有关分块正定矩阵和分块负定矩阵的一些结论
矩阵分块知识点总结
矩阵分块知识点总结一、矩阵分块的基本概念1.1 矩阵分块的定义矩阵分块是一种对矩阵进行分割的方法,将一个大的矩阵分割成若干个较小的子矩阵,这些子矩阵可以是行向量、列向量或者更小的矩阵。
矩阵分块的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
1.2 矩阵分块的表示形式矩阵分块可以采用不同的表示形式,其中包括方括号表示、圆括号表示和其他符号表示。
以方括号表示为例,一个矩阵可以分割成四个子矩阵,如下所示:A = [ A11, A12A21, A22 ]其中A11、A12、A21、A22为子矩阵,分别表示矩阵A的四个子块。
1.3 矩阵分块的基本性质矩阵分块具有很多基本的性质,其中包括可交换性、可加性、可乘性等。
具体而言,如果矩阵A和B可以进行相应的分块操作,则有以下性质:可交换性:A和B的分块顺序可以交换,即A*B = B*A。
可加性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A + B) = A + B。
可乘性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A * B) = A * B。
1.4 矩阵分块的应用矩阵分块在实际中有着广泛的应用,其中包括矩阵的运算、方程组的求解、特征值与特征向量的计算等方面。
矩阵分块能够简化问题的处理过程,提高计算的效率,使得矩阵的性质更加清晰和易于理解,因此在很多领域中得到了广泛的应用。
二、矩阵分块的基本类型2.1 行分块矩阵行分块矩阵是将一个大的矩阵按照行进行分块,将每一行的元素划分成若干个较小的行向量,从而形成一个行分块矩阵。
行分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
2.2 列分块矩阵列分块矩阵是将一个大的矩阵按照列进行分块,将每一列的元素划分成若干个较小的列向量,从而形成一个列分块矩阵。
列分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
线性代数期末知识点总结
线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
正定矩阵的性质和判定方法及应用
内蒙古财经大学本科毕业论文正定矩阵的性质及应用作者郝芸芸系别统计与数学学院专业信息与计算科学年级10级学号102093113指导教师高菲菲导师职称讲师答辩日期成绩内容提要矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用.关键词:二次型正定矩阵判定方法应用AbstractMatrix is an important basic concepts in mathematics,but also a main research object,at the same time matrix theory is a powerful tool for the study of linear algebra。
At the same time,the positive definiteness of matrix is an important concept in the matrix theory。
The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly。
线性代数重点知识总结
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
第四节 分块矩阵 小结
A11
A1
A21 O
As1
(2) 若A、B是两个分块对角矩阵,且 Ai 与 Bi 是
同阶方阵
则
A1 B1
A B
A2 B2 O
As
Bs
A1B1
AB
A2 B2
O
As
Bs
由上可以看出,对于能划分为分块对角矩阵的矩阵,
若采用分块来求逆阵或进行行运算是非常方便的
例2 设 求 A1
则
C11 L
AB
C
M
Cs1 L
t
C1r
M Csr
其中 Cij Aik Bkj
k 1
(i 1, 2,L , s; j 1, 2,L , r)
例1 设
1 0 0 0 0
0
1
0
0
0
A 0 1 1 0 0
1
2
0
1
0
2 0 0 0 1
1 2 1 0
4
0
0
1
B 0 1 0 0
A2-1
-1 2
5 -2
-1
0
--521
-
1 2
0
故
A1
A11
A21
1 3
0
0 0 0
0 0
E21
0
52
1 2
0
0
1 0 0 0
0 0 1 0
0 0 0 0 1
例3 设 A,C分别为 r 阶和 s 阶可逆矩阵,求分块
矩阵
的逆矩阵.
X
A 0
B
C
分析:对于这类不是分块对角矩阵求逆矩阵时, 可先设它的逆矩阵,然后利用它们相乘等于单 位矩阵,两边对应的子块相等而求得.
实正定矩阵的判定及其重要结论
摘要:本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论.关键词:实对称正定矩阵;等价定理;充分条件Decision of Real Positive Definite Matrixand Its Important ConclusionAbstract:This paper provide a series of matrix theory knowledge of higher algebra ,give some of the equivalence theorem of real symmetric matrix and its proof and obtain some of the important conclusions of real symmetry positive definite matrix .Keywords:real symmetry positive definite matrix, equivalence theorem , sufficient condition禄 鹏(天水师范学院数学与统计学院,甘肃天水,741000)摘 要: 本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论.关键词: 实对称正定矩阵; 等价定理; 充分条件1 引言矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具有使用价值、应用广泛的数学理论[]2,1,现已成为处理有限维空间形式和数量关系的强有力的工具. 正定矩阵作为一类常用矩阵,其在数学学科和其他学科技术领域的应用也非常广泛[]4,3,因此它的判断问题一直倍受关注.虽然个别判定条件已被人们所熟知,但缺少系统的总结,本文将尽可能给出多个实对称正定矩阵的判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具.2 实正定矩阵的等价定理定义1[]5 实二次型()n x x x f ,,,21 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有()n c c c f ,,,21 0>.定义2[]5 实对称矩阵A 称为正定的,如果二次型AX X T 正定.引理1[]5 n 元实二次型()n x x x f ,,,21 是正定的充分必要条件是它的正惯性指数等于n .引理2[]5 任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.引理3[]6 设A 是n 阶实对称矩阵,则存在正交矩阵T 使得()n T diag AT T AT T λλλ,,,211 ==-, ()1 其中n λλλ,,,21 为A 的特征值. 引理4[]7 任何可逆实方阵都可以分解为正交矩阵Q 和上三角矩阵R 的乘积,其中R 的主对角元均为正.定理1 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的n 维非零列向量X ,即10⨯∈≠n R X ,使0>AX X T .证明 由定义1和定义2可证.定理2 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切顺序主子式大于0.证明[]5 必要性, 因为A 是实对称正定矩阵,由定义2知,存在二次型 ()n x x x f ,,,21 ∑∑===ni nj j i ij x x a 11是正定的.对于每个k ,,1n k ≤≤令()k k x x f ,,1 ∑∑===ki kj j i ij x x a 11.我们来证明k f 是一个k 元的正定二次型. 对于任意一组不全为零的实数,,,1k c c 有()k k c c f ,,1 ∑∑===ki kj j i ij c c a 11=()0,,0,,,1 k c c f .0>因此()k k x x f ,,1 是正定的. 由正定矩阵的行列式大于零可知,k f 的行列式,01111>kk k ka a a an k ,,1 =. 这就证明了矩阵A 的一切顺序主子式大于0.充分性, 对n 作数学归纳法. 当1=n 时, ().21111x a x f = 由条件011>a ,显然有()1x f 是正定的.假设充分性的论断对于1-n 元二次型成立,现在来证明n 元的情形.令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=----1,11,11,1111n n n n a a a a A ,=α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-n n n a a ,11 ,于是矩阵A 可以分块写成A ⎥⎦⎤⎢⎣⎡=nn T a A αα1. 既然A 的顺序主子式全大于零,当然1A 的顺序主子式也全大于零. 由归纳法假定, 1A 是正定矩阵,换句话说,有可逆的1-n 阶矩阵G 使 11-=n T E G A G ,这里1-n E 代表1-n 阶单位矩阵. 令⎥⎦⎤⎢⎣⎡=1001G C , 于是 =11AC C T ⎥⎦⎤⎢⎣⎡100T G ⎥⎦⎤⎢⎣⎡nn T a A αα1⎥⎦⎤⎢⎣⎡100G ⎥⎦⎤⎢⎣⎡=-nn T T n a G G E αα1. 再令 ⎥⎦⎤⎢⎣⎡-=-1012αT n G E C , 有 2112C AC C C T T ⎥⎦⎤⎢⎣⎡-=-101G E T n α⎥⎦⎤⎢⎣⎡-nn T T n a G G E αα1⎥⎦⎤⎢⎣⎡--101αT n G E ⎥⎦⎤⎢⎣⎡-=-ααT T nn n GG a E 001. 令 21C C C =, ,ααT T nn GG a a -=就有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a AC C T 11 . 