况将如图7-7所示.图7-7网元2、3间光纤损坏下地时钟跟踪若正常工作地情况下,网元1地外接BITS时钟出现了故障,则依据倒换协议,按照上述地分析方法可知,传输网最终地时钟跟踪情况将如图7-8所示.图7-8网元1外接BITS失效下地时钟跟踪若网元1和网元4地外接BITS时钟都出现了故障.则此时每个网元所有可用地时钟源均不满足基准源地质量阈值.根据倒换协议,各网元将从可用地时钟源中选择级别最高地一个时钟源作为同步源.假设所有BITS出故障前,网中地各个网元地时钟同步于网元4地时钟.则所有BITS出故障后,通过分析不难看出,网中各个网元地时钟仍将同步于网元4地时钟,如图7-9所示.只不过此时,整个传输网地同步源时钟质量由原来地G812本地时钟降为同步设备地定时源时钟.但整个网仍同步于同一个基准时钟源.图7-9两个外接BITS均失效下地时钟跟踪由此可见,采用了时钟地自动保护倒换后,同步网地可靠性和同步性能都大大提高了.想一想:想想看本节都讲了些什么?1. 网地同步方式——主从同步、伪同步.2. 同步网中节点时钟地三种工作模式.3. SDH网对网同步地要求,及SDH网主从同步时钟地质量级别划分.4. H网中主从同步地实现方法.其中,4.是重点.你掌握了吗?小结本节主要讲述了SDH同步网地常用同步方式,针对设备讲了时钟地常见跟踪方式.习题(1) 数字网地常见同步方式是_______________、_______________.(2) 一个SDH网元可选地时钟来源_______________、_______________、_______________、_______________.。
硬件定时电路工作原理
硬件定时电路工作原理硬件定时电路是一种通过电子元件来实现定时功能的电路,它能按照设定的时间间隔产生特定的信号或驱动特定的设备工作。
硬件定时电路在各种电子设备中都得到了广泛的应用,例如数字钟、定时器、计数器等。
本文将深入探讨硬件定时电路的工作原理。
硬件定时电路通常由时钟源、计数器和输出控制器组成。
时钟源是整个定时电路的基础,它提供了一个稳定的脉冲信号作为计时的基准。
计数器接收来自时钟源的脉冲信号,并根据设定的预置值进行计数,当计数器达到预设值时,输出控制器就会触发相应的动作。
硬件定时电路的工作原理可以分为以下几个方面来进行说明:1. 时钟信号的生成:时钟信号通常由稳定的振荡器产生,经过分频和输出整形后供给计数器使用。
时钟信号的频率决定了定时电路的计时精度,通常被称为时钟频率。
2. 计数器的工作:计数器是定时电路中的核心部件,它根据时钟信号的脉冲进行计数。
当计数器的计数达到预设值时,就会触发输出控制器进行相应的操作。
3. 预置值的设定:通过设定计数器的预置值,可以实现不同的时间间隔和周期。
预置值可以通过硬件开关、数字输入、或者微控制器来进行设定。
4. 输出控制器的触发:当计数器达到预设值时,输出控制器会触发相应的输出信号,这个输出信号可以驱动LED指示灯、继电器、数码管等实现各种功能。
硬件定时电路通常根据其工作原理可以分为同步定时电路和非同步定时电路。
同步定时电路是指计时器和输出信号的产生是同步的,而非同步定时电路则是指计时器和输出信号的产生是不同步的。
不同类型的定时电路适用于不同的应用场景。
硬件定时电路还可以根据其递增方式进行分类,常见的有二进制递增计数器、BCD递增计数器等。
二进制递增计数器采用二进制码进行计数,而BCD递增计数器则采用十进制BCD码进行计数,各种递增方式都有其适用的场景。
硬件定时电路通过时钟信号、计数器和输出控制器的协同工作,实现了按照设定的时间间隔产生信号或驱动设备工作的功能。
同步原理PPT课件(通信原理)
m = 0 只有1个( )码组
m = 1 有 码组
类推,可被判为同步码组的组合数为
假同步概率
28
平均建立时间ts
设漏同步和假同步都不发生,在最不利 的情况下,实现群同步最多需要一群的 时间。
设每群的码元数为N,每码元时间为T, 则一群的时间为NT,出现一次漏同步或 假同步大致要多花费NT的时间才能建立 起群同步,故,平均建立时间为 ts = NT(1 + P1 + P2)
m12
≈ 3 m-1
