固体的表面与界面

合集下载

(最新整理)固体表面及界面接触现象(1)分解

(最新整理)固体表面及界面接触现象(1)分解

q(ps pns n)
2021/7/26
30
§6 固体表面及界面接触现象
6.2 表面电场效应
若用 σ ( 0 ) 表示表面处为平带时的薄层电导,
则半导体表面层总的薄层电导为:
σ σ(0 ) q (p s p n s n )
2021/7/26
31
2021/7/26
32
§6 固体表面及界面接触现象
6.2 表面电场效应
从式(6-15)可以看到,当Vs改变时,Qs也改 变,也就是说表面空间电荷层的面电荷密度Qs随 表面势Vs改变而变化,这相当于一个电容效应。 可求得微分电容:
[1exp(qVs )]np0[exqpV (s )1]
Cs
rs0
LD
kBT pp0
kBT
F(qV,snp0)
9
§6 固体表面及界面接触现象
6.1 表面态
表面态对半导体的各种物理过程有重 要影响,表面态的带电将产生一个垂直半 导体表面的电场,与此相关的效应将在 下一节讨论。
2021/7/26
10
§6 固体表面及界面接触现象
6.2 表面电场效应
(一) 半导体表面受外场的影响
在一块与半导体表面平行的平板金属与半导 体之间加上外电压V,就会有一个电场(强度 E0)作用于半导体表面,这相当于金属与半导 体之间构成平板电容器。
2021/7/26
27
§6 固体表面及界面接触现象
6.2 表面电场效应
5. 深耗尽状态
因为空间电荷区中多子对外电场改变的响应几乎是瞬 时的(约10-12秒),而少子的响应则要慢得多(约100~102 秒),如果表面电场的幅度较大(其方向对P型半导体是 由表面指向体内)、变化又快(例如以阶跃脉冲形式加 上),则刚开始的瞬间少子还来不及产生,因而也就没有 反型层,为屏蔽外电场,只有将更多的空穴(多子)进一 步排斥向体内(空穴是多子,跟得上外电场变化),由更 宽的耗尽层(大于强反型状态时的耗尽层宽度)中的电离 受主来承担。这种非平衡状态就叫深耗尽状态。

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。

2)界面:相邻两个结晶空间的交界面称为“界面”。

3)相界面:相邻相之间的交界面称为相界面。

有三类: S/S;S/V; S/L。

产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。

所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。

这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。

1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。

这是一种理论上的结构完整的二维点阵平面。

它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。

这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。

2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。

这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。

根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。

(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。

为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。

高二物理竞赛课件:固体表面及界面接触现象之表面态

高二物理竞赛课件:固体表面及界面接触现象之表面态
子的各一个价电子组成共价键。
晶体表面,晶格突然断裂,最外层的Si原子
出现未配对电子,即存在一个未饱和的键,称为
悬挂键。பைடு நூலகம்
悬挂键上的电子对应的能量状态称为表面态。
从能量高低的角度考虑,表面态的能量高于价带中的电子能量(体内配
对价键上的电子能量)低于导带中的电子能量(晶格空间的准自由电子的能
量状态),因此它的能量值必定在禁带范围内。
微分电容
其中:
() = [+ − − + () − ()൧
讨论非简并情况,满足玻尔兹曼分布,则
B
B
其中np0和pp0分别表示半导体内部热平衡电子浓度和热平衡空穴浓度。
外电场垂直作用于热
平衡P型半导体表面
层所满足的泊松方程。
B
B
电荷密度 QS 0 E0 。
• 金属和半导体的表面存在一定的电荷分布。
空间电荷区
• 空间电荷区的存在可以屏蔽外电场,使其不能深入半导体内部(空间电荷区存在
内建电场)。
由于表面层内存在电场,必然存在势能。附加了电势能后,
半导体表面层内的能带必然发生变化。下面以P型半导体为
例分析。
电子电势:
电势:
外加电场:
E ( x)
电场方向由半导体表
面指向半导体内部。
dV ( x)
dx
qV ( x)
半导体表面与体内之间的电
势差称为半导体的表面势。
空穴电势的变化
情况与电子相反。
空间电荷区出现附加的静电势能,使电子在半导体内部
和表面层的势能不相同,则相应的能带发生变化。
这种半导体表面空间电荷区
表面能带
悬挂键的密度很高