两边取行列式, a A C =2. 由条件,0>A ,因此0>a . 显然⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 . 这就是说,矩阵A 与单位矩阵合同,所以A 是正定矩阵.定理3 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切顺序主子矩阵都是正定矩阵.证明 由定理2可证.定理4 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的特征值全大于0.证明 必要性,A 为正定矩阵,若A 的全部特征值为n λλλ,,,21 不全大于0,不妨设01≤λ.由引理3存在正交矩阵T 使得()1式成立.令 (),,,,21n T ααα = 则i i i A αλα=()n i ,,2,1 =,即i α为A 的属于特征值i λ的特征向量. 特别的,取单位特征向量01≠β,即111βλβ=A .于是有 11111βλβββT T A =01≤=λ,这与A 为正定矩阵相矛盾,故A 的全部特征值为n λλλ,,,21 都大于0.充分性: 设A 的特征值为n λλλ,,,21 ,由引理3知存在正交矩阵T ,使得 ()n T diag AT T AT T λλλ,,,211 ==-. 从而有 ()T n T Tdiag A λλλ,,,21 =.任取0≠X ,则AX X T ()X T Tdiag X T n T λλλ,,,21 =()Y diag Y n T λλλ,,,21 =,其中 T X Y T T =()0,,,21≠n y y y ,于是AX X T 02222211>+++=n n y y y λλλ ,即A 为正定矩阵.定理5 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 合同与E .证明 必要性, 由引理1和引理2知正定二次型()n x x x f ,,,21 可经过一适当的非退化线性替换TY X =化为规范形 22221ny y y +++ .其对应的矩阵为单位矩阵E . 即()()TY A TY T EY Y T =⇒()EY Y Y AT T Y T T T =,故A 合同与E .充分性, 由于A 合同与E ,即存在可逆矩阵C 使得C C EC C A T T ==.任取0≠X ,令()Tn y y y Y CX ,,,21 ==,则0≠Y ,于是Y Y CX C X AX X T T T T ===22221ny y y +++ 0>. 故A 是正定矩阵. 定理6 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切主子式都大于0. 证明 必要性,A 正定,令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111, 其中 k A 为A 的主子矩阵, n i i k ≤<<≤ 11()n k ,,2,1 =.设矩阵A 与k A 的二次型分别为AY Y T 和X A X k T . 对任意(),0,,10≠=Ti i mb b X 存在(),0,,10≠=Tn c c Y 其中⎩⎨⎧==.;,,,0,1other i i k b c k k k 由A 正定,00AY Y T ,0>得00X A X k T是正定的, 故存在实可逆矩阵k T , 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k T k T A T λλ 1, 其中(),,,10k i i =>λ 从而k k k k T k T A T A T λλ 12==0>. 又 02>k T ,故 0>k A ()n k ,,2,1 =.充分性, 实对称矩阵A 的一切主子式都大于0, 所以A 的一切顺序主子式都大于0. 由定理2可证A 为正定矩阵.定理7 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的一切主子矩阵都是正定矩阵.证明 必要性,A 正定,令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111, 其中 k A 为A 的主子矩阵, n i i k ≤<<≤ 11()n k ,,2,1 =.显然 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =也是实对称矩阵.又因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111的k 个顺序主子式均为A 的k 个主子式,由定理6知k 个主子式都大于零, 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =为正定矩阵.充分性, 实对称矩阵A 的一切主子矩阵都是正定矩阵, 则矩阵A 的一切主子式都大于零, 由定理6即证A 是正定矩阵.定理8 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 半正定且0≠A .证明 必要性, 因为A 正定,则显然A 一定半正定,且0≠A .充分性, 设A 的特征值为n λλλ,,,21 ,由A 半正定可知,i λ(),,,2,10n i =≥又021≠⋅⋅⋅=n A λλλ ,故(),,,2,10n i i =>λ 由定理4可知A 正定.定理9 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的实列满秩矩阵m n C ⨯, 都有AC C T 为正定矩阵.证明 必要性, 首先()TT ACC AC C T =,对任意的1⨯∈m R X ,0≠X ,由秩C n =, 知,0≠CX 而A 为正定矩阵, 故()()(),0>=CX A CX X AC C X TT T即 AC C T 为正定矩阵.充分性, AC C T 正定, 则对任意的1⨯∈m R X ,0≠X , 由秩C n =, 知,0≠CX 并且 ()()CX A CX T=()0>X AC C X T T , 即A 为正定矩阵.定理10 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是对于任意的实可逆矩阵T , 都有AT T T 为正定矩阵.证明 必要性,首先()TT ATT AT T T =, 对任意的1⨯∈n R X ,0≠X ,由秩T n =, 知,0≠TX 而A 为正定矩阵, 故()()(),0>=TX A TX X AT T X TT T即 AT T T 为正定矩阵.充分性,AT T T 正定, 则对任意的1⨯∈n R X , 0≠X , 由秩T n =,知,0≠TX 并且 ()()TX A TX T=()0>X AT T X T T , 即A 为正定矩阵.定理11 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在正定矩阵B ,使2B A =. 证明 必要性, 设A 的全部特征值为n λλλ,,,21 全大于0,由引理3得 ()121,,,-=T Tdiag A n λλλ=()],,,[121-T Tdiag n λλλ ()],,,[121-T Tdiag n λλλ =2B ,其中 =B ()],,,[121-TTdiag nλλλ .因为B 为实对称矩阵,且特征值0>i λ(),,,2,1n i = 所以B 为正定矩阵.充分性, 由于B 为正定矩阵, 使2B A =,则B 为实对称可逆矩阵,且有 2B A =B B T =EB B T =,即A 合同与E .再由定理5得A 为正定矩阵.定理12 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在实可逆矩阵P ,使得P P A T =.证明 必要性,A 是实对称正定矩阵,则存在实可逆矩阵P 使得 EP P A T =P P T =, 其中E 为n 阶单位矩阵.充分性, 因为存在实可逆矩阵P , 使得P P A T =,并且P P A T =EP P T =, 其中E 为n 阶单位矩阵. 即实对称矩阵A 合同与E ,所以A 为正定矩阵.定理13 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在实列满秩矩阵n m Q ⨯, 使Q Q A T =.证明 必要性, 因为A 为正定矩阵, 则存在n 阶实可逆矩阵P , 使得 P P A T =()()n m n T nn P -⨯⨯=0()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n P 0. 令 =Q ()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n P 0, 则 Q Q A T=, 其中Q 为n m ⨯列满秩矩阵.充分性,n m Q ⨯为实列满秩矩阵,则Q Q T 为n 阶可逆矩阵,故对任意的1⨯∈n R X ,0≠X , 由秩Q m =, 知,0≠QX 并且=AX X T QX Q X T T ()()QX QX T=,0>即A 为正定矩阵.定理14 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在n 阶主对角元素都大于零的上三角矩阵R ,使得R R A T =.证明 必要性, 因为A 是实对称正定矩阵,则存在实可逆矩阵P ,使得P P A T =. 又由引理4知,存在矩阵Q 和P 使得 QR P =, 其中Q 为n 阶正交矩阵,R 为n 阶主对角元素都大于零的上三角矩阵, 从而P P A T =QR Q R T T =R R T =.充分性, 因为存在n 阶主对角元素都大于零的上三角矩阵R ,使得R R A T =. 则显然矩阵R 可逆, 由定理12即可证A 是正定矩阵.定理15 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在n 阶主对角元素都大于零的下三角矩阵U ,U U A T =.证明 类似于定理14.定理16 实对称矩阵=A ⎥⎦⎤⎢⎣⎡3221A A A A T为正定矩阵的充要条件是1A 和21123A A A A T --为正定矩阵.证明 当1A 可逆时,有⎥⎦⎤⎢⎣⎡--E A A ET 1120⎥⎦⎤⎢⎣⎡3221A A A A T ⎥⎦⎤⎢⎣⎡--E A A E0211⎥⎦⎤⎢⎣⎡-=-21123100A A A A A T ()2 必要性, 若A 正定,那么1A 也正定,11-A 存在. 令⎥⎦⎤⎢⎣⎡-=-E A A E T 0211,则T 可逆,所以AT T T 也正定.