≈ 扣 相位推后1/m周期(除360°/m)
≈ m1 2 4m1
≈ 附 相位提前1/m周期加
b路
c位同步 m
d 超前
e分频器输出 2
f 滞后
g分频器输出
位同步脉冲的相位调整
19
11.4 群同步(帧同步) 给出帧的开头和结尾的标记
起止式同步法
被传输的单位是字符,每个字符可由5~8 位码元组成,每个字符前面加一位起始 位,用“0”代表,在字符后加1.5位停止 位,用“1”代表,不发信号时,一直发 送停止位。
j=1
j = 2,3,…7 R(j)分别为-1, 0, -1, 0, -1, 0
当j为负值时的自相关函数值, 与正值对 称,自相关函数在j = 0 时出现尖锐单峰。
22
R(j) 7
-7 -5 -3 -1 1 3 5 -1
7j
23
“1”存入移存 器
1端→ +1 0端→-1
判决
“0”存入移存 器
1端→ -1 0端→+1
同相正交环法(Costas环)
输入
V3
×
LPF
输出 V1 VCO
90°相移
数据同步解决方案
数据同步解决方案数据同步解决方案概述在当今信息爆炸的时代,数据的同步和共享成为了企业管理和决策的重要基础。
然而,不同系统之间的数据格式、结构以及更新频率等差异增加了数据同步的复杂性。
因此,为了解决这一问题,开发了多种数据同步解决方案。
本文将介绍几种常用的数据同步解决方案,并对比它们的优缺点。
1. 手动导出导入手动导出导入是一种简单直接的数据同步方法。
它的操作步骤相对简单,只需要从源系统中导出数据,然后手动导入到目标系统中。
这种方法适用于数据量小、更新频率低的情况。
然而,当数据量较大或更新频率较高时,手动导出导入的效率低下,容易出错,并且不适合实时应用场景。
2. 定时全量同步定时全量同步是一种常见的数据同步方式。
它的原理是定期从源系统中获取全量数据,然后将数据导入到目标系统中。
这种方法适用于数据量较大的场景,但是它存在一些问题。
首先,定时全量同步需要占用较长时间来进行数据备份,因此可能导致源系统的性能下降。
其次,当数据变更频繁时,全量同步无法实时反映变化,信息的时效性较低。
3. 增量同步增量同步是一种比较高效的数据同步方式。
它的原理是在定时时间间隔内,只将源系统中发生变化的数据进行同步。
这种方式可以节省大量的网络带宽和系统资源,提高同步效率。
增量同步适用于数据变更频繁的场景,也可以实现较高的数据实时性。
但是,增量同步需要额外的开发工作来判断数据是否发生变化以及如何同步变化数据。
4. 实时同步实时同步是一种最为高效的数据同步方式。
它的原理是源系统中的数据发生变化时,立即将变化数据传输到目标系统中。
这种方式可以实现极高的数据实时性,适用于对数据同步的实时性要求较高的场景。
然而,实时同步需要满足较高的数据传输速度和网络可靠性,因此需要投入更多的资源。
选择适当的数据同步解决方案在选择适当的数据同步解决方案时,需要考虑以下几个因素:•数据量:如果数据量较小,手动导出导入可能是一种简单有效的解决方案。
如果数据量较大,增量同步或实时同步可能更适合。
SDH原理与应用第7章 SDH网络同步与定时
第一个
从钟
G.812
转接局 N个具备G.813钟的NE
第(K-1)个
G.812
从钟
转接局 N个具备G.813钟的NE
第 K个
G.812
从钟
转接局或端局 N个具备G.813钟的NE
图7.4 同步网定时基准传输链
18
●同步网的可靠性 网元定时的保护倒换 为了提高同步定时传送网的可靠性,每一个节点时钟和网元时 钟都采取冗余措施,可以分别从两条以上的路径取得定时信号, 并且不同的路径由不同的路由提供。 SSM在定时路径上的传递 在定时路径上每个网元不仅接收定时信号,而且接收标明该信 号质量等级的SSM编码(MSOH中S1字节的编码),SDH网元 根据相应的SSM算法和规则对时钟进行操作,以选择最高等级 的定时信号,向下游传送,并向相反方向发送SSM=1111,表 示该方向定时信号不能用于同步网定时,以避免定时环路。 ●避免定时环路 所谓定时环路是指传送时钟的路径,包括主用和备用路径形 成一个首尾相连的环路。定时环路会引起频率不稳,最终导 致环中各节点时钟互相控制以脱离基准时钟,产生自激。
