变压器接线方式详解
变压器的接线方式
变压器的接线方式
接线方式的不同,直接关系到变压器的运行性能, 制造和运行的经济性.下面介绍两种常用连接方式的优缺 点:
一.Y/Y接线(包括Y/Y0)优缺点: 1.Y形和△形相比,在承受同样线电压情况下,Y形的
每相线圈承受的电压较小,故在制造上的绝缘材料较少, 二由于每相流过的电流较大(Y形相电流等用线电流)选用 导线截面较粗,故线圈的机械强度较好,较能耐受短路时 的机械力。
一台变压器运行中带上额定电压,铁心饱和后电流 再增加,并不能使铁心里的磁通增加多少,磁通是平顶 波(非正弦波),这时在铁心中会有三次谐波出现, 它是以变压器外壳为通路,借铁心的铁件、空气、
变压器的接线方式
油等构成回路,使铁壳中通过有150周/秒的三次谐波磁通, 三次谐波磁通会产生涡流损耗,降低效率(最高可达变压器铁 心损耗的50-65%)。
移。(规定中线电流不超25%) 3.一相发生故障只好停用。不象△形接法的变压器可暂时
接成∨形使用。
变压器的接线方式
二.Y0/△或△/Y接线: 优点: 1.二次电势中没有三次谐波和Y/Y接线中的主要弊病
。 2.根据需要可在一次侧(采用Y0/△)在二次侧(
采用△/Y0)抽取中性点。 3.由于其中有一侧接成△形,可基本维持另一侧Y接
变压器的接线方式
2.中性点可以任意抽取,适用于三相四线制且Y接抽头放 在中性点。
3.在同样的绝缘水平下,Y接比△接可获取较高的电压。 4.由于选用导线较粗,可使匝间有较高的电容,能耐受较
高的冲击电压。
变压器的接线方式
其缺点是: 这种接线因磁通种有三次谐波存在,将使油箱发热和影响
变压器运行效率。 2.中性点应直接接地,否则中性点电位不稳定会严重位
变压器接线方式
变压器接线方式一、概况变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法。
常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,Y表示星形,“n”表示带中性线;“11”表示变压器一次侧和二次侧相位角差距30°(时钟11点时的角度为30°);“0”表示变压器一次侧和二次侧相位角差距0°(时钟0点时的角度为0°)。
大写字母表示一次侧,小写字母表示二次侧。
二、分类我国常见的变压器接线方式有Dyn11、Yyn0、Yzn0、Yd112.1 Dyn11Dyn11的含义:D(一次侧三角形接法),y(二次侧星型接法),n(低压侧中性点引出),11(高低压相位差30),接线方式如下图所示。
优势:(1)有利于抑制高次谐波电流;(2)有利于单相接地短路故障的切除;(3)输出电压质量高、中性点不漂移、防雷性能。
(4)空载运行时,比Yyn0接线可较少10%损耗。
适用场景:(1)单相不平衡负荷引起的中性线电流超过变压器低压绕组额定电流25%时;(2)供电系统中存在较大的“谐波源”,3n次谐波电流比较突出时;(3)用于10KV配电系统,需提高低压侧单相接地故障保护灵敏度时。
2.2 Yyn0Yyn0的含义:Y(一次侧星型接法),y(二次侧星型接法),n(低压侧中性点引出),0(高低压相位差0)。
接线方式如下图所示:优势:(1)当高压熔丝一相熔断时,将会出现一相电压为零,另外两相电压没变化,可使停电范围减少1/3。
这种情况低压侧单相供电的照明负载不会产生影响。
若低压侧为三相供电的动力负载,一般均配置缺相保护,故不会造成动力负载因缺相运行而烧毁。
适用范围:(1)三相负荷基本平衡,其低压中性线电流不致超过低压绕组额定电流25%;(2)供电系统中谐波干扰不严重时;(3)用于10KV配电系统。
2.3 Yzn0Yzn0的含义:Y(一次侧星型接法),z(二次侧曲折连接法),n(低压侧中性点引出),0(高低压相位差0)。
