第八章 轴向拉伸和压缩的强度计算
合集下载
轴向拉伸和压缩
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
第八章 轴向拉伸与压缩
练习:阶梯杆AD受三个集中力F作用,F=30kN,AB、BC、 CD段的横截面面积分别为10cm2,20cm2,30cm2,试画出阶梯 杆的轴力图,并计算三段杆的横截面上的应力。
A F F
B
C
D
F
19
§8-4 材料在拉伸与压缩时的力学性能
一、拉伸试验与应力—应变图 实验条件: 常温、静载下(缓慢平稳的加载)试验 标准试件 标距尺寸:l=10d 或 l=5d
解:1、分段计算轴力 AB段 Fx 0
1 F2
FN1 F1 0
FN1 F1 10kN
BC段 Fx 0 FN2 F2 F1 0
F1
FN2 F1 F2 10kN
F4
25
FN(kN) 10 10
CD段 Fx 0 F4 FN3 0 FN3 F4 25kN 2、绘制轴力图
20
三种材料的共同特点: 断裂时均有较大的残余变形,均属塑 性材料
o
0.2%
27
§8-4 材料在拉伸与压缩时的力学性能
铸铁拉伸时的力学性能 对于脆性材料(铸铁),拉伸时的应 力应变曲线为微弯的曲线,没有屈服和 颈缩现象,试件突然拉断。断后伸长率 约为 0.5%。为典型的脆性材料。
b
o
b—强度极限,是衡量脆性材料(铸铁)
屈服:应力基本不变,而变形显著增长的现象
s —屈服极限或屈服应力,屈服段内最低应力值
F F 滑移线:材料屈服时试件表面出 现的线纹
23
§8-4 材料在拉伸与压缩时的力学性能
III、硬化阶段(恢复抵抗变形的 能力) 应变硬化:经过屈服滑移后, 材料重新呈现抵抗变形的能力 b —强度极限,硬化阶段内 e 最高应力值,也是材料所 能承受的最大应力
A F F
B
C
D
F
19
§8-4 材料在拉伸与压缩时的力学性能
一、拉伸试验与应力—应变图 实验条件: 常温、静载下(缓慢平稳的加载)试验 标准试件 标距尺寸:l=10d 或 l=5d
解:1、分段计算轴力 AB段 Fx 0
1 F2
FN1 F1 0
FN1 F1 10kN
BC段 Fx 0 FN2 F2 F1 0
F1
FN2 F1 F2 10kN
F4
25
FN(kN) 10 10
CD段 Fx 0 F4 FN3 0 FN3 F4 25kN 2、绘制轴力图
20
三种材料的共同特点: 断裂时均有较大的残余变形,均属塑 性材料
o
0.2%
27
§8-4 材料在拉伸与压缩时的力学性能
铸铁拉伸时的力学性能 对于脆性材料(铸铁),拉伸时的应 力应变曲线为微弯的曲线,没有屈服和 颈缩现象,试件突然拉断。断后伸长率 约为 0.5%。为典型的脆性材料。
b
o
b—强度极限,是衡量脆性材料(铸铁)
屈服:应力基本不变,而变形显著增长的现象
s —屈服极限或屈服应力,屈服段内最低应力值
F F 滑移线:材料屈服时试件表面出 现的线纹
23
§8-4 材料在拉伸与压缩时的力学性能
III、硬化阶段(恢复抵抗变形的 能力) 应变硬化:经过屈服滑移后, 材料重新呈现抵抗变形的能力 b —强度极限,硬化阶段内 e 最高应力值,也是材料所 能承受的最大应力
工程力学第八章
l-试验段原长(标距) -试验段原长(标距) ∆l0-试验段残余变形
28
断面收缩率
A A − 1 100 × 00 ψ= A
A -试验段横截面原面积 A1-断口的横截面面积 塑性与脆性材料 塑性材料: δ ≥ 5 % 例如结构钢与硬铝等 塑性材料: 脆性材料: δ <5 % 例如灰口铸铁与陶瓷等 脆性材料: 5
第8章 轴向拉伸与压缩
本章主要研究: :
拉压杆的内力、应力与强度计算 材料在拉伸与压缩时的力学性能 轴向拉压变形分析 简单拉压静不定问题分析 连接部分的强度计算
1
§1 引 言
轴向拉压实例 轴向拉压实例 轴向拉压及其特点 轴向拉压及其特点
2