从而⎥⎦⎤⎢⎣⎡--2112310A A A A AT 为正定矩阵,因此它的主子矩阵1A 和21123A A A A T --为正定矩阵.充分性, 由1A 和21123A A A A T--为正定矩阵.且两个正定矩阵的和也是正定矩阵知⎥⎦⎤⎢⎣⎡--2112310A A A A AT 为正定矩阵. 再由()2式得⎥⎦⎤⎢⎣⎡=3221A A A A A T=()TT 1-⎥⎦⎤⎢⎣⎡--2112300A A A A A T 1-T ,即A 为正定矩阵.定理17 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 的正惯性指数等于A 的维数n .证明 由引理1和定义2显然可证.定理18 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是存在正交向量组,,,,21n ααα 使.2211Tn n T T A αααααα+++=证明必要性,A 是正定矩阵,则由引理3可知,存在正定矩阵,U 使 ()U diag U A n T λλλ,,,21 =,()Tn U βββ,,,21 =,令 i i i βλα=()n i ,,2,1 =,为正交向量组, 即得.2211Tn n T T A αααααα+++=充分性,T n n T T A αααααα+++= 2211=[]T n TT ααα 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n ααα 21 U U T = (U 为正交矩阵), 显然A 是正定矩阵.3 实正定矩阵的重要结论对于实对称正定矩阵除了上面的一些充要条件用于判定一个矩阵是否为正定矩阵外, 还有一些很重要的结论,下面给出详细内容及其证明. ()1 若A 是n 阶实对称正定矩阵, 则0>A .证明 设A 是一正定矩阵,因为A 与单位矩阵合同,所以有实可逆矩阵C 使 C C EC C A T T ==. 两边取行列式, 就有02>==C C C A T.()2 若A 是n 阶实对称正定矩阵,则1-A 也是实对称正定矩阵. 证明 因为A 是实对称正定矩阵, 则0>A , 所以A 可逆. 又因为 ()(),111---==A A A T T所以1-A 也是实对称矩阵.设A 定特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ, 但1-A 的全部特征值为01>iλ()n i ,,2,1 =, 即1-A 为正定矩阵.()3 若A 是n 阶实对称正定矩阵, 则*A 也是正定矩阵(其中*A 表示A 的伴随矩阵).证明 已知*A =,1n n R A A ⨯-∈ 且()(),***==A A A T T又A 是正定矩阵, 所以0>A .设A 的特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ,于是*A 的n 个特征值为11211,,,---n A A A λλλ 也都大于零, 即*A 也是正定矩阵.()4 若A 是n 阶实对称正定矩阵,则k A (k 是正整数)也是正定矩阵.证明 设A 的全部特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ,则k A 对全部特征值为,,,,21knk k λλλ 也都大于零, 即k A 也是正定矩阵. ()5 若A 是n 阶实对称正定矩阵,则必有nn a a a ,,,2211 都大于零,即主对角线上的元素都大于零.证明 根据定义1和定义2可知,对任意的1⨯∈n R X ,且0≠X 有0>AX X T ,故依次令,100,,001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= X可得,011>a ,022>a , ,0>nn a 即证主对角线上的元素都大于零.()6 若A 是n 阶实对称正定矩阵,则存在实数,a 使得A aE -是正定矩阵. 证明 设A 的全部特征值为,,,,21n λλλ 则由A 正定有 ()n i i ,,2,10 =>λ, 则A aE -的特征值为 .,,1n a a λλ--令 {}1,,2,1,max +==n i a i λ, 则有()n i a i ,,2,10 =>-λ从而A aE -是正定矩阵, 即证存在实数a 使得A aE -是正定矩阵.()7 若A 是n 阶实对称矩阵,E 为n 阶单位矩阵, 证明:存在正数ε,是得A E ε+为正定矩阵.证明 可证A E ε+为实对称矩阵, 且存在正交矩阵T ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T AT T λλ 1, 其中n λλλ,,,21 为A 的全部特征值,令 {}n λλλλ,,,max 210 =.不妨设0λ0>(因为,若0λ0=,则01===n λλ ,0=A ,结论已证). 再令 110+=λε, 那么110<+λλi ()n i ,,2,1 =.所以 ()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=-110011λλλλεn T A T⇒()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++++=+-11110011λλλλεn T A E T ,其中0110>++λλi ()n i ,,2,1 =, 故A E ε+为正定矩阵.()8 若B A ,都是n 阶实对称矩阵,A 是正定矩阵, 证明: 存在实可逆矩阵T , 使得AT T T 与BT T T 同时为对角形.证明 由于A 是正定矩阵,则A 合同与单位矩阵E ,即存在实可逆矩阵,P 使得 E AP P T =.而且BP P T 仍为实对称矩阵, 从而存在正交矩阵,Q 使得(),1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T Q BP P Q λλ 其中n λλλ,,,21 是BP P T 对特征值.令 PQ T =,则AT T T ()()()E Q AP P Q PQ A PQ T T T===,=BT T T ()()()===Q BP P Q PQ B PQ T T T ,1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλ其中E 为n 阶单位矩阵.()9 若B A ,都是n 阶实对称正定矩阵,证明 .B A B A +>+证明 由于A 是正定矩阵,则A 合同与单位矩阵E ,即存在实可逆矩阵,P 使得 E AP P T =.而且BP P T 仍为实对称正定矩阵, 从而存在正交矩阵,Q 使得(),1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T Q BP P Q λλ 其中n λλλ,,,21 都大于零是BP P T 对特征值.令 PQ T =, 则 AT T T ()()()E Q AP P Q PQ A PQ T T T===,其中E 为n 阶单位矩阵,=BT T T ()()()===Q BP P Q PQ B PQ T T T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλ 1, ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=+n T T B A T λλ111 , 有 ()()()n T B A λλλ+++=+111212.又知 12=P A ,n P B λλ 12=. 而PQ T =,其中Q 为正交矩阵, 则1±=Q , 且2222P Q P T ==.所以 ()()()n P B A λλλ+++=+111212n λλλ 211+≥,而 []n P B A λλλ 2121+=+, 即证 B A B A +>+.()10 若B A ,都是n 阶实对称正定矩阵,则B A +也正定.证明 B A ,都是n 阶实对称正定矩阵, 则()B A B A T +=+, 且对任意的1⨯∈n R X ,0≠X 有()0>+=+BX X AX X X B A X T T T , 所以B A +也正定.()11 若A 是n 阶实对称正定矩阵,证明:nn a a a A 2211≤, 其中()n i a ii ,,2,1 =为A 的主对角元素.证明 设 ⎥⎦⎤⎢⎣⎡=nn Ta A A αα1, 其中1A 为A 的1-n 阶顺序主子阵, ()n n n n T a a a ,121,,,-= α因为A 正定, 所以1A 正定,11-A 存在,于是⎥⎦⎤⎢⎣⎡---10111A E T n α⎥⎦⎤⎢⎣⎡nn Ta A αα1⎥⎦⎤⎢⎣⎡---1111αA E n ⎥⎦⎤⎢⎣⎡-=-αα11100A a A T nn ,两边取行列式得()αα111--=A a A A T nn .因为1A 正定, 所以11-A 正定,011≥-ααA T ,01>A , 则由上式可得 nn a A A 1≤.同理1,121--≤n n a A A , 其中2A 为A 的2-n 阶顺序主子阵, 这样继续下去,可得 nn a A A 1≤nn n n a a A 1,12--≤≤≤ nn a a a 2211.()12 若B A ,都是n 阶实对称正定矩阵,证明:AB 的特征值均大于零.证明 由于A 是正定矩阵, 则A 合同与单位矩阵E , 即存在实可逆矩阵,P 使得 E PAP T =.()()()11111-----==P B P BP P PAP PABP TTT .因为B 为正定矩阵, ()()11--P B P T也正定, 从而它的特征值全大于零. 再由上式可知AB 与()()11--P B P T相似, 所以它们有相同的特征值, 因此AB 的特征值均大于零.()13 若B A ,都是n 阶实对称正定矩阵, 且BA AB =, 证明AB 为正定矩阵. 证明 见参考文献[]7第273271-页.参考文献[1] Pullman NP. Matrix Theory and its Applications[M],Academic Press,1976. [2] COM PA. Principles and Practice of Mathematics[M],SpringerVerlag,Berlin Heidelberg,1998.[3] Johnson CR. Positive definite matrices[J],AmerMathMothly ,1970.[4] 胡跃进. 广义正定矩阵的一个不等式[J],阜阳师范学院学报(自然科学版),2001. [5] 北京大学数学系几何与代数教研室前代数小组. 高等代数(第三版)[M],北京:高等教 育出版社,2003.[6] 张禾瑞,郝镔新. 高等代数(第三版)[M],北京:高等教育出版社,1983. [7] 钱吉林. 高等代数解题精粹(修订版)[M],北京:中央民族大学出版社,2002.。