变压器接线方式的区别及原理
变压器接线方式的区别及原理
Dyn11接法:高压侧三角形,低压侧星形,且有中性线抽头,高压与低压有一个30度的相位差。
Yyn0 接法:高压侧星形,低压侧也是星形,且有中性线抽头,高压与低压没有相位差。
另外补充如下知识:
变压器高低压有3种连接方式:星型、三角形和曲折形联结。
对高压绕组分别用符号Y、D、Z(大写)表示;对中压和低压绕组分别用y、d、z(小写)表示。
有中性点引出时分别用YN、ZN(高压中性点)和yn、zn(低压中性点)表
示。
自耦变压器有公共部分的两绕组中额定电压低的一个用符号a表示。
变压器按高压、中压和低压绕组联结的顺序组合起来就是绕组的联结组。
例如:高压为Y,低压为yn联结,那么绕组联结组为Yyn。
加上时钟法表示高低压侧相量关系就是联结组别。
常用的三种联结组别有不同的特征:
1 Y联结:绕组电流等于线电流,绕组电压等于线电压的1/√3,且可以做成分级绝缘;另外,中性点引出接地,也可以用来实现四线制供电。
这种联结的主要缺点是没有三次谐波电流的循环回路。
2 D联结:D联结的特征与Y联结的特征正好相反。
3 Z联结:Z联结具有Y联结的优点,匝数要比Y形联结多15.5%,成本较大。
变压器的接线方式
变压器的接线方式、过载能力等介绍接线方式1、短接变压器的“输入”与“输出”接线端子用兆欧表测试其与地线的绝缘电阻。
1000V兆欧表测量时,阻值大于2M欧姆。
2、变压器输入、输出电源线截面配线应满足其电流值大小的要求;按照2-2.5A/min2电流密度配置为宜。
3、输入、输出三相电源线应按变压器接线板母线颜色黄、绿、红分别接A 相、B 相、C 相,中性零线应与变压器压器中性零线相接,接地线与变压器外壳(如变压器有机箱应与箱体地线标志对应相连接)。
检查输入输出线,确认正确无误。
4、先空载通电,观察测试输入输出电压符合要求。
同时观察机器内部是否有异响、打火、异味等非正常现象,若有异常,请立即断开输入电源。
5、当空载测试完成且正常后,方可接入负载。
过载能力干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况和发热时间常数等有关,若有需要,可向生产厂索取干变的过负荷曲线。
如何利用其过载能力呢?这里有两点供参考:(1)选择计算变压器容量时可适当减小:充分考虑某些轧钢、焊接等设备短时冲击过负荷的可能性--尽量利用干式变压器的较强过载能力而减小变压器容量;对某些不均匀负荷的场所,如供夜间照明等为主的居民区、文化娱乐设施以及空调和白天照明为主的商场等,可充分利用其过载能力,适当减小变压器容量,使其主运行时间处于满载或短时过载。
(2)可减少备用容量或台数:在某些场所,对变压器的备用系数要求较高,使得工程选配的变压器容量大、台数多。
而利用干变的过载能力,在考虑其备用容量时可予以压缩;在确定备用台数时亦可减少。
变压器处于过载运行时,一定要注意监测其运行温度:若温度上升达155℃(有报警发出)即应采取减载措施(减去某些次要负荷),以确保对主要负荷的安全供电。
选型干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。
绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的。
变压器接线方式详解
[分享]变压器接线方式详解(标题无法改,这是共享资源)例1:一台双绕组变压器,高压星形联结绕组额定电压为10000V,低压为中性点引出的星形联结绕组,额定电压为400V。
两个星形联结绕组的电压同相位(钟时序数0)。
其联结组标号为Y,yn0。