轴向拉压实例 轴向拉压实例
3
轴向拉压及其特点
外力特征:外力或其合力作用线沿杆件轴线 : 变形特征:轴向伸长或缩短,轴线仍为直线 :轴向伸长或缩短, 轴向拉压: 以轴向伸长或缩短为主要特征的变形形式 : 拉 压 杆: 以轴向拉压为主要变形的杆件 :
37
应力集中对构件强度的影响
对于脆性材料构件, 对于脆性材料构件,当 σmax=σb 时,构件断裂
对于塑性材料构件, 后再增加载荷, 对于塑性材料构件,当σmax达到σs 后再增加载荷, σ 分布趋于均匀化,不影响构件静强度 分布趋于均匀化, 应力集中促使疲劳裂纹的形成与扩展, 对构件( 应力集中促使疲劳裂纹的形成与扩展 对构件(塑 性与脆性材料) 性与脆性材料)的疲劳强度影响极大
33
应力集中与应力集中因数
应力集中
由于截面急剧变化引起应力局部增大现象-应力集中 由于截面急剧变化引起应力局部增大现象-
34
应力集中因数
σmax K= σn
机械基础——轴向拉伸与压缩时的强度计算
课题
轴向拉伸与压缩时的强度计算
Hale Waihona Puke 教学目的1、理解许用应力的确定和安全系数的意义。
2、掌握轴向拉伸和压缩时的强度计算。
教学安排
组织教学
讲述新课
六、拉(压)杆的强度计算
1、极限应力、许用应力和安全系数一般把材料丧失工作能力时的应力称为极限应力。对于脆性材料,当正应力达到抗拉强度σb或抗压强度σbc时,会引起断裂破坏;对于塑性材料,当正应力达到材料的屈服点σs时,将引起显著的塑性变形。构件工作时发生断裂是不允许的;发生屈服或出现显著的塑性变形也是不允许的。所以,从强度方面考虑,断裂是构件的一种失效形式;同样,屈服或出现显著塑性变形也是构件失效的一种形式。
构件在动荷应力、交变应力或冲击载荷的作用下,应力集中将对材料的强度产生重大影响,且往往是导致构件破坏的根本原因,必须予以重视
作业
P105:27、29
由于工程构件的受载难以精确估计,以及构件材质的均匀程度、计算方法的近似性等因素,为确保构件的安全,应使其有适当的强度储备,特别是对因失效带来严重后果的构件,更应具有较大的强度储备。因此,工程中一般把极限应力除以大于1的系数n作为工作应力的最大允许值,称为许用应力,用[σ]表示,即
塑性材料[σ]=
脆性材料[σ]=
2、拉(压)杆的强度计算为了保证拉(压)杆安全可靠地工作,必须使杆内的最大工作应力不超过材料的许用应力,即
σmax= ≤[σ]
根据强度条件,可以解决三类强度计算问题:(1)强度校核;(2)设计截面尺寸;(3)确定许可载荷。
3、应用举例
七、应力集中的概念
试验研究表明,对于横截面形状和尺寸有突然改变,如带有圆孔、刀槽、螺纹和轴肩的杆件,当其受到轴向载荷时,在横截面形状和尺寸突变的局部范围内将会出现较大的应力,且其应力分布是不均匀的。这种因横截面形状和尺寸突变而引起局部应力增大的现象称为应力集中。
轴向拉伸与压缩时的强度计算
Hale Waihona Puke 教学目的1、理解许用应力的确定和安全系数的意义。
2、掌握轴向拉伸和压缩时的强度计算。
教学安排
组织教学
讲述新课
六、拉(压)杆的强度计算
1、极限应力、许用应力和安全系数一般把材料丧失工作能力时的应力称为极限应力。对于脆性材料,当正应力达到抗拉强度σb或抗压强度σbc时,会引起断裂破坏;对于塑性材料,当正应力达到材料的屈服点σs时,将引起显著的塑性变形。构件工作时发生断裂是不允许的;发生屈服或出现显著的塑性变形也是不允许的。所以,从强度方面考虑,断裂是构件的一种失效形式;同样,屈服或出现显著塑性变形也是构件失效的一种形式。
构件在动荷应力、交变应力或冲击载荷的作用下,应力集中将对材料的强度产生重大影响,且往往是导致构件破坏的根本原因,必须予以重视
作业
P105:27、29