19
7.3 SDH网的定时方式
7.3.1 SDH网元的定时方式
1.外时钟同步
• PDH网中的2048kHz同步定时源; •同局中其他SDH网络单元输出的定时信号; •同局中BITS输出的时钟。
外同步基准定时
NE
20
2.从接收信号中提取定时
(1)由STM-N导出的外定时方式
SSU
SSU—同步供给单元
通达学院201522sdh网络同步与定时线型网链路故障下产生定时环路通达学院201523setgsetgadmadma正常情况setgsetgadmadm定时环路sdh网络同步与定时stmsoh字节安排通达学院201524a1a1a1a2a2a2j0b1d1e1d2f1d3b2b2b2k1k2d4d7d10s1d5d8d11d6d9d12m1e2auptr字节rsohmsoh同步状态消息字节同步状态消息字节sdh网络同步与定时同步状态消息编码s1b5b8sdh同步质量等级描述0000同步质量未知0001保留0010g811主基准时钟0011保留0100g812转接局从时钟0101保留0110保留0111保留1000g812端局从时钟1001保留1010保留1011同步设备定时源sets1100保留1101保留1110保留1111不可用于时钟同步通达学院201525sdh网络同步与定时线型网使用s1防止产生定时环路通达学院201526setgsetg线路定时a正常情况s10100s10100s11111setgsetgb故障情况s11011s11111线路定时内定时保持线路定时s10100表示来自g812转接时钟s11011表示来自内部时钟s11111表示不可用于同步sdh网的定时方式731sdh网元的定时方式外时钟同步sdh设备时钟的定时基准由外部定时源提供pdh网中的2048khz或2048kbits同步定时源优选2048kbits同局中bits输出的时钟
同步 原理
图7-1 平方变换法提取载波原理框图
第7章 同步原理
此方法广泛用于DSB信号的载波同步信号提取。设DSB 信号为SDSB=f(t)cosω0t,若 调制信号f(t)是不含直流的模拟基带 信号,则DSB信号里不含载波分量,利用平方律器件 将该信号 经过非线性变换后,得到
图7-6 插入导频法的接收端原理框图
第7章 同步原理
如果不考虑信道失真及噪声干扰,则接收端收到的信号 与发送端的完全相同。此信号 分为两路:一路通过带通滤波 器滤除带外噪声;另一路通过中心频率为ω0 的窄带滤波器, 获得导频Asinω0t,再 将 其 进 行 π/2 相 移,就 能 得 到 与 调 制 载 波 同 频 同 相 的 相 干 载 波 cosω0t。两路信号相乘后 再通过低通滤波器即可获得原始信号。
第7章 同步原理 2.平方环法 在实际中,由于存在信道噪声,进入接收机的信号并不是
单一的信号,因此利用平方 变换法提取出来的载波也不纯。 为了改善平方变换法的性能,可以将图7-1中的窄带滤波 器 用锁相环代替,构成平方环法,其基本原理框图如图7-2所示。
图7-2 平方环法提取载波原理框图
第7章 同步原理
第7章 同步原理
7.2.2 插入导频法 在某些载波系统中,已调信号中不含有载波分量或者含
有载波分量但很难分离出来, 如 DSB、VSB、SSB和2DPSK。 为了获取载波同步信息,也可以采用插入导频的方法。
DSB信号的插入导频频谱示意图如图7 4所示。为了便 于接收已调信号时提取导频 信息,应使插入的导频与已调信 号的频谱成分尽量分离。这时可以将导频的插入位置选取 在已调信号频谱为零的位置,而且插入的导频并不是加入调 制器的载波,而是将该载波移 π/2相的“正交载波”。
手机定时开关的原理
手机定时开关的原理
手机定时开关的原理是通过设置系统的时钟和定时器来实现的。
手机的硬件中会有一个实时时钟模块,它负责记录手机的系统时间,并且能够和外部世界的时间进行同步。
当用户设置手机的定时开关时,手机会根据用户设定的时间和日期来计算出距离该任务执行的时间还有多久。
手机的操作系统中会有一个定时器功能,它能够在规定的时间间隔触发一个特定的事件。
当到达设定的时间时,操作系统会发出一个信号,触发定时开关的事件。