《无机非金属材料科学基础》第6章 固体的表面与界面行为

《无机非金属材料科学基础》第6章 固体的表面与界面行为
平衡时,此膨胀功必然等于新增加的表面能8πrγdr, 即
由此我们可以得到一个重要的结论:肥皂池的半径越 小,泡膜两侧的压差越大。
上式是针对球形表面而言的压差计算式,对于 一般的曲面,即当表面并非球形时,压差的计算式 有所不同。一般地讲,描述一个曲面需要两个曲率 半径之值;对于球形,这两个曲率半径恰好相等。一 般曲面两个曲率的半径分别为R1和R2。我们可以得 到一般曲面的压差计算式:
1. 共价键晶体表面能
2. 离子晶体表面能
每一个晶体的自由焓都是由两部分组成,体积 自由焓和一个附加的过剩界面自由焓。为了计算 固体的表面自由焓,我们取真空中0K下一个晶体 的表面模型,并计算晶体中一个原子(离子)移到晶 体表面时自由焓的变化。在0K时,这个变化等于 一个原子在这两种状态下的内能之差。
目录
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节
表面与界面物理化学基本知识 固体的表面(固-气) 固-液界面 浆体胶体化学原理 固-固界面
6.1 表面与界面物理化学基本知识
固体的界面可一般可分为表面、界面和相界面: 1)表面:表面是指固体与真空的界面。 2)界面:相邻两个结晶空间的交界面称为“界面”。 3)相界面:相邻相之间的交界面称为相界面。相界面有
界面间的吻合和结合强度。
表面微裂纹是由于晶体缺陷或外力作用而产生。微 裂纹同样会强烈地影响表面性质,对于脆性材料的强度 这种影响尤为重要。
脆性材料的理论强度约为实际强度的几百倍,正是 因为存在于固体表面的微裂纹起着应力倍增器的作用, 使位于裂缝尖端的实际应力远远大于所施加的应力。
葛里菲斯(Griffith)建立了著名的玻璃断裂理论, 并导出了材料实际断裂强度与微裂纹长度的关系
R 2E C

第7章 固体表面与界面

第7章 固体表面与界面
W=-ΔG=(LV +SV)-SL 粘附功愈大则表示固-液界面结合愈牢,也即附着润湿愈强。 (一般γSV、γLV均是固定的,可改变γSL) γSL↓(选择固液组成接近)→W↑→坯、釉完全粘附、适应、结 15 合牢固。
2、铺展润湿
SV= SL+LV cos)
LVcos= SV-SL=F cos=(SV- SL)/LV
面能大小来估计。对于离子晶体,表面主要取决于晶格能和极化
作用(表面能与晶格能成正比)。主要形成化学吸附。
2
2、分子引力(范德华力)
一般是指固体表面与被吸附质点(如气体分子)之间相互作用
力。它是固体表面产生物理吸附和气体凝聚的原因。分子间引力 主要来源于三种不同效应。
1) 定向力:相邻两个极化电矩因极性不同而相互作用的力。主
c.凸面上的饱和蒸气压>平面>凹面(P凸>Po> P凹)。
12
讨 论:
1 Ln (球面), P0 RT r
P
2M
Ln
P P0

M
RT

1 r1

1 r2
)( 非球面)
r↓→凸面上蒸气压升高P凸↑; r↓→凹面上蒸气压下降P凹↓
这种蒸气压差,在高温下足以引起微细粉体表面质点由凸面
SL很大,不润湿。
16
3、浸渍润湿(液体表面没有变化)
浸渍润湿指固体浸入液体中的过程。 例:生 坯的浸釉。把固体浸在液体之中,固-气界面 为固-液界面所代替,γSV→γSL: ΔG=γSL-γSV 当γSV >γSL,润湿自发进行。