由于工程构件的受载难以精确估计,以及构件材质的均匀程度、计算方法的近似性等因素,为确保构件的安全,应使其有适当的强度储备,特别是对因失效带来严重后果的构件,更应具有较大的强度储备。因此,工程中一般把极限应力除以大于1的系数n作为工作应力的最大允许值,称为许用应力,用[σ]表示,即
塑性材料[σ]=
脆性材料[σ]=
2、拉(压)杆的强度计算为了保证拉(压)杆安全可靠地工作,必须使杆内的最大工作应力不超过材料的许用应力,即
σmax= ≤[σ]
根据强度条件,可以解决三类强度计算问题:(1)强度校核;(2)设计截面尺寸;(3)确定许可载荷。
3、应用举例
七、应力集中的概念
试验研究表明,对于横截面形状和尺寸有突然改变,如带有圆孔、刀槽、螺纹和轴肩的杆件,当其受到轴向载荷时,在横截面形状和尺寸突变的局部范围内将会出现较大的应力,且其应力分布是不均匀的。这种因横截面形状和尺寸突变而引起局部应力增大的现象称为应力集中。
第八章 轴向拉压杆的强度计算
x截面上的轴力为
表明该杆的轴力是截面位置x 的连续函数,
称为轴力方程。该轴力方程表明FN是关于截面位置x的 一次函数,轴力图如图所示。
时, 时, 沿杆长的分布规律如图(c)所 示;并可得
横截面上的正应力沿杆长 呈线性分布。
时, 时,
2、斜截面上的应力
在下一节拉伸与压缩试验中会看到,铸铁试件压缩时,其 断面并非横截面,而是斜截面。这说明仅计算拉压杆横截面上 的应力是不够的,为了全面分析解决杆件的强度问题,还需研 究斜截面上的应力。
在曲线中d点之前试件沿长度方向其变形基本上是均匀的但当超过d点之后试件的某一局部范围内变形急剧增加横截面面积显著减小形成图示的颈该现象称为由于颈部横截面面积急剧减小使试件变形增加所需的拉力在下降所以按原始面积算出的应力按原始面积算出的应力fa称为名义称为名义应力应力也随之下降如图中dg段直到g点试件断其实此阶段的真实应力即颈部横截面上的应力随变形增加仍是增大的如图中的虚线dg所示
应力是内力的集度,内力或应力均产生在杆件内部,是 看不到的。
应力与变形有关, 所以研究应力还得从 观察变形出发。
试验现象(矩形截面试件): 周线:平移,形状不变,保持平行; 纵向线:伸长,保持平行,与周线正交。
拉(压)杆横截面上的内力 是轴力,其方向垂直于横截面, 因此,与轴力相应的只可能是垂 直于截面的正应力,即拉(压) 杆横截面上只有正应力,没有切 应力。
0.33
胡克定律 只适用于在杆长为l长度内F 、FN、E、A均为常值的情况下, 即在杆为l长度内变形是均匀的情况。 若杆件的轴力FN及抗拉(压)刚度EA沿杆长分段为常数,则
式中FNi、(EA) i和li为杆件第i段的轴力、抗拉(压)刚度和长度 。 若杆件的轴力和抗拉(压)刚度沿杆长为连续变化时,则
表明该杆的轴力是截面位置x 的连续函数,
称为轴力方程。该轴力方程表明FN是关于截面位置x的 一次函数,轴力图如图所示。
时, 时, 沿杆长的分布规律如图(c)所 示;并可得
横截面上的正应力沿杆长 呈线性分布。
时, 时,
2、斜截面上的应力
在下一节拉伸与压缩试验中会看到,铸铁试件压缩时,其 断面并非横截面,而是斜截面。这说明仅计算拉压杆横截面上 的应力是不够的,为了全面分析解决杆件的强度问题,还需研 究斜截面上的应力。
在曲线中d点之前试件沿长度方向其变形基本上是均匀的但当超过d点之后试件的某一局部范围内变形急剧增加横截面面积显著减小形成图示的颈该现象称为由于颈部横截面面积急剧减小使试件变形增加所需的拉力在下降所以按原始面积算出的应力按原始面积算出的应力fa称为名义称为名义应力应力也随之下降如图中dg段直到g点试件断其实此阶段的真实应力即颈部横截面上的应力随变形增加仍是增大的如图中的虚线dg所示
应力是内力的集度,内力或应力均产生在杆件内部,是 看不到的。
应力与变形有关, 所以研究应力还得从 观察变形出发。
试验现象(矩形截面试件): 周线:平移,形状不变,保持平行; 纵向线:伸长,保持平行,与周线正交。