通过结合实时时钟模块和定时器功能,手机能够判断当前时间是否满足用户设定的定时开关条件。
当满足条件时,手机会执行相应的操作,例如打开或关闭手机的闹钟、定时开关机等。
同时,手机还会根据用户设定的重复模式,循环执行定时开关操作。
总而言之,手机定时开关的原理是通过实时时钟模块记录系统时间,通过定时器功能判断和触发定时开关的事件,以实现定时开关机、闹钟等功能。
定时计数器的工作原理
定时计数器的工作原理定时计数器是一种常见的计时器,用于测量时间间隔,控制定时操作或执行循环等。
该计数器具有一定的精度和稳定性,其工作原理及应用场景也非常广泛。
下面我们将为大家介绍定时计数器的工作原理,包括硬件和软件实现。
硬件实现定时计数器通常由一个计数器和一个时钟源组成。
时钟源提供固定的时钟信号,计数器通过计数来测量时间间隔或执行定时操作。
时钟源通常是晶振,可以提供极高的稳定性和精度。
计数器可以是简单的二进制计数器,也可以是复杂的倒计数器和分频器等。
不同类型的计数器可以根据不同的应用场景进行选择。
在定时计数器的设计中,需要考虑到时钟信号的频率和计数器的位数。
时钟信号的频率决定了时间分辨率的大小,而计数器的位数则限制了计数器的最大值。
一个10位二进制计数器可以计数到1023,而一个16位二进制计数器可以计数到65535。
选取合适的时钟频率和计数器位数可以满足不同的应用要求。
定时计数器还可以通过外部信号触发计数器开始计数。
这种触发方式通常称为外部触发或同步触发,可以提高计数器的精度和控制性能。
在测试仪器中,可以通过外部触发控制测试时序,在控制系统中,可以通过外部触发控制执行任务。
在嵌入式系统中,定时计数器通常由软件实现。
软件实现的定时计数器主要依赖于系统时钟和定时中断。
系统时钟提供了一个固定的时钟信号,一般由晶振或外部时钟源提供。
定时中断是一个由硬件实现的中断,可以周期性地触发软件中断服务程序的执行。
定时计数器通过定时中断实现定时操作和时间测量。
每当定时中断发生时,中断服务程序会对定时计数器进行更新,并执行相应的定时操作。
在控制系统中,可以通过定时计数器实现周期性的任务执行,定时采样和控制输出等功能。
在嵌入式系统中,定时计数器还可以用于实现延时等操作。
1. 定时中断的触发频率:定时中断的触发频率决定了定时计数器的分辨率和响应速度。
合理的触发频率可以提高定时计数器的精度和控制性能。
2. 定时计数器的位数:定时计数器的位数决定了定时器的最大值和分辨率。
时间同步原理
时间同步原理时间同步是指在多个设备或系统中,确保它们的时间信息是一致的。
时间同步在各种领域都有着重要的应用,比如通信网络、金融交易、科学实验等。
在现代社会中,时间同步已经成为了各种系统中不可或缺的一部分。
那么,时间同步是如何实现的呢?本文将围绕时间同步的原理进行介绍。
首先,我们来看一下时间同步的基本原理。
时间同步的关键在于确定一个参考时间,然后将其他设备或系统的时间与这个参考时间进行比较和调整。
常见的时间同步方法包括GPS时间同步、网络时间协议(NTP)和精确时间协议(PTP)等。
GPS时间同步是利用全球定位系统(GPS)卫星来获取精准的时间信息,然后将这个时间信息传输给需要同步的设备或系统。
由于GPS卫星的高度精度和全球覆盖性,GPS时间同步被广泛应用于各种领域。
网络时间协议(NTP)是一种用于互联网中时间同步的协议,它通过在互联网中的服务器之间传输时间信息来实现时间同步。
NTP 可以根据网络延迟和时钟漂移等因素对时间进行精确调整,保证各个设备的时间保持一致。
精确时间协议(PTP)是一种用于工业自动化领域的时间同步协议,它可以提供更高精度和更低时延的时间同步服务。
PTP通过在局域网中传输时间信息,并利用硬件时间戳来实现纳秒级的时间同步精度。
除了以上介绍的几种常见时间同步方法外,还有一些其他的时间同步技术,比如射频时间传输、原子钟时间同步等。
这些技术在不同的场景下具有各自的优势和适用性,可以根据实际需求选择合适的时间同步方法。
总的来说,时间同步的原理是通过某种方式获取精准的时间信息,然后将这个时间信息传输给需要同步的设备或系统,以确保它们的时间保持一致。