液体
三种润湿共同点:液体将气体从固体表 面挤开,由固-液界面→固-气(或液气) 界面,铺展是润湿的最高标准,能铺展 则必能附着和浸渍。

固体表面与界面行为

固体表面与界面行为
第2晶界构型车小节不讲
2、晶界构型 晶界形状也由表面张力相互关系决定 多晶体结构,多晶体晶界形状 (1)固-固-固相 晶界交汇处均为固相,此时
多晶体面中,每一个晶界相交角度均为120°所有晶体断面的有 规律六角形状,晶界以120°相等,能量D趋于最稳定系统的总 界面能最小,且晶应当是平直的。
(2)固-固-气相 (3)固-固-液相
由此式得,曲面附加压力引饱和蒸气压变化曲面半径越小引起 蒸汽变化与愈大。
6-6 润湿分相分布
1、润湿 表面与界面之间形成液-固-气,固-固-液,固-固-气三种体
系,其中转为重要的是液-固-气系统 润湿:液体与固体接触,使固体表面能下降的现象。 润滑角θ :液体表面张力γLV与固—液界面张力γSL之间夹角。 γSV,γSL,γLV,分别为液-固-气、固-液,固-气之界面张力
晶界应力与热彭胀系数Δ α 温度变化原底d成正比,如热膨胀为各向同性即Δα =0,τ =0。 如产生应力则晶粒越大,应力愈大强度越差,搞热冲击性也差。
6-6弯曲表面
1、弯曲表面附加压力 表面张力的存在造成弯曲表面上产生附加压力
如右图一根毛细管向其中吹气在管端形成一半径为气泡压力 增大,气泡体积增大相应表面积增加,阻碍其体积增加的阻力 为由于扩大表面积所需总表面能为克服此表面张力环境做功为
γAγB :A、B两界面的表面能 γAB :AB之间的表面能
粘附功:剥开单位粘附面积所需作功,粘附功W大则VAB小,
两者结合粘附牢固 相似表面易于粘附,一般金属排登陆艇它们之间的吸附层且
具足够的塑性变形可出现率固粘附即为冷焊。
4、实际表面结构 硅酸盐表面由于吸附都带有硅酸基团,吸附水而成水膜。
6-5 晶界
T↑表面能V0↓介质不同,表面能数值不同

第5章 固体表面与界面(1)-固体的表面及其结构

第5章 固体表面与界面(1)-固体的表面及其结构

1. 晶体表面结构
(1)真空状态下晶体表面结构特点 a. 真空状态下,无杂质、气体等吸附作用,是纯粹 质点表面力场作用; b. 只能通过表面层质点极化、变形、位移、重排来 降低部分表面能;
第5章 固体表面与界面 —— 5.1 固体的表面及其结构
中南大学 资源加工与生物工程学院 宋晓岚
c. NaCl、Al2O3、SiO2等阴离子半径较大的离子型 化合物,极化重排结果导致形成表面双电层
晶 体
表面离子受内 部离子作用电子 云变形 离子重排 表面能减少
离子晶体表面的电子云变形和离子重排
第5章 固体表面与界面 —— 5.1 固体的表面及其结构
NaCl
中南大学 资源加工与生物工程学院 宋晓岚
0.020nm
晶 体 内 部
晶 体 表 面
0.281nm
0.266nm
NaCl表面层中 Na+向里;Cl-向外移动并形成双电层
第5章 固体表面与界面 —— 5.1 固体的表面及其结构
中南大学 资源加工与生物工程学院 宋晓岚
(1)化学力:本质上是静电力
来自表面质点的不饱和价键,并可 用表面能数值来估计 → 化学吸附 吸附体系:
吸附剂(固体表面:具有吸附作用) 吸附物(被吸附分子) � 发生电子转移 � 形成共用电子对
第5章 固体表面与界面 —— 5.1 固体的表面及其结构
第5章 固体表面与界面 —— 5.1 固体的表面及其结构
中南大学 资源加工与生物工程学院 宋晓岚
原因:
� Pb2+与I-都具有大的极化性能; � 当用极化性能较小的 Ca2+和F-依次置换PbI2中的 Pb++和I-离子时,相应表面能和硬度迅速增加,可 预料相应的表面双电层厚度将减小。