拉(压)杆横截面上的内力 是轴力,其方向垂直于横截面, 因此,与轴力相应的只可能是垂 直于截面的正应力,即拉(压) 杆横截面上只有正应力,没有切 应力。
0.33
胡克定律 只适用于在杆长为l长度内F 、FN、E、A均为常值的情况下, 即在杆为l长度内变形是均匀的情况。 若杆件的轴力FN及抗拉(压)刚度EA沿杆长分段为常数,则
式中FNi、(EA) i和li为杆件第i段的轴力、抗拉(压)刚度和长度 。 若杆件的轴力和抗拉(压)刚度沿杆长为连续变化时,则
第八章__变形及刚度计算
8×103 ×180 o = 0.40 / m < [θ ] 4 9 π × 0.110 80×10 × ×π 32
满足刚度条件
例:实心圆轴受扭,若将轴的直径减小一半 实心圆轴受扭, 时,横截面的最大切应力是原来的 8 倍? 圆轴的扭转角是原来的 16 倍?
τ max MT MT = = W p πd 3 16
又因为BD段内虽然轴力 又因为 段内虽然轴力 为常数, 为常数,但截面面积又分两 所以要分4段求变形 段求变形。 段,所以要分 段求变形。
∆L AE =
∑ ∆L
i
= ∆L AB + ∆L BC
FN图
+ ∆L CD + ∆L DE =
∑
FN l EA
§ 8-1 轴向拉压杆的变形
已知杆的长度、 受力如图。 例 已知杆的长度、截面面 积,受力如图。 材料的 弹性模量 E = 2.1 × 10 5 MPa。求杆的总变形 。
A1 = 250mm
50kN
2
A 2 = 200mm
30kN E
∆L AB
2
解:用直接法画轴力图 用直接法画轴力图
20kN
∆L AE =
∑ ∆L
i
= ∆L AB + ∆L BC
A B C D 1m 2m 1m 3m 10KN + – – 40KN 20KN
+ ∆L CD + ∆L DE =
∑
3
FN l EA
§8—2
圆杆扭转时的变形和刚度计算
一、扭转变形——扭转角 扭转变形 扭转角
MT 扭转角: 扭转角: ϕ = θdx = dx ∫ ∫0 GI p l
l
单位: 单位:rad
轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)
轴向拉伸与压缩
例7-12 图示三角支架,在节点A处受铅直荷载FP作用。已 知AB为圆截面钢杆,直径d=30mm,许用应力[σ]=160MPa, AC为正方形木杆,边长a=100mm,许用压应力[σc]=10MPa试 求许用荷载[ FP ]。
解 (1)计算杆的轴力
由∑Fy=0 -FNACsin30°-FP=0
A FNAB 63 103 mm2 393.8mm2
[ ] 160
轴向拉伸与压缩
当拉杆选用角钢时,每根角型的最小面积应为
A1
A 2
393.8 2
mm 2
196.9mm2
查型钢表,选用两根25×4的2.5号等边角钢。
A1=185.9mm2 故此时拉杆的面积为
A=2×185.9mm2=371.8mm2>370.6mm2 满足强度要求。
材料的安全系数比塑性材料的大。建筑工程中,一般,取nS =1.4~1.7,nb=2.5~3.0。
轴向拉伸与压缩
3. 强度条件 为了保证轴向拉(压)杆在承受外力作用时能安全正常地
使用,不发生破坏,必须使杆内的最大工作应力不超过材料 的许用应力,即
σmax≤[σ]
塑性材料: 脆性材料:
max
FN max A
解(1)先求支座反力。
FAy = FBy= 0.5q l = 0.5×10×8.4 = 42kN
轴向拉伸与压缩
(2)再求拉杆的轴力。
用截面法取左半个屋架为研究对 象,如图示。
由 MC 0
FNAB
h
FAy
l 2
q
l 2
l 4
0
FNAB
42 42 10 4.2 2.1 kN 1.4
63kN
(3)校核拉杆的强度。
08纵向拉伸和压缩的强度计算
4
4
问题:当吊车在BC杆上行驶到其它位置时,AB杆的应力是
否有变化?当吊车行驶在什么位置时,AB杆的应力最大?