不同的时间同步方法有着不同的适用场景和精度要求,可以根据实际情况选择合适的时间同步方案。
在实际应用中,时间同步是非常重要的,它可以保证各种系统和设备之间的协调和一致性。
比如在金融交易中,精准的时间同步可以确保交易记录的准确性和一致性;在通信网络中,时间同步可以保证数据的同步和顺利传输;在科学实验中,时间同步可以确保各个实验设备的协调工作等。
同步伺服电机工作原理
同步伺服电机工作原理
同步伺服电机是一种能够定时地根据输入信号运动的电机。
它通常由一个旋转部件(转子)和一个定位部件(定子)组成。
工作原理如下:
1. 控制器发送一个控制信号到驱动器。
这个信号包括了电机应该运动的目标位置或速度。
2. 驱动器接收到控制信号后,会根据信号的要求来调整电机的转速和转向,以确保电机按照预定的轨迹运动。
3. 驱动器将适当的电流发送到电机,使其旋转。
这些电流通过电机的定子线圈流过,产生一个旋转磁场。
4. 这个旋转磁场与电机的转子磁场相互作用,使得转子受到一个驱动力矩。
这个驱动力矩使得转子开始旋转,并且根据控制信号的要求来匹配目标位置或速度。
5. 当电机旋转到目标位置或达到目标速度时,控制器发送一个停止信号给驱动器,驱动器会停止向电机发送电流,从而使电机停止旋转。
因此,同步伺服电机通过不断地调整电机的转速和转向,以确保其按照预定的轨迹运动。
通过控制信号和驱动器的相互作用,可以实现高精度的位置和速度控制。
第11章 同步原理_2
时域插入导频法常用锁相环来提取同步载波
时域插入导频法
11.3 位同步
位同步是指在接收端的基带信号中提取码元定时的过程。 载波同步是相干解调的基础 采用相干解调的模拟和数字 通信都需要载波同步,在基 带传输时没有载波同步问题 所提取的载波同步信息是载 频为 fc 的正弦波,要求它与 接收信号的载波同频同相。 位同步是正确取样判决的基础 只有数字通信才需要, 并且不 论基带传输还是频带传输都需 要位同步 所提取的位同步信息是频率等 于码速率的定时脉冲,相位则 根据判决时信号波形决定,可 能在码元中间,也可能在码元 终止时刻或其他时刻。
O (a )
f
O (b )
f
相关编码进行频谱变换
O
fc- fm
fc 导频
fc+fm
f
经双边带调制后的频谱
插入的导频并不是加于调制器的那个载波,而是将 该载波移相90°后的所谓“正交载波”
m(t ) 调制信号 相乘 调制 带通 相加 u o(t ) 输出
~ a sin ct
90° 相移
插入导频法发端框图 假设被调载波为 a sinωct ,将它经 90°移相形成插入导频 (正交载波)-acosωct,其中a是插入导频的振幅。于是发 送信号为uo(t)=m(t)*asinωct-a cosωct
这是在每一信息群的开头集中插入群同步码组的方法。 要求:该码组应在信息码中很少出现 一种常用的群同步码组是巴克码。 巴克码是一个n位长的码组{x1,x2,x3…xn},其中xi的取值 为+1或-1,它的局部相关函数满足:
R( j ) xi xi j
i 1 n j
n j0 0或 1 0 j n 0 jn
第八章-同步技术
11
同步技术的重要性
• 同步本身虽然不包含所要传送的信息,但只有收 发设备之间建立了同步后才能开始传送信息,所 以同步是进行信息传输的必要和前提。
• 同步性能的好坏将直接影响着通信系统的性能。 如果出现同步误差或失去同步就会直接导致通信 质量下降,降低通信系统性能,甚至使通信中断。
计算机网络通信原理——同步技术
• 从下图所示的频谱图可以看出,在载频处,已调信号的频 谱分量为零,载频附近的频谱分量也很小且没有离散谱, 这样就便于插入导频以及解调时易于滤出它。
(a)基带信号x(t)频谱函数
(b)对x(t)进行相关编码得到的频谱函数 (c)双边带调制后得到的频谱函数
插入导频
计算机网络通信原理——同步技术
20
双边带调制系统发送端电路框图
• 码变换器将Sd(t)频谱中的直流和相邻的低频信号滤掉或衰减。 • 经低通滤波器加给环行调制器,由带通滤波器取出上、下边带
送给加法器。 • 同时送给加法器的还有载波移相90°的Acsinωct。(发送端必须