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。

这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。

我们来看看固体表面的物理化学。

固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。

这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。

例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。

界面在无机材料中同样扮演着重要的角色。

在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。

这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。

例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。

我们还研究了固体表面和界面在光电、催化、储能等领域的应用。

这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。

例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。

无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。

通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。

在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。

无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。

然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。

为了解决这些问题,表面修饰改性成为了一种有效的手段。

通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。

无机材料科学基础 第五章固体表面与界面

无机材料科学基础 第五章固体表面与界面

W愈大表示固液界面结合愈牢,即附着润湿愈强。
铺展润湿
cosθ= γSV - γSL γLV θ (A)
θ
(B)
0 90 180
(C)
润湿与液滴的形状 (A) 润湿, θ<90o (B) 不润湿, θ>90o (C)完全润湿, θ=0o ,液体铺开
润湿张力:F= γLV cosθ = γSV - γSL
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
说明:
1. 离子晶体MX在表面力 作用下,处于表面层的负 离子X在外侧不饱和,负 离子极化率大,通过电子 云拉向内侧正离子一方的 极化变形来降低表面能。 这一过程称为松弛,它是 瞬间完成的,接着发生离 子重排。
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
坯釉结合、陶瓷与金属的封 接等。
定义:固液接触后,体系吉布斯自由焓降低时
就称为润湿。
分类::
按润湿程度
附着润湿 铺展润湿
浸渍润湿
附着润湿 液-气界面(L-g)
固-气界面(S-g)
固体
固-液界面(S-L)
液体
附着润湿的吉布斯自由焓变化为: ΔG1 =γSL -(γLV +γSV )
附着功:W= γLV +γSV - γSL
0

LsU 0 N
(1
nis ) nib
r0 为0K时的表面能; LS 为1m2表面上的原子数; nis、nib分别表示第i个原子在晶体表面和 晶体体内最邻近的原子数; Uo 为晶格能; N 为阿佛加德罗常数。
说明: 实际表面能比理想表面能的值低,原因可能为: (1) 可能是表面层的结构与晶体内部相比发生了改变,表 面被可极化的氧离子所屏 蔽,减少了表面上的原子数。 (2) 可能是自由表面是由许多原子尺度的阶梯构成,使真 实面积比理论面积大。

材料科学基础---第四章 表面与界面

材料科学基础---第四章  表面与界面
单位面积上的能量和单位长度上的力是等因次的,
J/m2 Nm2mm N
液体的表面能和表面张力在数值上是相等的;固体 的表面能和表面张力在数值上往往是不相等的。
思考题
1、固体表面具有哪些特征?固体表面的不均一 性是如何产生的?
2、在表面力作用下,离子晶体表面会产生哪些 变化?
3、表面粗糙度和微裂纹对晶体表面会产生什么 影响?
1)—开尔文方程
r2
P—曲面上蒸汽压 P0—平面上蒸汽压 r —球形液滴的半径 R—气体常数
—液体密度 M—分子量 —表面张力
讨论: (1) 凸面蒸汽压>平面>凹面蒸汽压。 应用:解释蒸发凝聚传质。 (2)开尔文公式也可应用于毛细管内液体的蒸汽压变化。
如液体对管壁润湿,则
lnP2M1cos P0 RT r
材料科学基础---第四章 表面 与界面
பைடு நூலகம்
一、固体表面的特征
1、固体表面的不均一性 ●绝大多数晶体是各向异性。 ●同一种物质制备和加工条件不同也会有不同的表 面性质。 ●由于晶格缺陷、空位或位错而造成表面的不均一 性; ●由于外来物质污染,吸附外来原子占据表面位置 引起固体表面的不均一性。 ●固体表面无论怎么光滑,从原子尺寸衡量,实际 上也是凹凸不平的。
4、什么是晶界?相界面?晶界具有什么特点? 5、什么是晶界构型?多晶材料中晶界相遇有哪
几种构型?
第二节 界面行为
一、弯曲表面效应 二、润湿与粘附
一、 弯曲表面效应
1、弯曲表面的附加压力 (1)定义:弯曲表面两边的压力差称为弯曲表面的附加压力。 符号:∆P。 (2)产生原因:由于表面张力的作用。方向:曲率中心。
图4-6 润湿的三种情况
(1)附着润湿