正定矩阵的性质及应用论文
正定矩阵的性质及应用论文正定矩阵是线性代数中一个重要的概念,它具有许多重要的性质和广泛的应用。
在本篇论文中,将详细介绍正定矩阵的性质以及其在实际应用中的一些重要应用。
首先,我们来了解一下正定矩阵的定义。
对于一个n阶矩阵A,如果对于任意非零向量x,都有x^T*A*x > 0,那么这个矩阵就是正定矩阵。
也就是说,正定矩阵对于任意非零向量x,都将其映射到一个大于零的数。
因此,正定矩阵是一个非常重要的概念。
下面,我们来介绍一下正定矩阵的性质。
1. 正定矩阵的特征值都是正数。
这是正定矩阵的一个重要性质,它决定了正定矩阵的行列式大于0。
2. 正定矩阵的行列式大于0。
这是由于根据性质1,正定矩阵的特征值都是正数,因此其行列式大于0。
3. 正定矩阵的逆矩阵也是正定矩阵。
这是因为对于任意非零向量x,有x^T*A*x > 0,那么x^T*A^(-1)*x = (A^(-1)*x)^T*A*(A^(-1)*x) > 0。
4. 正定矩阵可以通过Cholesky分解进行分解。
Cholesky分解是将正定矩阵分解为一个下三角矩阵和其转置的乘积。
5. 正定矩阵的逆矩阵也是正定矩阵。
这是因为对于任意非零向量x,有x^T*A*x > 0,那么x^T*A^(-1)*x = (A^(-1)*x)^T*A*(A^(-1)*x) > 0。
现在,让我们来了解一些正定矩阵在实际应用中的一些重要应用。
1. 在数学和物理建模中,正定矩阵常常被用来描述能量、势能、距离等非负量。
例如,在分子动力学模拟中,正定矩阵可以用来描述原子之间的势能,从而模拟分子在空间中的运动。
2. 在机器学习中,正定矩阵也有重要的应用。
在支持向量机(SVM)中,正定矩阵被用来构建二次规划问题的对偶问题,从而实现机器学习模型的训练。
3. 在优化问题中,正定矩阵也经常被用来描述目标函数的二次项。
例如在最小二乘法中,正定矩阵被用来描述模型的误差项,从而求出最优的模型参数。
浅谈分块矩阵的性质及应用doc
浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。
在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。
本文将从性质和应用两个方面对分块矩阵进行浅谈。
1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。
下面将介绍几个较为常见的性质。
(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。
直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。
(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。
也就是说,分块矩阵的转置相当于交换原矩阵的每一块。
(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。
具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。
另外还有两个性质需要注意。
首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。
其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。
(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。
具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。
然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。
由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。
接下来,我们只需要在新的线性系统中解x即可。
(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。
具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。
矩阵的分块和分块矩阵的定义
引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法.类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。
以这些子块为元素的矩阵就称为分块矩阵。
线形代数以其独特的理论体系和解题技巧而引人入胜。
在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果。
而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵.对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法.A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ B= 111212122212s s r r rs B B B B B B B B B ⎛⎫⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫⎪ ⎪⎪⎪⎝⎭,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。
正定矩阵的性质及应用
正定矩阵的性质及应用摘要: 正定矩阵是矩阵理论中的一类重要的矩阵,且在多个不同领域内均有重要的作用,本文回顾了正定矩阵的发展史、性质及应用。
矩阵理论的应用愈来愈广,它在众多学科和领域中发挥着不可替代的作用,如在数学分析中用黑塞矩阵来判断函数的极值等。
把矩阵理论应用到这些数学学科中时,使很多问题变得简单明了.关键字: 正定矩阵;主子式;顺序主子式;特征值.研究矩阵的正定性,在数学理论或应用中具有重要意义,是矩阵论中的热门课题之一.正定矩阵具有广泛的应用价值,是计算数学、数学物理、控制论等领域中具有广泛应用的重要矩阵类,其应用引起人们极大的研究兴趣.本文首先给出了正定矩阵的定义,然后研究了正定矩阵的一些等价条件和一些正定矩阵的若干性质,最后简单的列举了一些正定矩阵在数学其它方面的应用.一、正定矩阵的定义定义1.设),,,(21n x x x f 是一个实二次型,若对任意的一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f ,则称),,,(21n x x x f 是实正定二次型,它所对应的对称矩阵为正定对称矩阵,简称正定矩阵.定义2.n 阶是对称矩阵A 称为正定矩阵.如果对于任意的n 维实非零列向量),,,(21n x x x f X =都有0>'A X X ,正定的是对称矩阵A 简称为正定矩阵.注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定型,不具备有定型的二次型及其矩阵为不定.二次型的有定型与其矩阵的有定型之间具有——对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性的判别.二.正定矩阵的一些性质1.正定矩阵的充分必要条(1)n 元实二次型),,,(21n x x x f 正定⇔它的惯性指数为n . 证:设二次型),,,(21n x x x f 经过非退化矩阵实线性替换成标准=),,,(21n x x x f 2222211n n y d y d y d +++ (1)由“非退化线性替换保持正定性不变”可知),,,(21n x x x f 正定当且仅当2222211n n y d y d y d +++ 是正定的??由二次型2222211n n y d y d y d +++ 正定当且仅当i d 0>.n i ,, 2,1=.因此二次型正惯性指数为n .(2)一个是对称矩阵A 正定⇔A 与E 合同.既∃可逆矩阵C ,使得C C A '=. 在证明此条件之前先给出一个定义及两个定理:定义:任意一个实数域上的二次型,经过一适当的非退化线性替换可变成221221r p p z z z z ---+++称为实二次型),,,(21n x x x f 的规范形.定理:任意一个实数域上的二次型,经过一适当的非退化线性替换可变成规范形,且规范形是唯一的.以下就是上述从要条件的证明:证:正定二次型),,,(21n x x x f 的规范形为22221n y y y +++ (2)因此(2)式的矩阵为单位矩阵E .所以一个是对称矩阵是正定的当且仅当它与单位矩阵合同. (3) 实二次型AX X x x ax x x f T j i n i nj ijn ==∑∑==1121),,,( 正定⇔A 的顺序主子式全大于零.证:必要性:设二次型j i n i nj ij n x x a x x x f ∑∑===1121),,,(是正定的.对于每个k ,n k ≤≤1,令j i k i kj ij k k x x a x x f ∑∑===111),,(我们来证k f 是一个k 元的正定二次型.对于任意一组不全为零的实数k c c ,,1 ,有0)0,0,,,(),,(1111>==∑∑== k j i k i kj ij k k c c f c c a c c f因此),,(1k k x x f 是正定的.由上面的推论,k f 的矩阵的行列式n k a a a a kkk k ,,101111=>,这就证明了矩阵A 的顺序主子式全大于零. 充分性:对n 作数学归纳法当1=n 时,21111)(x a x f =由条件011>a ,显然有)(1x f 是正定的.假设充分性的论断对于1-n 元二次型已经成立,现在来证n 元的情形.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=----1,11,11,1111n n n n a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n n n a a ,1,1 α于是矩阵A 可以分块写成⎥⎦⎤⎢⎣⎡'=nn a A A αα1既然A 的顺序主子式全大于零,当然1A 的顺序主子式也全大于零.