正交插入导频,不能加入Acosωt导频信号,否则接收端解调后 会出现直流分量,这个直流分量无法用低通滤波器滤除,将对 基带信号的提取产生影响。)
计算机网络通信原理——同步技术
28
平方变换法
• 已调信号x(t)cosωct为2PSK信号,双极性矩形脉冲。 • 接收端经过平方律部件后得到
e(t)=[x(t)cosωct]2 = x2(t)/2+ x2(t) cos2ωct/2
∵ x(t)=±1 ∴ e(t)= (1+cos2ωct)/2
• 由此,通过窄带滤波器取出2fc,经过二分频得到的频率就 是所需要的载波频率。
计算机网络通信原理——同步技术
定时器工作原理及应用引脚图
定时器工作原理及应用引脚图(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除555定时器摘要:555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。
由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。
本文主要介绍了555定时器的工作原理及其在单稳态触发器、多谐振荡器方面的应用。
关键词:数字——模拟混合集成电路;施密特触发器;波形的产生与交换555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
1概述1.1 555定时器的简介555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。
大楼综合定时(供给)系统
大楼综合定时(供给)系统作者:赵瑞英来源:《无线互联科技》2014年第07期摘要:定时与同步作为传输网络的“神经中枢系统”,其同步性能对网络能否正常工作至关重要,本文从弄清同步机理着手,详细分析大楼综合定时(供给)系统(BITS)特点及其应用。
关键词:BITS;定时;同步1时钟原理时钟是产生尽可能高的频率准确度和频率稳定度的振荡源,提供时间或频率的基准。
目前所用的振荡源主要由以下几种:1.1 原子钟原子钟是世界上具有最高稳定度的振荡源,常用于最高级别时钟基准源,而且没有老化现象。
依使用原子种类的不同,而有氢钟、铯钟、铷钟等类别,商用主要是铯钟与铷钟。
1.2 晶体钟石英谐振器简称晶体,是晶体振荡器的核心元件。
晶体种体积小、重量轻、耗电少,短期稳定度好,价格也比较便宜。
但长期稳定度和老化率比原子钟差。
1.3 GPS钟GPS(全球定位系统)是全天候的、基于高频无线电的卫星导航系统,定时信号稳定可靠。
GPS可以提供三维信息:经度、纬度及海拔高度,还可提供速度与时间信息等。
整个GPS 系统包括三大部分:空间部分、地面部分与用户部分。
空间部分:有一群高度为20183KM的绕地球运转周期为12小时的卫星组成,共有24颗卫星,运行在6个环球轨道上;地面部分:包括一个主控中心与一些广泛分散的调节点。
地面控制网跟踪这些卫星,精确地控制它们的轨道,并且间断性地校正天文数据及其它系统数据,通过卫星传送给用户;用户部分:GPS接收机及其支撑设备。
2大楼综合定时(供给)系统BITS是大楼综合定时(供给)系统(Building Integrated Timing Supply)是为现代通信网上各种数字通信设备提供统一高质量时钟基准信号的设备。
以BITS为核心的现代数字同步网,成为整个通信楼内或通信区域内的专用定时供给发生器,它能接受源自基准时钟信号的同步,并滤除由于传输所带来的各种损伤,重新产生高质量的定时信号并向楼内或区域内的所有被同步的数字设备提供各种定时信号。
PXI定时与同步技术详解
37
/china
外部源
/china
板卡1 板卡2 板卡3
9
时间
定时误差来源
• 抖动(Jitter)
− 抖动是时钟周期之间(两次采 样之间)的微小差别
− 在时钟路径上添加各种元器件 均会导致抖动
• 稳定性
− 易受温度、老化等变化因素影 响
• 精度
− 振荡器产生的频率不是绝对精 确的频率
− 评价单位有ppm(百万分之一) 和ppb(十亿分之一)
− 操作同时发生,但无须严格同步
• 同步测量
− 测量是相关的
/china
3
为什么需要同步?