返回
§3 拉(压)杆的变形
一、变形和应变
变形前:直杆长度L、宽、高b 变形后:直杆长度L1、宽、高b1 轴向伸长 :ΔL=L1-L
杆沿轴向的绝对伸长或缩短
横向变形: Δb=b1-b 杆横向尺寸的绝对缩小或增大 线应变ε—单位长度的伸长或缩短。
浙江水利水电专科学校 高健
§1 应力的概念 §2 轴向拉伸和压缩杆件横截面上的应力 §3 拉(压)杆件的变形 §4 材料在拉伸和压缩的力学性能 §5 拉(压)杆的强度计算 §6 应力集中的概念 §7 联接件的强度计算
§1 应力的概念
问题提出: F
F
F
F
1) 内力大小不能衡量构件强度的大小。 2) 强度:①内力在截面分布集度⎯应力;
②材料承受荷载的能力。
1. 定义:由外力引起的杆件截面上的内力 分布集度。
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。
2. 应力的表M
pM
=
ΔP ΔA
∆A
②全应力(总应力):
pM
=
lim
ΔA→ 0
ΔP ΔA
式中:E—弹性模量,其值随材料而异,通过实验测定,单位:Pa。
E ↑, ∆L ↓, E ↓, ∆L ↑
即E值表征材料抵抗弹性变形的能力,是材料的刚度指标。
EA—杆的抗拉(抗压)刚度,是表示杆件抵拉、压变形能力的量。
EA ↑, ∆L ↓, EA ↓, ∆L ↑
胡克定律的另一表达式: σ = Eε
轴向拉伸和压缩及连接件的强度计算
编辑ppt
11
2.2 拉压杆截面上的内力和应力
【例2-1】(教材P10) 一等直杆如图所示,计算杆件的内力,并作轴力图。
F1=5 kN A
F2=15 kN C
F3=10 kN B
编辑ppt
12
2.2 拉压杆截面上的内力和应力
【例2-1】解
1 F1=5 kN
2 F2=15 kN
F3=10 kN
A F1=5 kN
s
编辑ppt
19
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
设横截面的面积为A,由静力学关系:
F
FN
s
FN s dA s A
s FN A
s 正应力,拉应力为“+”,压应力为“-”
FN 轴力 A 横截面面积 杆件横面尺寸沿轴线缓慢变化的变截面直杆:
多个轴向载荷作用的等截面直杆:
符号为正
Cross Section
FN FN
符号为负
Cross Section
编辑ppt
10
2.2 拉压杆截面上的内力和应力 2.2.1 拉压杆截面上的内力 2 轴力图
将内力沿杆件轴线方向变化的规律用曲线表示– 内力图 将轴力沿杆件轴线方向变化的规律用曲线表示– 轴力图
1) 一截为二 2) 弃一留一 3) 代力平衡
C
2
FN
+
5 kN
-
F3=10 kN FN15kN 拉 FN210kN 压
B
x
10 kN
编辑ppt
14
2.2 拉压杆截面上的内力和应力
【例】一等直杆受力如图,已知F1=40kN,F2=55kN,F3=25kN, F4=20kN。作出该直杆的轴力图。
第八章:拉伸(压缩)、剪切与挤压的强度计算(1)
第一节 轴向拉伸与压缩的概念、 截面法、轴力与轴力图
工程问题中,有很多杆件是受拉或受压的。
航空宇航学院
绳索与立柱
内燃机的连杆
航空宇航学院 第一节 轴向拉伸与压缩的概念、 截面法、轴力与轴力图
直杆受拉或受压时的特点:
O
受力特点:外力或其合力的作用线与杆轴线重合 沿轴线方向伸长或缩短 O 变形特点:
注释
•
•
线应变ε —— 一点在某方向上尺寸改变程度 的描述; 一点在某方向上 与点的位置有关; 与过点的方位有关; 伸长变形为正; 无量纲。 切应变γ —— 过一点两互相垂直截面的角度改变 ; 过一点 与点的位置有关; 与垂直两边的方位 有关; 与垂直两边的 直角减小为正; 无量纲。
绪论
例2 已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。 求: ab边的εm和 ab, ad 两边夹角的变化。 解:
x
x方向的平均应变: M点处沿x方向的线应变:
ε xm
Δs = Δx
Δs ε x = lim Δx → 0 Δ x
类似地,可以定义:
εy , εz
六、变形与应变 y 3. 应变 O 切应变(剪应变或角应变) L 定义:过一点在某平面内两 相互垂直的无限小线元所夹 Δx M 直角的改变量,称为该点在 o 称为 该面内的切(剪)应变。用γ 表示。
航空宇航学院
例 1 1 P2 3 P1 2 已知:P1=40kN, P2=30kN, P3=20 1 B 2 C 3 A kN。 求:1-1, 2-2和3-3截面的轴力, 并作杆的轴力图。 解:
P3 D
∑F
求支座反力
x
=0
FA
1 1 B 1 FN1 1
3-轴向拉伸和压缩杆的强度计算
F2 =10kN
AAC =500mm2 ACD =200mm2
AB段:
AB
NAB AAB
20103 N 500mm2
40MPa
压
第26页,共37页。
【例3-3】试求图示阶梯形钢杆: ⑴各段杆横截面上的内力和应 力;⑵杆件内最大正应力;⑶杆件的总变形。
⑶杆件的总变形
已知弹性模量E=200GPa
l lAB lBC lCD
学习情境3
轴向拉伸和压缩杆的强度计算
甘肃省庆阳市及西峰区体委联合组
织西峰区各乡镇及市区机关单位共11支 500人代表队在庆阳市西峰区世纪大道一
级公路路面上举行万人拔河比赛,所用
钢丝绳长约550米,直径约3厘米,在比 赛到第二回合, 正当双方用力拼比时,
钢丝绳突然被拉断,拉断的钢丝绳绳头 将分界线两旁的人打伤,另将其余人摔 倒在公路上致使多人被擦破手腿皮肤和 踩伤。
第27页,共37页。
子情景3.2 轴向拉伸和压缩杆的强度计算
3.2.1 轴向拉伸和压缩杆的强度条件
⒈ 安全因数与许用应力
塑性材料,当应力达到屈服极限时,构件已发生明显的塑性变形,
影响其正常工作,称之为失效,因此把屈服极限作为塑性材料的极
限应力。 脆性材料,直到断裂也无明显的塑性变形,断裂是失效的唯一标
≤
第33页,共37页。
【例3-5】图示托架, AC是圆钢杆,许用拉应力[σ l]=160MPa, BC是方 木杆, F=60kN, 试选钢杆直径d。
N2 40 30 20
30kN压
4
4
N4
③CD段 X 0 :
N3 30 20
10kN 拉
④DE段 X 0 : N4 20kN压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章
轴向拉伸和压缩的强度计算
思考题
1、指出下列各概念的区别:变形与应变;弹性变形与塑性变性;正应力与剪应力;工
作应力、危险应力与许用应力。
2、两根不同材料的等截面直杆,承受着相同的拉力,它们的截面积与长度都相等。
问
①两杆的内力是否相等?②两杆应力是否相等?③两杆的变形是否相等?
3、在轴向拉(压)杆中,发生最大正应力的横截面上,其剪应力等于零。
在发生最大
3、图示结构中,AB为一刚杆,CD由A3钢制造的斜拉杆。
已知F1=5kN,F2=10k N,l=1m,钢杆CD的横截面面积A=100mm2,钢材的弹性模量E=0.2×106MPa,∠ACD=45°试求杆CD的轴向变形和刚杆AB在端点B的铅直位移。
习题答案:
1、MPa AB 07.31=σ ; MPa AC 66.37=σ
4、
[]mm
l MPa
MPa AC AC 7.11708.135=∆=<=σσ ;
[]mm
l MPa
MPa BD BD 64.1170130=∆=<=σσ
5、KN F G
3.159≤
6、2397mm A ≥
7、
mm
h mm h 143.13=≥取
8、[][]MPa
MPa MPa MPa MPa
MPa c c 1605.1392805.176602.132<==<==<=σσσττ
11、mm t 80≥。