由归纳假定,1A 是正定矩阵,换句话说,有可逆的1-n 级矩阵G 使11-='n E G A G这里1-n E 代表1-n 级单位矩阵,令 ⎥⎦⎤⎢⎣⎡=1001G C ,于是 ⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡'⎥⎦⎤⎢⎣⎡'='-nn n nn a G G E G a A G AC C αααα1111100100再令⎥⎦⎤⎢⎣⎡'=-10-12αG EC n 有⎥⎦⎤⎢⎣⎡'-⎥⎦⎤⎢⎣⎡''⎥⎦⎤⎢⎣⎡'-=''--1010111-n 2112ααααG E a G G E G E C AC C C n nn n ⎥⎦⎤⎢⎣⎡''-=-ααG G a E nn n 001 令21C C C = , 则a G G a nn =''-αα,于是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡='a AC C 11 再取行列式 , a A C =2,由条件,0>A .因此0>a .显然有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a a a 111111111 这就是说,矩阵A 与单位矩阵合同,因之,A 是正定矩阵,或者说,二次型 ),,,(21n x x x f 是正定的.(4) 一个是对称矩阵A 正定⇔A 的主子式全大于零. 证:必要性:对A 的任一k 阶主子式为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=k k k k k k i i i i i i i i i i ii i i i i i i k a a a a a a a a a A 2122212k 12111存在某个排列矩阵P ,使AP P '的k 阶顺序主子式为k A ,因为0>A ,所以02>='='P A P A P AP P由矩阵充要条件(3)知0>k A .充分性:由A 的主子式全大于零知: A 的顺序主子式全大于零.再由充要条件(3)知“充分性”成立.(5) 一个是对称矩阵A 正定⇔A 的特征值全大于零.证:必要性:由于对称矩阵A 是正定矩阵.因为∃一个正交矩阵T ,使AT T '成对角型的对角线上的元素均为正值.又由对角线的元素又为A 的所有特征值. 因此A 的特征值均为正数.充分性:当对称矩阵A 的特征根都为正数时,对角型矩阵AT T '对角线上的元素均为正数.因为AT T '为正定矩阵,又由于T 为正交阵.所以A 是正定阵.(6)A 、B 是是对称矩阵,则⎥⎦⎤⎢⎣⎡=B A C 00正定⇔A 、B 均正定.证:必要性:A 、B 因为是对称矩阵.所以C 是实对称矩阵.又因为C 是正定的由充分必要条件(4)知:A 、B 均为正定的充分性:因为A 、B 是正定. 所以∃正交矩阵P 、Q 使得AP P '、BQ Q '为对角阵.所以C 可经合同变换化为对角型,且对角线上的元素为A 、B 的特征值且都大于零.所以C 正定. 2.性质:设矩阵A 为n 阶实方阵,则下列命题等价. <1>A 是正定矩阵. <2>1-A 是正定矩阵.<3>A '是正定矩阵. <4>A A '+是正定矩阵.<5>对任意n 阶可逆矩阵P ,AP P '是正定矩阵.<6>A 的各阶主子矩阵是正定矩阵.证:<1>⇒<2> 若A 是正定的,则存在实可逆矩阵C ,使C C A '=,因为)()(1111'='=----C C C C A又因为C 可逆,于是1-C也是是可逆矩阵所以1-A 也是正定矩阵.⇒<3> 因为A 是正定矩阵,于是存在可逆C 使C C A '=,则C C C C C C A '='''=''='))(()(所以A '是正定矩阵.⇒<4> 因为A 是正定矩阵,于是A A '=,则A A A 2='+.又因为∀nC X ∈都有0>'A X X ,所以02>'A X X ,即0)2(>'X A X所以A 2正定矩阵,因此A A '+就是正定矩阵.⇒<5> 因为A 是正定矩阵,所以∀nC X ∈使得 0>'A X X .令PY X =, 则有nC X ∈为任意的,则Y 为任意的.因此0>''APY P Y因此AP P '为正定矩阵.⇒<6> 设n n ij a A ⨯=)(是正定的,A 的任意k 级主子式对应的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=k k k k k k i i i i i i i i i i ii i i i i i i k a a a a a a a a a A 212221212111设A 与k A 的二次型分别为AY Y '和AX X ',对任意=0X 0),,(21≠'n i i i b b b 取),,,(210n c c c Y =≠0,其中=k c 12,(,,0k n b k i i i =⎧⎨⎩),其它 n k ,,21= 由A 正定知0>'A Y Y ,故0>'A X X 既AX X '是正定的.因此k A 正定,所以A 的各阶主子矩阵是正定矩阵. 还可以由上面的充分必要条件(4)知A 的各阶主子式都大于零可以推得A 的各阶主子矩阵是正定矩阵.以上给出了正定矩阵的一些充分必要条件及性质,以下我们就来探讨一以下正定矩阵在一些方面的应用.三.正定矩阵的应用(1)从二次型理论的起源,既从化二次型曲线和二次型曲面为标准形的问题入手, 我们发现二次型理论对二次型理论对二次型曲线和二次型曲线的方程的化简有着重要的意义. 例1.利用直角坐标变换化简如下二次曲面的方程,032682223222=++--+++z y x xy z y x 其中)1,3,4(),,,(--='='B z y x X⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200021013A 解:作平移变换:),,(,321ααααα='-=Y X 则有03)(2)()(=+-'+-'-αααY B Y A Y即0322=+'-'+'+'-'-'αααααB Y B A AY A Y AY Y 令32+'-'=αααβB A又因为A A AY A Y =''=',αα,所以0)(2=+'--'βαY B A AY Y适当的选取,α使B A =α,由秩=A 秩A 3=,知:B A =α(线性方程组)有唯一解:211321===ααα,由B A ',,α可得29-=β,又由于A 是实可逆矩阵,所以存在正交矩阵T ,使得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='321λλλAT T 使得25-525523,21=+==λλλ,, 为A 的特征根作正交线性替换)(,321Z Z Z Z TZ Y '''='=,,,则 23222123322221125-52552Z Z Z Z Z Z AY Y '+'++'='+'+'='λλλ 即原方程可化简为02552552232221='-+'++'Z Z Z (2)用正定二次型的理论来判定多元函数极值存在的充分必要条件是很方便的.定义1.设n 元函数),,,()(21n x x x X f =在n n R x x x X ∈'=),,(,21 的某个领域内有一阶,二阶连续函数偏导数,记)(),()(21X f x fx f x f X f n∇∂∂∂∂∂∂=∇,,, 称为函数)(X f 在点)(21'=n x x x X ,,, 处的梯度,或记为)(x gradf .定义2. 设n 元函数)(x f 对各自变量具有二阶连续偏导数,则矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n n n x x x x x x x x x x xx x x x x x x f f f f f f f f f x H212221212111)( 称作是)(x f 在n P 点的黑塞矩阵.)(X H 是由)(x f 的2n 个二阶偏导数构成的n 阶方阵是对称矩阵.定理1.(极值的必要条件) 设n 元函数)(x f 其中)(21n x x x X ,,, =的对各自变量具有一阶连续偏导数,n n R x x x X ∈=),,,(002010 是)(x f 的一个驻点,则)(x f 在)002010n x x x x ,,,( =取得极值的必要条件是0)()(r n210x x x fx f x f x adf g ='∂∂∂∂∂∂=,,, 定理 2.(极值的充分条件) 设函数)(x f 在点的某个领域内有一阶、二阶连续偏导数,且0))()()(()(n02010=∂∂∂∂∂∂=∇x x f x x f x x f x f ,,, 则: (1)当)(0x H 为正定矩阵时,)(0x f 为)(x f 的极小值. (2) 当)(0x H 为负定矩阵时,)(0x f 为)(x f 的极大值. (3) 当)(0x H 为不定矩阵时,)(0x f 不是)(x f 的极值.例2.求函数321212221321212),,(x x x x x x x x x f ++++=的极值. 解:因为22,122,123331221211+=∂∂+=∂∂+=∂∂x x f x x x f x x x f又因为0,0,0321=∂∂=∂∂=∂∂x f x f x f 得驻点)1,144,24(,)1,0,0(10'--='=X X .)(x f 得各二阶偏导数为:2,0,2,2,12,623231222*********12=∂∂=∂∂∂=∂∂=∂∂∂=∂∂∂=∂∂x fx x f x f x x f x x f x x f 得矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20202122126)(1x X H在0X 点处,又得矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20202122120)(0X H , 而)(0X H 的顺序主子式 0152det ,0144212120det ,0det 321<-=<-===H H H故)(0X H 不定,0X 不是极值点,在点1X 处,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2020212212144)(1X H而)(1X H 的顺序主子式02802020212212144det 014421212144det ,0144det 321>==>==>=H H H ,故)(1X H 为正定矩阵. )1,144,24(1'--=X 为极小值点.极小值6913)1,144,24()(1-=--=f x f例3.正定矩阵与柯西不等式 我们学过柯西不等式的表达式为∑∑∑===≤ni i ni ini i i y x y x 022.同时,也可将其用内积的形式来表示为βαβα≤⋅.设矩阵()ij a A =是一个n 阶正定矩阵,对任意向量()321,,,x x x =α,()321,,,y y y =β,我们定义∑∑===⋅n i nj jiij yx a 00βα,从中我们可以看出这是n 维向量的内积.