材料科学基础05-固体的表面与界面

材料科学基础05-固体的表面与界面

液-液界面
液-固界面
固-固界面
• 固-固界面是固体中的一种缺陷,有其自身的结构 、化学成分和物理化学特性。这种缺陷,从它在 物质中分布的几何特征来看,是二维的,借此区 别于其他晶体缺陷如位错和空位等。
面缺陷 (二维缺陷)
• 晶体材料中存在着许多界面,如(外)表面(surface) 与内界面(interface)等。



0.281nm
0.266nm
图10 NaCl表面层中Na+Βιβλιοθήκη 里;Cl-向外移动并形成双电层
离子极化性能愈大,双电层愈厚,从 而表面能愈低。
如:PbI2表面能最小(130尔格/厘米2 );PbF2次之(900尔格/厘米2);CaF2 最大(2500尔格/厘米2)
2、粉体表面结构
• 粉体:微细的固体微料集合体大小,表面材料工艺 中,原料加工成微细颗粒以利于成型和烧结。
固体的表面
图1 不均匀表面的示意图 • 固体表面的结构和性质在很多方面都与体内不同.晶体内
部的三维平移对称性在晶体表面消失了.把固体表面称为 晶体三维周期结构和真空之间的过渡区域。
固体的表面
• 理想表面 • 清洁表面
– (1)台阶表面 – (2)弛豫表面 – (3)重构表面
• 吸附表面
1、理想表面
• 表面存在大量的活性晶格点:由于打磨,加工表面的局部被扭 曲变形引起,这种表面常常比电解抛光或低温退火预处理后的 表面更活泼 。
• 残余应力 :机加工后,除了表面产生拜尔贝层之外,还存在着 各种残余应力,按其作用范围大小可分为宏观内应力和微观内 应力
2021/8/27
26
• 金属材料在工业环境中被污染的实际表面示意图

第三章--表面与界面

第三章--表面与界面

1.双相界面
❖ 相界面如右上图
❖ 定义界面Y:使两边阴影部分的面积 一样大
α(Ⅰ)
2.曲率半径对界面移动的影响
CⅠ
❖ 相界面由Ⅰ→Ⅱ(如下图)
❖ 自由能变化为:
dG=μⅠdm1+ μⅡdm2+γdA=δWrew
平衡时: δWrew=0,dm1=-dm2=dm
α
μⅡ- μⅠ= γdA/dm---相变的驱动力主要为 表面积变化
CⅡ β(Ⅱ)
Y β
ⅠⅡ
表面曲率效应
❖ 平面移动时:dA=0→ μⅡ= μⅠ= μ∞ ❖ 曲面时: μⅡ= μr, μⅠ= μ∞
μr- μ∞= γdA/dm =vγdA/dV 这里:V=ωR3/3,dV= ωR2dR ω为固体角,整个球面为4π
A= ωR2, dA=2ωRdR μr- μ∞=v×2γ/R 讨论:(1)驱动力为2γ/R,即曲率越大,表面能越高。 (2)固体颗粒中存在压应力,也是驱动力。 dμ=-SdT+VdP=VdP (当温度不变时) △P= 2γ/R---粒子越小,粒子内压应力就越大。
固体粒子的熔点
积分:
Sm
Tr dT
T
2V s s,l
r dr / r 2
S m (Tr
T )
SmT
2V s s,l
r
T
2V
s s ,l
Smr
T
2V
s s,lTm
Hmr
3.4 表面能与界面的杂质偏析(Gibbs吸附等温线)
在表面物理中,经常研究的是固体 表面和外来原子或分子的相互作用,例 如化学吸附,外延生长,氧化和多相催 化等。
的原子在界面上部分相接,部分无法相接,因此称 为半共格晶界。