例2:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为,低压为三角形联结绕组,额定电压为。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,联结组标号为YN,yn0,d11。
例3:一台带第三绕组的自耦变压器,自耦联结的一对绕组为中性点引出的星形联结,其额定电压分别为220kV,121kV;第三绕组为三角形联结,额定电压为11kV。
自耦联结的一对绕组电压同相位(钟时序数0),而三角形联结绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。
所以,联结组标号为YN,a0,d11。
例4:一台单相双绕组变压器,高压绕组额定电压为550kV,低压绕组额定电压为20kV。
则,连接组标号为I,I0。
例5:一台双绕组变压器,高压绕组为星三角变换,低压绕组为三角形联结,低压绕组电压超前于高压为星形联结时的电压30°(钟时序数11),与三角形联结时的电压同相位。
则,联结组标号为Y-D,d11-0例6:一台带分裂绕组的变压器,高压绕组为星形联结有中性点引出,低压绕组为两个三角形联结的分裂绕组,低压绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。
则,联结组标号为YN,d11-d11。
变压器采用三角形接法和星形接法各有什么意义D-D;Y-Y;D-Y;Y-D这四种变压器用于什么场合有什么不同吗?另外比如一个Y-Y变压器下级再接一个D-Y变压器,那么Y-Y的n线能不能和下级的D-Y变压器的n线接到一起?好像不对吧,该怎么处理这种情况?Y型因为有中性点可以接地所以多用于为高压侧提供接地,也就是说:Y-D 一般做降压变压器,D-Y 一般做升压变压器,但是事实上很多配电变压器(属于降压变压器)也采用D-Y 接法,只是接地测变成了低压侧而已。
变压器线圈 初次级接线方法
变压器线圈初次级接线方法变压器初级线圈和次级线圈的接线方法变压器是一种电磁装置,用于通过电磁感应将电能从一个电路传递到另一个电路,同时改变电压和电流。
变压器由两个或多个线圈组成,称为初级线圈和次级线圈。
初级线圈连接到电源,次级线圈连接到负载。
初级线圈和次级线圈可以采用不同的接线方式,每种方式都会产生不同的电压和电流特性。
最常见的接线方法包括:星形接线:- 初级线圈或次级线圈的末端连接在一起并形成一个公共连接点,称为中性线或星点。
- 线圈的另一端连接到三相电源或负载。
- 星形接线通常用于平衡负载和三相供电系统。
三角形接线:- 初级线圈或次级线圈的一端连接到另一端的相邻端,形成一个闭合回路。
- 线圈的末端连接到三相电源或负载。
- 三角形接线通常用于非平衡负载或需要更高电压的场合。
星形-三角形接线:- 初级线圈采用星形接线,次级线圈采用三角形接线。
- 此接线方式可提供灵活性,允许在初级和次级侧改变电压和电流。
自耦变压器:- 初级线圈和次级线圈使用同一组绕组。
- 绕组的一部分用作初级线圈,另一部分用作次级线圈。
- 自耦变压器通常用于调节电压或提供隔离。
接线注意事项:- 对于星形接线,中性线必须适当接地。
- 对于三角形接线,绕组的连接顺序必须正确。
- 始终使用适当尺寸的导线和绝缘材料。
- 正确连接初级和次级线圈,确保电压和电流符合预期。
- 在操作变压器之前,仔细检查所有连接。
选择接线方法:接线方法的选择取决于变压器的具体应用和要求。
考虑以下因素:- 电源或负载的特性(三相或单相、电压、电流)- 所需的电压和电流转换- 负载平衡- 成本和效率通过仔细选择接线方法,可以优化变压器的性能,满足特定应用的需求。
变压器接线原理
变压器接线原理
变压器是一种重要的电力设备,用于改变交流电的电压。