相反,我们可以得出,对于n维向量的任意一种内积,一定存在一个n 阶正定矩阵()ij a A =使得对任意向量α和β可以∑∑===⋅n i nj j i ij y x a 00βα来定义.因此,给定了一个n 阶正定矩阵,在n 维向量间就可以由这个矩阵定义一个内积,从而可以得到如下相应柯西不等式:∑∑∑∑====≤ni j i ijn i n j jiij ni ji ij y y ax x a yx a 000证明:不等式32212322213221232221132332213322112)(2y y y y y y y x x x x x x x y x y x y x y x y x y x y x --++--++≤----++对所有的321,,x x x 和321,,y y y 均成立.证:有题意可得βα⋅是由矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=210121012A 所定义的,则可以得到矩阵A 的顺序主子式 04210121012,032112,02>=---->=--> 因此矩阵A 是正定矩阵,所以该不等式是由正定矩阵A 所确定的内积产生的柯西不等式,既不等式成立.从该例题中也可将不等式推广为:∑∑∑∑∑∑=-=+=-=+=-=++--≤+-ni n i i i in i n i i i i n i n i i i i iii y y yxx x y x yx y x 1111211112111112)(2其中*N n ∈,),,2,1(,n i y x i i =是任意实数.四.结束语本文针对正定矩阵有了深刻的理解.本文探讨了矩阵的各类性质及在不等式、多元函数极值问题中的应用.作为在矩阵中占有特殊地位的正定矩阵,其应用的范围也更加广泛,但由于本人目前能力有限,待做深入研究.参考文献:1.王萼芳、石生明,高等代数[M].北京:高等代数出版社.2003.205-236.2.董可荣、包芳勋,矩阵思想的形成与发展[J].自然辩证法通讯。
分块矩阵的知识点
分块矩阵的知识点分块矩阵是线性代数中的一个重要概念,它在矩阵运算和矩阵分析中扮演着关键角色。
分块矩阵将一个大的矩阵划分为若干个小的子矩阵,从而简化了复杂的矩阵运算和计算过程。
本文将介绍分块矩阵的基本概念、构造方式以及在矩阵运算中的应用。
1.分块矩阵的定义分块矩阵是由若干个小的子矩阵组成的大矩阵。
这些子矩阵可以是任意大小和形状,而且它们可以是实数矩阵或复数矩阵。
分块矩阵可以表示为如下形式:A=[A11A12A21A22]其中A ij表示分块矩阵A的第i行第j列的子矩阵。
2.分块矩阵的构造方式分块矩阵的构造方式有多种,常见的有水平分块和垂直分块两种方式。
–水平分块:将大矩阵按行划分为若干个子矩阵。
例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]–垂直分块:将大矩阵按列划分为若干个子矩阵。
例如,将一个m×n的矩阵划分为两个子矩阵A1和A2,则可以表示为:A=[A1A2]分块矩阵的构造方式可以根据实际问题的需求选择,不同的构造方式对于矩阵运算的简化程度有所差异。
3.分块矩阵的运算分块矩阵的运算可以通过对子矩阵进行逐个操作来完成。
常见的分块矩阵运算包括矩阵的加法、乘法和转置。
–矩阵的加法:对应位置的子矩阵进行相加。
例如,对于两个分块矩阵A和B,其加法运算可以表示为:A+B=[A11+B11A12+B12A21+B21A22+B22]–矩阵的乘法:通过子矩阵的乘法和求和得到结果。
例如,对于两个分块矩阵A和B,其乘法运算可以表示为:AB=[A11B11+A12B21A11B12+A12B22 A21B11+A22B21A21B12+A22B22]–矩阵的转置:将子矩阵沿主对角线进行交换。
例如,对于一个分块矩阵A,其转置运算可以表示为:A T=[A11T A21TA12T A22T]通过分块矩阵的运算,可以简化矩阵运算的复杂度,提高计算效率。
4.分块矩阵的应用分块矩阵在各个领域中都有广泛的应用,特别是在数值计算和矩阵分析中。
正定矩阵通俗解释
正定矩阵通俗解释正定矩阵是线性代数中重要的概念之一。
在很多实际应用中,正定矩阵扮演着重要的角色。
本文将从通俗易懂的角度,对正定矩阵的概念、性质以及应用进行解释。
首先,什么是正定矩阵?正定矩阵是指一个$n\times n$的实对称矩阵$A$,满足对于任意非零向量$x\in\mathbb{R}^n$,都有$x^TAx>0$。
其中,$x^T$表示向量$x$的转置。
可以理解为,正定矩阵是一种能保证$x$与$Ax$的内积为正的矩阵。
那么,正定矩阵有哪些性质呢?我们可以从以下几个方面进行说明:1. 正定矩阵的特征值都是正数。
即便是部分特征值为零的情况,其它非零特征值均为正。
2. 正定矩阵的行列式必须是正的。
3. 正定矩阵是非奇异矩阵,且求逆的结果也为正定矩阵。
基于以上性质,可以得出一个结论:正定矩阵是一种比较特殊的矩阵类型,它具有一些非常实用的优良性质。
例如,在数值计算、优化问题、信号处理的应用中,正定矩阵经常出现,并且可以用于帮助解决很多实际问题。
在数值计算方面,正定矩阵可用于设计求解一些线性方程组的算法。
例如,我们可以通过正定矩阵来构建一些高效且精确的迭代算法,如共轭梯度法、雅可比方法等等。
这些算法可以对大型稀疏矩阵进行求解,并且具有很高的求解速度和精度。
在优化问题中,正定矩阵则可用于设计一些高效的优化算法。
例如,批次优化、Newton算法等等。
这些算法的效率非常高,并且可以在各类大型优化问题中得到应用。
在信号处理方面,正定矩阵可用于设计一些高效的滤波器。
例如,我们可以通过正定矩阵来构建一种被称为最佳线性滤波器的滤波器。
它可以更好地去除带噪声的信号,并且在图像处理中也经常被应用。
除此之外,正定矩阵在微积分、微分方程、几何等领域中都有着广泛的应用。
例如,在微分方程中,正定矩阵可以用于判定某个边界值问题是否存在唯一解;在几何学中,正定矩阵可以用于判定坐标轴中的椭圆、四面体等对象的几何形态。
综上所述,正定矩阵是一种非常特殊且实用的矩阵类型。
正定矩阵通俗解释
正定矩阵通俗解释正定矩阵指的是一个$n \times n$的实对称矩阵$A$,其对于任意非零向量$x \in \mathbb{R}^n$,都有$x^TAx>0$,也即是$x^TAx$的值始终为正数。
首先,正定矩阵的一些性质是值得注意的。
我们可以通过寻找一个矩阵的特征值和特征向量来确定矩阵是否正定。
如果我们能够找到所有的特征值,我们就可以判断这个矩阵是否正定了。
特别地,如果所有的特征值都是正数,那么这个矩阵就是正定的。
与此同时,如果所有的特征值都是非负数,那么这个矩阵就是半正定的。
正定矩阵在数学分析、统计学、物理学、工程学等领域中有着广泛的应用。
下面我们将详细讨论正定矩阵的性质和应用。
1. 正定矩阵的性质正定矩阵都具有如下性质:1.1. 对于一个正定矩阵$A$,它的所有主子矩阵(去掉某些行和列后得到的矩阵,这些行和列必须是相邻的)都是正定的。
这个性质也被称为主元一定大于零。
1.2. 正定矩阵是非奇异矩阵(也就是可逆矩阵)。
如果一个矩阵是非奇异的,并且它的行和列都线性无关,那么它就是可逆的。
1.3. 正定矩阵的逆是正定的。
1.4. 正定矩阵的转置也是正定的。
也就是说,如果$A$是一个正定矩阵,那么$A^T$也是正定的。
1.5. 两个正定矩阵的乘积还是正定的。
如果$A$和$B$都是正定矩阵,那么$AB$也是正定的。
1.6. 多个正定矩阵的和也是正定的。
如果$A_1,A_2,……,A_k$都是正定矩阵,那么$A_1+A_2+……+A_k$也是正定的。
2. 正定矩阵的应用2.1.优化问题正定矩阵在求解优化问题时是极其重要的。
优化问题的目标是最大化一个目标函数$f(x)$,其中$x$为变量。
通过构造一个二次型,将最大化目标函数$f(x)$的问题转化为求解二次型的最小值问题。
因此,正定矩阵被广泛地应用于多元函数的极值问题中。
2.2.协方差矩阵在统计学中,协方差矩阵是用来描述多元变量之间的关系的。
正定矩阵在协方差矩阵中也有着广泛的应用。
正定矩阵与性质
阵G,使得
GT An1G En1 .
令 则
G O
C1
O
1
,|
C1
||
G
|
0.
C1T
AC1
GT
O
O An1
1
T
G
ann
O
O
1
G
A T n1
T
GT G
ann
O
O 1
G
T An1G
TG
G T
ann
En1
TG
GT
ann
.
再令
15
C2
En1 O
GT
故A是正定的.
i 1
必要性.设实对称矩阵A是正定的.由于A是实对
称的,A合同于一个对角矩阵 ,,其对角线元素是
A的特征值 1,L ,n, 由于A是正定的,这些特征
值大于零,而这样的对角矩阵与单位矩阵合同,
故A合同于单位矩阵.
9
定理实对称矩阵A 正定的充分必要条件是存在 可逆矩阵P,使得A=PTP. 证明设A=PTP,P可逆.对于任意 X o,由于P可 逆,PX≠o,故 X o
a13
a23
,L
,
a33
13
a11 L a1s
a11 L a1n
As
M
M
M ,L
, An
M
M
M A.
as1 L ass
an1 L ann
的行列式.
定理 实对称矩阵 A (aij )nn 正定的充分必要条件 是其顺序主子式全大于零.
证明 必要性
设A是正定矩阵,则对于非零向量 Xi (x1,L , xi ),
浅谈分块矩阵的行列式及逆矩阵
【 考文献 】 参 [ ] 椿 林 . 性 代 数 ( 三 版 ) 北 京 : 子 工 业 出 版 1钱 线 第 . 电
社 ,0 1 5 5 . 2 0 , 8— 9
(设 = : ] ,可 , A[ , 。 逆 ) 若 c 则
数 学 学 习 与研 究 2 1.3 00 1
三 、 理 证 明 及 应 用 定
0 0J
证 明 ( ) A的逆 矩 阵也 可分 块 为 1设 。=
…
块都是零矩阵 , 而在 副对 角线 上 的 子块 均 为 方 阵 . 有 : 则 ()e 1 dt x e( 1 dt A ) … ・・ e( , 中 每 A= dtA )・ e( 2 dt A ) 其 个 子 块 方 阵 的 阶 数 分 别 为 , , , , m 为 。 , , … 设 , … 中偶 数 的 个 数 , 则
定 义及 定理 定 义 若 矩 阵 A 的分 块 矩 阵具 有 以 下形 式 :
一
= 一Βιβλιοθήκη B ,] ;
、
(设 = : 曰c 逆 z [ ] 。 , ) , ,可 则 若 A=~ -[ l l - l A (设 = : c 逆则 s A[ ] ,可 , ) , 。 若
本文根据已有 的分块矩 阵 的行列 式 和逆矩 阵 的结论 , 归 纳 总 结 出 几 条 定 理 并 给 出证 明 , 阶矩 阵 经 分 块 后 有 若 高 干 子 块 是 有 特 征 的 矩 阵 时 , 接 应 用 以上 结 论 , 以 大 大 减 直 可
少计 算量.