第一章 固体表面讲解

第一章 固体表面讲解
用粘附功描述粘附程度:
WAB A B AB
表面污染影响很大。如铁若在水银中断裂,裂 开面可以再粘合起来,而在空气中就不行。
1.5.5 吸附对材料力学性能的影响—莱宾杰尔效应
由于环境介质的作用,材料的强度、塑性、耐磨性 等力学性能会下降。
原因
1. 不可逆物理过程效应 如:腐蚀不改变力学性能,通
5 一般表面
由于表面原子的能量处于非平衡状态,一般 会在固体表面吸附一层外来原子。
除Au以外,金属经机械加工后,在常温常压下会 发生氧化。因此,在固体表面会吸附一层外来原 子。氧化皮
大部分表面覆层技术在工艺实施之前,都要求对 表面进行预处理,清除掉表面的氧化皮,以便提 高覆层与基材的结合强度。
1.3、表面晶体结构
在表面科学中,任何一个二维周期结构的重复性 都可用一个二维布拉菲晶格(点阵)加上结点(阵点) 来描述。
实际表面结构并不是完整无缺的,存在着很多缺 陷。
典型的TLK模型分析:
考塞尔(Kossel)-斯特朗斯基(Stranski)表面晶 体结构物理模型 平台(Terrace)---台阶(Ledge)—扭折(Kink)模型
•气相外延,如化学气相沉积技术; •液相外延,如电化学等。
④化学键结合界面
覆层材料与基材之间发生化学反应,形成成分固定 的化合物时,两种材料的界面就称为化学键结合界 面。如Ti合金表面气相沉积形成TiN和TiC薄膜。
特点
•结合强度较高,但界面的韧性较差, 易发生脆性断裂或剥落。
典型工艺
•物理和化学气相沉积、离子注入、 化学转化膜等技术
过减小尺寸使性能下降
2. 可逆物理和化学过程效应 使表面自由能下降,力学性能发 生变化--莱宾杰尔效应