变压器的接线原理是基于法拉第电磁感应定律和电磁感应电压的传递。
变压器由原/输入线圈和副/输出线圈组成,两个线圈通过磁性
材料(如铁芯)连接。
原线圈通常是电源侧,副线圈则连接到负载侧。
变压器的工作原理是基于磁耦合的原理,通过变换磁场的大小和变比,实现电压的转换。
在变压器的接线中,存在两种常见的接线方式,即星形(Y)
接法和三角形(Δ)接法。
在星形接法中,每个线圈的一个端
点连接在一起,形成共同连接点,而另一个端点分别连接到电源或负载。
在三角形接法中,每个线圈的两个端点分别连接到相邻线圈的端点,形成闭合的回路。
变压器的接线方式主要取决于其使用的场景和需求。
星形接法适用于负载较为对称的情况,可以提供更稳定的电压输出。
三角形接法适用于负载不对称和大功率的情况,能够提供更高的功率传输。
除了星形和三角形接法外,变压器还可以采用其他类型的接线方式,如Zigzag(之字形)接法、V连接和U连接等。
这些
接线方式可以根据实际需要进行选择,以满足不同的电力传输要求。
总之,变压器的接线方式是根据实际需求和负载条件来确定的。
通过合理的接线方式,可以实现电压的变换和电力传输的有效控制。
三相变压器的联结方式
三相变压器的联结方式
(三)三相变压器的联结组标号
1、三相变压器的联结方式
三相变压器的三个相绕组一般有三种联结方式:星形、三角形或曲折性。
星形、三角形接法在前面电工基础中已有叙述。
下面对曲折形联结做一些简单介绍、
所谓的曲折性联结,也称为Z联结,就是把每相绕组分成两半,分别套在两个铁芯柱上,然后到接串联,也就是说每个铁芯柱上都套有分属于两个不同相的绕组。
如下图,图a为三相绕组Z联结的接线方式;图b为相量图。
这种接线方式各相下半截线圈在左边的铁芯柱上,称为左行联结、如果反过来下半截图在右边铁芯柱上。
则称为右行联结。
左行和右行的区别是相量都向同一方向旋转60℃,但相互之间的相位差仍然都是1200,相应顺序也不变。
曲折联结一般只用于小容量变压器的低压绕组,特别适用于中性点要带额定电流的负荷时。
因为三相曲折联结可降低零序阻抗,三相负荷不平衡时引起的中性点电压偏移小。
因此,Z联结的接线方式特别适用于作为接地变压器形成人工中性点。
此外,采用Z型联结可以有助于防止雷击过电压。
因为当雷电冲击电流流过三相Z接线绕组时,每个铁芯柱上的上、下两个绕组匝数相符相等,且下半是反接。
因此流过的雷电流对铁芯内产生的磁通而言,大小相等、方向相反,雷电流在每个铁芯柱上的总磁动势几乎等于零,就不会产生对高压绕组的正、逆变交换过电压。
变压器接法
变压器接法
变压器接法是变压器工作过程中最重要的一部分,也是影响变压器性能和可靠性的关键因素。
在变压器选型时,不仅要考虑额定功率范围、绝缘等级和损耗,还要研究变压器的接法及相关参数,以满足变压器的技术要求。
一般来说,变压器的接法可以分为三类:并联接法、串联接法和三相接法。
1、并联接法
并联接法是指将原输出电压通过改变变压器铁心比例,采用两个或多个同类变压器的并联,以达到较高或较低输出电压的要求。
并联接法可以提高变压器的输出功率,提高电压因数,降低损耗,使变压器具有更高的效率。
2、串联接法
串联接法是指将两只或多只变压器的铁心比例不变,多只变压器串联形成,然后共用一个负载,以达到输出电压比直接连接的变压器低的要求,此时,变压器的负载可较小,能节省能源,具有较高的经济效益。
3、三相接法
三相接法是指将三只相同类型的变压器并联使用,三相接法同时克服了并联接法与串联接法的缺点,使各只变压器的负载均衡,且输出电压更高,易于控制。
总之,变压器的接法的选择关乎变压器的性能,因此,在变压器选购时要根据详细的工况要求来选用相应的接法。
合理的接法可以确保变压器的正常使用,并且能达到节能的效果。
三相四线变压器接线法?