• 保证测量的精度
• 多通道间的相位误差要求 • 高速的激励-响应测试 • 后续处理中需要进行数据关联性分析
• 实现复杂的分布式测量和控制应用
• 分布式的I/O • 分布式的控制
/china
4
需要同步的典型应用
• 结构健康监测 (SHM)
• 在大型结构/建筑的多个区域测量和记 录振动(应变)等信号
• 在后续的处理需要分析数据的关联性 • 10 Hz带宽的振动信号要求大约毫秒级
的同步
• 噪声源定位
• 麦克风阵列 • 多通道、分布式的同步采集 • 纳秒级的同步需求和专用的定时硬件
/china
PXI-6652 PXIe-6672
IEEE-1588
(PXI-6683 PXI-6683H)
GPS
(PXI-6683/6683H)
<10-4m 10-2m
100m
101m 102m 地域跨度
NTP (Standard Ethernet)
103m 104m 105m
时间同步原理
时间同步原理
时间同步是指在各个设备之间保持统一的时间标准,以确保数据的准确性和一致性。
在计算机网络中,时间同步是非常重要的,它涉及到网络通信、数据存储、安全认证等方面。
本文将介绍时间同步的原理及常见的时间同步方法。
首先,我们来了解一下时间同步的原理。
时间同步的关键在于确定一个统一的时间基准,并将各个设备的时间与该基准进行比较和调整。
在计算机网络中,通常采用网络时间协议(NTP)来实现时间同步。
NTP是一种用于同步网络中各个设备时间的协议,它通过在网络中广播时间信息,并利用时延、偏差等参数来调整本地设备的时间,从而实现时间同步。
其次,我们来看一下常见的时间同步方法。
除了NTP协议外,还有其他一些时间同步方法,如基于GPS的时间同步、基于原子钟的时间同步等。
其中,基于GPS的时间同步是通过接收GPS卫星发射的时间信号来同步设备时间,具有高精度和高可靠性的特点。
而基于原子钟的时间同步则是利用原子钟的稳定性和准确性来实现时间同步,通常用于对时间要求非常高的场合,如金融交易、科学实验等。
除了以上介绍的方法外,还有一些新型的时间同步技术正在不断发展,如区块链时间同步、光子钟时间同步等。
这些新技术在提高时间同步精度、安全性和可靠性方面具有很大的潜力,将为未来的时间同步提供更多可能性。
总之,时间同步在计算机网络中具有非常重要的意义,它不仅关乎数据的准确性和一致性,还涉及到网络安全、通信效率等方面。
通过了解时间同步的原理和常见方法,可以更好地理解和应用时间同步技术,从而提高网络的性能和可靠性。
希望本文对时间同步原理有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、同步系统
按照同步的功能,同步可以分为载波同步、位同步(码元同步)、帧同步(群同步)、复帧同步和网同步等。
①载波同步:指采用相干解调(同步解调)时,接收端必须获得与发送端同频、同相的载波。
②位同步(码元同步):由于任何消息都通过一串二进制码元序列传送,所以接收译码时,必须提供准确的码元判决时刻,使判决的时钟周期、相位都与发送端一致,否则误码很大,通信无法进行。
数字通信系统中接收码元时钟信号的提取称为码元同步。
③帧同步(群同步):PCM、ΔM信号或其他信源编码所提供的数字信号都是时分复用的。
接收端要辨认出第一路码、第二路码等,因此发送端必须提供每帧的起、止位置。
接收端获得该标志后,才能正确分路、译码。
④网同步:在获得载波同步、位同步、群同步之后,两点间的数字通信就可以较可靠的进行。
然而,随着数字通信的发展,尤其是计算机技术和通信系统相结合,出现了多点(多用户)通信和数据交换,构成了数字通信网。
多点通信和数据交换,要求全网必须有一个时间标准时钟,即全网同步工作的问题,称为网同步。
1、载波同步
导频法(外同步法)
发送端专门为接收端的相干解调发送载波
接收端电路简单(只需要窄带滤波器即可)
无“相位模糊”现象,可以用于绝对相位调制
直接提取法(自同步法)
接收端从信号本身中提取出来载波
接收端电路较为复杂
有“相位模糊”现象,若采用调相只能用DPSK
频谱示意图
插入导频法的发送端框图
插入导频法的接收端框图。