固体物理学中的表面物理学与界面效应

固体物理学中的表面物理学与界面效应

固体物理学中的表面物理学与界面效应在固体物理学中,表面物理学与界面效应是两个非常重要的研究领域。

表面物理学主要研究固体表面的结构、性质和动力学行为等方面,而界面效应则研究不同材料之间的相互作用及对材料性质的影响。

本文将围绕这两个主题展开探讨。

一、表面物理学在固体物理学中,表面物理学研究的对象主要是固体表面的结构和性质。

由于表面相对于体内来说具有较高的表面自由能,因此表面结构和性质的研究具有很大的意义。

1、表面结构固体表面的结构通常是由层状结构和表面重构两个方面组成。

层状结构是指晶体表面上的原子层具有一定的周期性排布结构,这种结构对于表面的吸附、反应和生长等过程起到了至关重要的作用。

而表面重构是指在表面上形成一种不同于体内结构的层状结构,这种结构通常是由表面上的化学反应或物理过程引起的。

表面重构的出现不仅会影响表面的稳定性和能量,同时还会对表面化学反应和物理学性质等方面产生重要影响。

2、表面性质表面性质与表面结构密切相关,主要包括表面能量、表面态密度、表面散射、表面反应等方面。

表面能量是指表面上每个原子的各自能量之和,它决定了表面稳定性和化学反应等方面的性质。

表面态密度是指表面上每个原子的自由态密度之和,它与表面的电子结构和导电性等方面有关。

表面散射是指表面对入射粒子的反射和散射现象,它与材料的表面光学性质和电子结构等方面相关。

表面反应则是指表面上的化学反应和物理过程,它直接影响着表面的化学性质和生长机制等方面。

二、界面效应固体中的界面效应是指不同材料或不同晶面之间的相互作用及其对材料性质的影响。

这种效应来源于不同材料或不同晶面之间的化学、电学和热学等物理性质的差异,它能够导致多种连锁反应,进而对材料性质造成极大影响。

1、界面反射当电磁波从介质之间的界面上反射或折射时,会发生电磁场的反射或折射。

这种现象被称为界面反射。

在材料的光电学领域中,例如太阳能电池和光导纤维等领域中,界面反射现象成为了研究的重要对象。

第4章表面与界面

第4章表面与界面

第四章表面与界面§4-1 固体的表面一、固体表面的特征1、固体表面的不均一性(1)、同一种固体物质,制备或加工条件不同也会有不同的表面性质;(2)、实际晶体的表面由于晶格缺陷、空位或位错而造成表面的不均一性;(3)、只要固体暴露在空气中,其表面总是被外来物质所污染,被吸附的外来原子可占据不同的表面位置,形成有序或无序排列,也引起了固体表面的不均一性。

总之,实际固体表面的不均一性,使固体表面的性质悬殊较大,从而增加了固体表面结构和性质研究的难度。

2、固体表面力场定义:晶体中每个质点周围都存在着一个力场,在晶体内部,质点力场是对称的。

但在固体表面,质点排列的周期重复性中断,使处于表面边界上的质点力场对称性破坏,表现出剩余的键力,称之为固体表面力。

长程力:固体物体之间相互作用力。

它是两相之间的分子引力通过某种方式加合和传递而产生的,其本质仍属范德华力。

长程力分两类:一类是依靠粒子之间的电场传播的;另一类是通过一个分子到另一个分子逐个传播而达到长距离的。

范氏力主要来源于三种不同的力:定向作用力诱导作用力色散力二、晶体表面结构1、离子晶体的表面离子晶体MX在表面力作用下,离子的极化与重排过程见图4-1。

处于在表面层的负离子(X-)在外侧不饱和,负离子极化率大,通过电子云拉向内侧正离子一方的极化变形来降低表面能,这一过程称为松弛,是瞬间完成的,接着发生离子重排。

从晶格点阵稳定性考虑,作用力较大、极化率小的正离子应处于稳定的晶格位置,而易极化X-受诱导极化偶极子排斥而推向外侧,从而形成双电层。

如:NaCI表面形成厚度为0.02nm的表面双电层。

AI2O3、SiO2、ZrO2表面也有此现象。

2、晶体表面的几何结构随着晶体面的不同,表面上原子的密度也不同。

固体的实际表面是不规则和粗糙的,存在着无数台阶、裂缝和凹凸不平的山峰谷,这些不同的几何状态必然会对表面性质产生影响,其中最重要的是表面粗糙度和微裂纹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
粗糙度对润湿的影响是()
∙A、粗糙度愈大,愈不利于润湿。

∙B、粗糙度愈大,愈有利于润湿。

∙C、当真实接触角θ小于90°时,粗糙度愈大,愈容易润湿。

∙D、当真实接触角θ大于90°时,粗糙度愈大,愈容易润湿。

正确答案:C 我的答案:C 得分:5.0分
2
黏土泥浆只有在一定的条件下才表现出触变性,它与黏土颗粒表面吸附的电解质的种类与数量有关,如果黏土浆体具有较小的触变性,则满足以下哪个条件()。

∙A、吸附阳离子价数越小
∙B、吸附阳离子价数越大
∙C、价数相同离子半径越大
∙D、价数相同时与阳离子半径大小没有关系
正确答案:A 我的答案:A 得分:5.0分
3
随着温度的升高,固体的表面能()。