三相四线变压器是一种常见的电力变压器,用于将三相电源的电压变换为低电压输出,常用于工业和商业用途。
下面是一种常见的三相四线变压器接线法,称为"Y-Δ" 接线法:
1. 首先,将三相电源的三根相线(L1、L2、L3)和中性线(N)连接到变压器的高压侧(原线圈,也称为Y 线圈):
- 将L1 连接到变压器的一个高压侧接线柱。
- 将L2 连接到另一个高压侧接线柱。
- 将L3 连接到第三个高压侧接线柱。
- 将N 连接到高压侧的中性接线柱。
2. 然后,将变压器的低压侧(副线圈,也称为Δ 线圈)的三个相线(a、b、c)连接到负载电路:
- 将a 相线连接到负载电路的一个引线。
- 将b 相线连接到负载电路的另一个引线。
- 将c 相线连接到负载电路的第三个引线。
3. 此时,负载电路与变压器的低压侧相连,高压侧提供给变压器的电源。
需要注意的是,Y-Δ 接线法适用于负载是三相电源的情况,如果负载是单相电源,采用其他连接方式,如Y-Y 接线法。
接线变压器是电力系统中的重要组成部分,正确的接线可以确保安全、可靠的电力输送和设备运行。
在执行电气工作时,请始终遵循适用的电气标准和安全规定。
强烈建议由合格的电气工程师进行设计、安装和维护。
变压器的接线方式(图文分析)
变压器的接线方式(图文分析)
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。
请点击此处输入图片描述
在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。
主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。
按用途可以分为:
配电变压器、电力变压器、全密封变压器、组合式变压器、干式
变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器等。
11---即按钟表指针11点的位置,比12点超前30度。
一次为Y接线方式,二次为△接线方式, (同名端)二次比一次超前30度。
Y/d-11的解释:变压器一次侧接线为:星三角二次侧接线为:均为星星主变Y/△-11接线带来的两侧电流之间的30度相角差在计算差流之前必须首先纠正。
现在一般采取主变微机装置内部软件补偿。
请点击此处输入图片描述请点击此处输入图片描述。
变压器的接线方法
变压器的接线方法变压器是一种将交流电能从一个电路传输到另一个电路的设备,其基本工作原理是利用电磁感应。
根据不同的用途和需求,变压器可以有不同的接线方法。
下面将介绍几种常见的变压器接线方法。
1. 单相变压器接线方法:单相变压器是最常见的一种变压器,主要用于家庭、商业和工业领域。
其接线方法包括两种基本类型:星形接线和三角形接线。
- 星形接线方法:在星形接线中,主绕组的每个相位的一端通过连接在一起的中性点连接到电源的中性线上,而另一端则相互连接,形成一个三角形。
副绕组的每个相位的一端分别连接到主绕组的另一端,形成两个相对的连接点,用于输出电压。
这种接线方法常用于家庭、商业和一些低功率的工业应用。
- 三角形接线方法:在三角形接线中,主绕组的每个相位的一端相互连接,形成一个闭合的三角形。
副绕组的每个相位的一端分别连接到主绕组的另一端,形成两个相对的连接点,用于输出电压。
这种接线方法常用于一些特殊的工业应用,例如大功率电机的启动。
2. 三相变压器接线方法:三相变压器是用于大功率工业应用的一种变压器,其接线方法包括三种常见类型:Y型接线、型接线和Z型接线。
- Y型接线方法:在Y型接线中,主绕组的每个相位的一端通过连接在一起的中性点连接到电源的中性线上,而另一端则相互连接,形成一个三角形。
副绕组的每个相位的一端分别连接到主绕组的另一端,形成两个相对的连接点,用于输出电压。
这种接线方法常用于工业和商业应用。
- 型接线方法:在型接线中,主绕组的每个相位的一端相互连接,形成一个闭合的三角形。
副绕组的每个相位的一端分别连接到主绕组的另一端,形成两个相对的连接点,用于输出电压。
这种接线方法常用于一些特殊的工业应用,例如大功率电机的启动。
- Z型接线方法:在Z型接线中,主绕组的每个相位的一端相互连接,形成一个闭合的三角形。
副绕组的每个相位的一端分别连接到主绕组的另一端,形成两个相对的连接点,用于输出电压。
与型接线不同的是,Z型接线中副绕组的接线顺序与主绕组相反。
变压器接线方式变压器高低压侧的接线方式