D—C B 是 可 逆 的. A 都 定 理 2 设 矩 阵 A可 分 块 为 以下 情 况 :
AI - 0
0
:
分块矩阵负定的判断
分块矩阵负定的判断英文回答:In a block matrix, a submatrix is a matrix that exists within another larger matrix. A diagonal block matrix is a matrix in which all non-diagonal blocks are zero, while an off-diagonal block matrix contains at least one non-zerooff-diagonal block.Negative definiteness is a property of a Hermitian matrix (a square matrix that is equal to its own Hermitian conjugate) such that all of its eigenvalues are strictly negative. A matrix is negative semidefinite if all of its eigenvalues are non-positive, and positive semidefinite if all of its eigenvalues are non-negative.Determining the negative definiteness of a block matrix can be challenging. However, certain conditions can be used to simplify the analysis.Conditions for Negative Definiteness:For a block matrix to be negative definite, it must satisfy either of the following conditions:1. Diagonal blocks: All diagonal blocks must benegative definite.2. Off-diagonal blocks: The diagonal blocks must be negative definite, and the off-diagonal blocks must satisfy:All off-diagonal blocks must be negative semidefinite.The sum of any diagonal block and the off-diagonal blocks in its row and column must be negative definite.Determining Negative Definiteness:To determine the negative definiteness of a block matrix, follow these steps:1. Check if the diagonal blocks are negative definite.2. If all diagonal blocks are negative definite, check if the off-diagonal blocks satisfy the conditions stated above.3. If both conditions are met, the block matrix is negative definite.中文回答:分块矩阵的负定性判断。
分块矩阵的相关应用
分块矩阵的相关应用
祁秋菊
【期刊名称】《科技信息》
【年(卷),期】2009(000)002
【摘要】本文主要应用分块矩阵的概念、性质以及分块矩阵的初等变换,对矩阵乘法的秩的定理提出了新的证明方法,并且给出了一类矩阵求逆的接单方法,同时一类特殊矩阵的相似问题.
【总页数】1页(P79)
【作者】祁秋菊
【作者单位】呼和浩特职业学院计算机信息学院
【正文语种】中文
【中图分类】O1
【相关文献】
1.分块矩阵及其相关应用 [J], 岳靖;刘红
2.分块矩阵的初等变换在分块矩阵中的应用 [J], 巫永萍
3.有关分块正定矩阵和分块负定矩阵的一些结论 [J], 龙少华
4.从分块矩阵的乘法谈矩阵的分块 [J], 吴定
5.一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质 [J], 毛纲源
因版权原因,仅展示原文概要,查看原文内容请购买。
负定矩阵的性质及其证明
负定矩阵的性质及其证明摘 要:本文由负定二次型的定义引出负定矩阵的定义,然后得出负定矩阵的12个相关性质,并给出了相应的证明.例如负定矩阵具有这样的性质:若矩阵A 是负定矩阵,则A 合同于E -.若矩阵A 是n 阶负定矩阵,则当n 是偶数时,它的伴随矩阵A *是负定矩阵,当n 是奇数时,A *是正定矩阵等性质.关键词 :负定二次型, 负定矩阵的定义, 负定矩阵的性质.中图分类号:O151 文献标识码: A引言:矩阵与方程组、行列式联系紧密,又是与自然科学和工程技术相关的数学应用的内容,矩阵变换是基本的数学方法.故矩阵在数学中,乃至其它学科中应用广泛.负定矩阵是矩阵类中的一种特殊矩阵,它在矩阵理论中占有重要地位.负定矩阵可以看成和正定矩阵对应的概念,负定矩阵与正定矩阵有着许多相似的性质,本文根据正定矩阵的性质来探讨负定矩阵的性质,另外也研究了负定矩阵的特有性质. 负定矩阵在合同相似变换下,可以变成(-E), 这里 E 是单位矩阵.负定矩阵在研究代数曲面,奇点的解法中起着重要的作用,并对应了负定曲线的概念. 一、预备知识定义1:实二次型'1,2,(...,)n f x x x X AX =称为负定, 如果对于任意一组不全为零的实数12,...n c c c ,都有12(,,...,)0n f c c c <.定义2:实对称矩阵A 称为负定的, 如果二次型1,2,(...,)n f x x x ='X AX 负定.二、负定矩阵的一些性质:性质1:若矩阵A 是负定矩阵, 则'12(,,...,)n f x x x X AX =是负定二次型. 证明:性质1可由负定矩阵的定义推得.性质2: 若矩阵A 是负定矩阵,则实二次型'1,2,(...,)n f x x x X AX =的负惯性指数等于n . 证明:设实二次型'1,2,(...,)n f x x x X AX =经过非退化的实线性替换变成标准型2221122...n n d y d y d y +++ (1),又因为非退化的实线性替换保持负定性不变, 故'X AX 负定当且仅当(1)式是负定的, 而我们知道, 二次型2221122...n n d y d y d y +++负定当且仅当0,1,2,...,i d i n <=, 即负惯性指数等于n .性质3: 若矩阵A 是负定矩阵,则有可逆矩阵C ,使1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ ,其中:0,1,2,...,.i d i n <=证明:由性质2及其证明可知负定二次型可经过非退化的实线性替换变成标准型2221122...n n d y d y d y +++.由X CY =,可知1Y C X -=,那么:1'''''0()()()0n d X AX CY A CY Y C AC Y Y Y d ⎛⎫⎪=== ⎪ ⎪⎝⎭ .即1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ .其中,C 为非退化的实矩阵,那么存在可逆矩阵C 使1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ ,其中,.0,1,2,...,.i d i n <=性质4: 若矩阵A 是n 阶负定矩阵,当n 是偶数时,0A >,当n 是奇数时0A <.证明:由性质3知, 若A 负定, 则存在可逆矩阵C , 使使1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ ,其中,.0,1,2,...,.i d i n <=那么11'10()()0n d A C C d --⎛⎫⎪= ⎪ ⎪⎝⎭1'()A C -=.12...n d d d 1.()C -21C -=12...n d d d 其中,.0,1,2,...,.i d i n <=那么,当n 是偶数时,||0A >,当n 是奇数时||0A <性质5: 若矩阵A 是n 阶负定矩阵,则A 的偶数阶顺序主子式大于零, 奇数阶顺序主子式小于零.证明:因为A 是n 阶负定矩阵,所以二次型1,2,(...,)n f x x x =11n nij iji j a x x==∑∑是负定的,对于每一个k ,1k n ≤≤.令:1,2,(...,)k k f x x x =11k kij iji j a x x==∑∑,下证1,2,(...,)k k f x x x =11k kij iji j a x x==∑∑是一个元的负定二次型.对于任意一组不全为零的实数12,...k c c c ,都有121211(,,...,)(,,...,,0...,0)0k kk ij i j k i j f c c c a c c f c c c ====<∑∑.因此1,2,(...,)k k f x x x =11k kij iji j a x x==∑∑是一个n 元的负定二次型.由性质4知,k f 的矩阵为:1111k k k kk a a B a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭故当k 是偶数时,0k B >, 当k 是奇数时,0k B <.性质6: 若矩阵A 是负定矩阵,则A 合同于E -.证明:由性质3知, 若矩阵A 是负定矩阵,则有可逆矩阵C ,使1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ ,其中0,1,2,...,.i d i n <= 令0Q ⎫⎪⎪⎪= ⎪ ⎝.则'''010010()()100Q C ACQCQ A CQ d d n ⎫⎫⎛⎫⎪⎪⎛⎫- ⎪⎪⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎝⎭⎝⎝===再令P CQ =,则0P CQ C Q ==≠,即P 是非退化的. 故'P AP E =-,即A 合同于E -.性质7 :若矩阵,A B 是负定矩阵,则A B +也是负定矩阵.证明: 因为矩阵,A B 均是负定矩阵,那么可得,A B 对应的以下两个二次型1,2,(...,)n f x x x =11n nij iji j a x x==∑∑,1,2,(...,)n g x x x =11n nij iji j b x x==∑∑均是负定二次型,那么1,2,(...,)n h x x x =1,2,(...,)nf x x x +1,2,(...,)ng x x x =11nnij iji j a x x==∑∑+11nnij iji j b x x==∑∑=11()n nijij i j i j ab x x ==+∑∑也是负定二次型,故A B +是负定矩阵.