∙A、升高
∙B、下降
∙C、先降后升
∙D、先升后降
正确答案:B 我的答案:B 得分:5.0分
4
毛细管凝聚现象在生活和生产中经常遇到,例如,陶瓷生坯中有许多毛细孔,从而有许多毛细孔凝聚水,这些水由于蒸汽压低而不易被排除,若不预先充分干燥,入窑将容易炸裂,这种现象可以用()解释。

∙A、拉普拉斯方程
∙B、金斯特林格方程
∙C、开尔文公式
∙D、丁达尔效应
正确答案:C 我的答案:C 得分:5.0分
5
黏土颗粒周围吸附着定向排列的水分子层和水化阳离子,这部分水称为()∙A、结构水
∙B、牢固结合水
∙C、松结合水
∙D、自由水
正确答案:B 我的答案:B 得分:5.0分
6
矿物组成是影响黏土的阳离子交换容量的因素之一,同等条件下,在以下三种黏土矿物中,阳离子交换容量最大的是()。

∙A、高岭石
∙B、蒙脱石
∙C、伊利石
正确答案:B 我的答案:B 得分:5.0分
7
黏土吸附阳离子的电荷数是影响黏土的阳离子交换序列的因素之一,黏土对不同价阳离子吸附能力不同,在以下几种离子中,与黏土间吸附能力最强的是()。

∙A、M3+
∙B、M2+
∙C、M+
∙D、吸附能力没有区别
正确答案:A 我的答案:A 得分:5.0分
8
黏土吸附的有机腐殖质含量增加,则其扩散双电层厚度(),ζ-电位()。

∙A、下降,下降
∙B、增加,下降
∙C、增加,增加
∙D、下降,增加
正确答案:C 我的答案:C 得分:5.0分
9
具有良好流动性的泥浆要求黏土浆体系统内,黏土颗粒间以()方式排列。

∙A、面-面
∙B、边-边
∙C、边-面
正确答案:A 我的答案:A 得分:5.0分
10
泥浆胶溶必须使介质呈(),并且要求有()将黏土颗粒表面吸附的其他高价阳离子交换下来。

∙A、酸性,一价碱金属离子
∙B、碱性,一价碱金属离子
∙C、酸性,二价阳离子
∙D、碱性,二价阳离子
正确答案:B 我的答案:B 得分:5.0分
11
润湿的先决条件是液气界面张力(γLV)大于固液界面张力(γSL)。

()
正确答案:×我的答案:×得分:5.0分
12
高炉炼铁时,当铁水或熔渣能润湿多孔的炉衬时,将加速炉衬材料的损毁,这一现象可用开尔文公式解释。

正确答案:×我的答案:×得分:5.0分
13
由于弯曲表面效应,凹液面的饱和蒸汽压恒大于平液面的饱和蒸汽压()
正确答案:×我的答案:×得分:5.0分
14
高价阳离子饱和的粘土,其ζ一电位高于低价阳离子饱和的粘土()
正确答案:×我的答案:×得分:5.0分
15
黏土荷电的原因只有两个,一是由于同晶置换,二是由于吸附有机腐殖质。

正确答案:×我的答案:×得分:5.0分
16
蒙脱石所带的负电荷主要是由于吸附有机腐殖质产生的()
正确答案:×我的答案:×得分:5.0分
17
高岭石所带的电荷主要是由于同晶置换产生的()。

正确答案:×我的答案:×得分:5.0分
18
ζ-电位越低,黏土泥浆越稳定性,流动性越好()。

正确答案:×我的答案:×得分:5.0分
19
决定黏土泥团可塑性大小的最主要引力是局部边-面静电引力。

()
正确答案:×我的答案:×得分:5.0分
20
离子晶体表面通过极化、变形、重排可降低表面过剩的全部能量。

()正确答案:×我的答案:×得分:5.0分。

相关文档
最新文档