性质8: 若矩阵A 是负定矩阵,则A 的所有特征值小于零.证明: 因为矩阵A 是负定矩阵,所以A 是对称矩阵,那么存在一个正交矩阵T ,使'1T AT T AT -=成对角形,也就是对二次型'X AX 施行非退化的实线性替换X TY =, 则'X AX 变为2221122...n n y y y λ+λ++λ,又因为'X AX 负定,且非退化的实线性替换保持负定性不变,故0,1,2,...,i i n λ<=,而0,1,2,...,i i n λ<=是A 的所有特征值.性质9:若矩阵A 是负定矩阵,则1A -也是负定矩阵.证明: 因为矩阵A 是负定矩阵,所以由性质3知,存在可逆矩阵C ,使1'00n d C AC d ⎛⎫⎪= ⎪ ⎪⎝⎭ ,其中0,1,2,...,.i d i n <= 那么11'10()()0n d A C C d --⎛⎫⎪= ⎪ ⎪⎝⎭ ,则11'1100n d A C C d -⎛⎫ ⎪ ⎪⎪= ⎪⎪⎪⎝⎭,其中10,1,2,...,.ii n d <= 再令'11,2,(...,)n u x x x X A X -=,那么'11,2,(...,)n u x x x X A X -=经过非退化的实线性替换1X C Y -=,则变成1,2,(...,)n v y y y =2221212111...n n y y y d d d +++,其中10,1,2,...,.ii n d <=又因为非退化的实线性替换保持负定性不变, 那么1A -也是负定矩阵.性质10: 若矩阵A 是负定矩阵,则A -是正定矩阵.证明: 若矩阵A 是负定矩阵,并设实二次型'1,2,(...,)n f x x x X AX =经过非退化的实线性替换变成标准型2221122...n n d y d y d y +++,其中0,1,2,...,i d i n <=.则'1,2,(...,)()n k x x x X A X =-经过非退化的实线性替换变成标准型2221122()...()n n d y d y d y -+-++- (2)又因为非退化的实线性替换保持正定性不变,故'X AX 正定当且仅当(2)式是正定的, 故.A -是正定矩阵.性质11:若矩阵A 是负定矩阵,则当n 是偶数时,A *是负定矩阵,当n 是奇数时,A *是正定矩阵.证明: 因为矩阵A 是负定矩阵,所以A 可逆,且1A A A *-=⋅.由性质4知, 当n 是偶数时,0A >,当n 是奇数时0A <,且1A -是负定矩阵, 再结合性质10知,当n 是偶数时,A *是负定矩阵,当n 是奇数时,A *是正定矩阵.性质12: 若矩阵A 是负定矩阵,则存在可逆实矩阵C 使'A C C =-.证明:若矩阵A 是负定矩阵, 由性质6得, 则存在可逆实矩阵P ,使得'P AP E =-,则1'11'1()()()()()A P E P P P ----=-=-,令1C P -=,即得'A C C =-, 且10C P -=≠,即C可逆.参考文献:[1]王萼芳,石生明.高等代数[M].北京:高等教育出版社,2003:205-236. [2]翟锋.非负定矩阵的一些性质[J].青岛职业技术学院学报,1990(01):60-65. [3]宋占奎.矩阵的迹在解题中的应用[J].陕西工学院学报,2001 (01):65-68. [4]唐耀平.关于矩阵迹的一些不等式[J].数学理论与应用,2006(01):77-79.[5]丁树良.两个非负定矩阵乘积的特征值估计[J].江西师范大学学报(自然科学版), 1987(04):17-23.The Proof and Nature of Negative Definite MatrixREN Chun-guang, ZHANG Pei(the Department of Basic Education, Zhengzhou Huaxin University, Zhengzhou, 451100, China)Abstract: The paper uses the definition of negative definite quadratic form to draw out the definition of negative definite matrix. Then, it discusses and proves 12 related properties about negative definite matrix. For example, negative definitematrix has following properties: If the matrix is negative definite matrix , then A congruents with E-; if the matrix is n-order negative definite matrix, when n is even, A*is negative definite matrix, when n is odd, A*is positive definite matrix, etc.Key Words: negative definite quadratic form, the definition of negative definite matrix, the nature of negative definite matrix.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
<, 。 注意到 是 《 任意的一个特征值且 和 4 具
都是正定矩阵。
4 4 … 4
…
性质 2 : 设 A=
。 …
是正定矩 阵,
4 4 … 4 j
则
…
j
也是正定矩阵 , 其中 k 口。
有相 同的特征值 , 由A <x T x, 可以得到 A m o x ( A l 。 ) -- …( )< I 。 注: 由性质 1 至性质 4 , 我们可以类 似地得 到分块负定矩 阵的一 些相关结论。上述知识在线性 代数 中教材很少提及。根据矩阵的一 些性质和线性代数教材 中有关正定矩阵和负定矩阵的知识 , 我们不 难得到上述关于分块正定矩阵和分块负定矩阵 的结论 , 这些结论 在 研究 马尔科夫跳变系统 、 时滞系统 、 广义系统等 系统 的稳定性等 问 题 中有着非常广泛的应用 。 参 考 文 献 [ 1 】 同济大学数学 系. 工程数 学: 线性代数( 第 5版) [ M ] . 北京 : 高等教 育
f A 1
n
41 m
1 瑚 。们
L
m
…
,
其 中k l <k 2 <… 且k l , k 2 , …, 取 值 于{ l , z , … , 口 } 。
性 质 s : 设 兰 】 是 正 定 矩 阵 且 测 4 < 。
矩 阵。
I
的证 明相类似 , 我们容易得到 H r A I I >0 , 即 一 4 《 >0 。 1 。 } 是正定矩阵, 则A 。 和A 都是正定 和性质 I 。 J 由4 《> ( ) ( 4 。 ) 和4 < ( 4 ) , 可得
证明: 令 = I 。 通过计算, 容易得到
证 明 : 设 = l 一 ∥ J 。 通 过 计 算 容 易 得 到 4 z ~ 4 。
k ( A 甚 ) ( 2 A ) < A z 2 A i 《 2 < i ‘ A ( i ) J 鄙 A ! : 2 < 争 ! I 。
性质 1 : 设 A:
=
f 厂 1
H=4 。 对于任
~
由4 ・ < , 可得 ( 4 。 ) < ( ) , 进一步可得 。 《 <, 。 意 的具有适 当维数 的向量 ≠ 0, 式子 胁 ≠ 0成立。 不然 , 假设 0, 那 么 H T H x= = 0, 这 与 善 0相 矛 盾 , 所 以 对 于任意 的具有适 当维数 的向量 ≠ 0, 式子 H x ≠ 0成立 。 注意到 阵 ,贝 U ( ) ・ ( 。 )< 1。 A是正定 矩 阵 , 我们可得 I I Mi x > 0, 即 A H x= 4, 是正 定 矩阵 。利用类似 的方法 , 我们 同样可得 如 是正定矩阵。 证明: 由性质 3 , 我们可得4 《< 。设 是 任意的一个
4 ,4 …
…
性 质 4 : 设 乏 J 是 正 定 矩 阵 , 其 中 4 < z 且 A z 是 方
J。 , 即
推论 1 : 设
。 …
是正定矩阵 , 则
特 征值 , 存在一个具 有适 当维数 的 向量 ≠ 0, 满足 由4 。 < ( 通过性质 3 很 容易看出 ) , 我们可得 4 : 《 < =l , 2 , …, 刀 )
科技 论坛
・ 1 0 1 ・
有关分块正定矩阵和分块负 定矩阵的一些结论
龙 少 华
( 重庆理 工大学数学与统计学院 , 重庆 4 0 0 0 0 0 )
摘 要: 矩阵的正定性是矩 阵理论 中一个很重要的理论 。矩阵的正定性在 系统科学的研 究中 占有非常重要的地位 。本 文借助 于线性 代数教材上的有关矩 阵和二次型的知识 , 对分块正定矩阵和分块 负定矩 阵进行 了一些探 讨, 得到 了一些相 关的结论。 关键词 : 分块矩阵; 正定矩阵 ; 负定矩 阵 线性代数是高 等学校 电子 、 机械 、 化工 、 会计和经管等很 多专业 的具有适 当维数的 向量 ≠ 0 ,式子 放 ≠ 0成立。不然 ,假设 的一 门非 常重 要的基础课 。在我们现实世界里 , 线性 问题广泛存在 = 0 那 么可 以推 出 H 肋 = X = 0, 这 与 ≠ 0 相 于科学技术 的各个领域 。对 于某些非线性 问题 , 我们常 常通过一些 矛盾 , 所 以对于任意 的具有适 当维数的 向量 ≠ O , 式子 ≠ 0 成 线性化 的方法将非线性 问题转化成线性 问题进行研究 。因此 , 线性 立 。注意到 A是正定矩阵 , 我们可得 J r H r A H x >0 , 即H r  ̄ H x: 代数在数学 、 物理学 、 医学和工程技术等学科 中有非 常重要 的应用 。 是正定矩阵。 线性代数课程 的学 习非 常有助于 以后专业课程 的学 习 , 也非常有助 。 … 4 于 以后 的一些相关研究工作 。 线性代数的研究对象包括矩 阵、 向量 、 : … 推论 2 : 设 : 是正定矩阵, 向量空间 ( 或称线性 空间 ) 、 线性变换 、 线性方程组 和二次型等 。 线性 代数将几何观念和代数方法结合起来 , 对于强化人 们严 谨的逻辑推 A n A 2 … A
,
理能力和归纳综合能力等有非常重要的作用。
二次型在线性代数 中具有非常重要 的地位 。 通过对二次型的学 习, 除 了能进 一步加深对线性 代数 中的一些 概念 的理解外 , 还 能为 学习空间解析几何 , 特别是空 间解析几何 的二 次曲面等打下 一定 的 基础。 另外 , 二次型 中的正定矩阵 、 负定矩 阵等理论也被广泛应用 于 对 系统科学的研 究中。在 研究 一个系统时 , 我们 常常需要研究这 个 系统的稳定性。 李亚普诺夫函数方法是研究系统 的稳定性的一个 重 要 的方 法。 我们通常希望所 构造 的李亚普诺夫 函数 的导数是一个 负 定 的二次型。因此 , 正定矩阵和负定矩阵在对 系统科学 的研究 中 占 有非常重要的地位 。 但是 , 在线性代数教材 中, 一般都很少对分块正 定 矩阵和分块负定矩阵进行进 一步地分析和讨论 。 本文对分块 正定 矩 阵和分块 负定 矩阵进行 了一些讨论 , 得 到如 下的一些结论 。