变压器接线方式变压器高低压侧的接线方式变压器高低压侧选择何种接线方式以及为何采用此种接线方式呢?接线方式的说法不妥,只能说是选择变压器的结线组别。
一侧绕组只有Y和Δ二种,双圈式变压器的组合就是四种:Y/Y,Δ/Y,Y/Δ,Δ/Δ。
Y/Y结线组是输入输出同相位,还有5种不同相位,按时钟表示,分别是0点和2,4,6,8,10点,钟点表示也是输入与输出之间的相位关系,进一步描述,请楼主自己用画图来说明了。
Δ/Δ结线组是输入输出也是同相位,还有5种不同相位,按时钟表示,同样是0点和2,4,6,8,10点,钟点表示一样是输入与输出之间的相位关系,进一步描述,请楼主自己用画图来说明吧。
Δ/Y和Y/Δ结线组是输入输出不同相位,按时钟表示分别是1点和3,5,7,9,11点,同样是输入与输出之间的相位关系,也需要用向量图来描述。
为什么选择的问题,要看它们各种结线的优缺点。
Δ结线可以看出,每相绕组与另二相绕组头尾相接,其优点是三次谐波会在Δ形绕组中自相抵消,缺点是没有中性点,无法利用(何种)接地方法控制对地电位。
Y结线的优缺点正好与Δ结线相反,感应过来的三次谐波无法抵消,将会影响下一级或用电设备,但它有中性点,可以利用中性点选择一种接地方式,控制系统对地电压和保护措施。
中性点的接地叫工作接地,电力系统少不了工作接地,它有4点作用:1、满足系统运行需要。
中性点接地可使继电保护准确动作,并消除单相接地过电压;中性点接地可以防止零序电压偏移,保持三相电压基本平衡。
2、降低人体的接触电压。
若中性点不接地,当系统有一相发生接地故障时,人站在地面上又触及另一相时,人体将受到的接触电压将接近线电压。
而中性点接地时,因中性点接地电阻小,中性点与地之间的电位差接近0,如发生一相接地,人站在地面上又触及另一相时,人体受到的接触电压只接近相电压,因此降低了人体的接触电压。
3、保证迅速切断故障设备。
在中性点不接地系统,当一相接地时接地电流很小,保护装置不能迅速动作切断电流,故障将长时间持续下去。
变压器接法
变压器接法目前变压器的常用接法有Y(星形)与D(角形)两种,配电变压器也有采用Z接法的。
1).Y接法的优点:对高压绕组而言最经济;可有中点可以利用;允许直接接地或通过阻抗接地;允许降低中点的绝缘水平(即分级绝缘);可在每相中点处设分接头,分接开关也可位于中点处;允许接单相负载,中点可载流。
2).D接法的优点:对大电流低压绕组而言最经济;与Y接绕组配合使用时可以降低零序阻抗值。
3).Z接法的优点:允许中点载流的负载且有较低的零序阻抗;可用作接地变压器的接法形成人工中点;可降低系统中电压不平衡(系统中三相负载不平衡时);可作多雷地区使用配电变压器的一种接法。
以上是单一接法的优点,一般变压器至少有两个绕组,因此变压器有几种接法的组合。
(1) YNyn和OYN(YN自耦接法)零序电流会在绕组间转换,即高压与低压绕组都有零序电流,且能安匝平衡以达到变压器有低的零序阻抗,对系统变压器而言,必须有D接平衡绕组与此接法一并采用。
(2) YNy和Yyn有中点引出的绕组中有零序电流,但在另一无中点引出的绕组无此电流,故零序电流不能安匝平衡,故对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗可以较大(如三相三柱铁心)或特别大(如三相五柱铁心、三相壳式铁心)。
相对地电压的对称会受到影响,中点会偏移,因此,这种接法不能用于三相五柱铁心、单相组成的三相组或三相壳式铁心(见下面说明)。
(3)YNd,Dyn,YNyd或YNy+d+d表示此绕组仅作平衡绕组用而不接负载。
d表示此绕组既作平衡绕组又可接负载。
在有中点引出的绕组中有零序电流时,在角接绕组有补偿此电流的循环电流。
零序阻抗是很低的,约等于绕组间正序短路阻抗。
(4)Yzn或ZNy在曲折接法绕组中的零序电流会在每个铁心柱上两个线圈中作安匝平衡,且有低的零序阻抗值。
不同接法的组合能否采用与铁心结构有关,常用的铁心有:单相铁心、三相三柱、三相五柱、三相壳式、三相七柱壳式等。
变压器出线连接标准
变压器出线连接标准
变压器的出线连接标准主要有两种:星形连接和三角形连接。
1. 星形连接(Y连接):
在星形连接中,变压器的三相输入线依次连接到变压器的三个相端,而三相出线则连接在共同连接点上。
这种连接方式可以提供相对较高的线电压,适合用于长距离输电。
2. 三角形连接(Δ连接):
在三角形连接中,变压器的三相输入线通过直接连接到变压器的三个相端形成一个闭合的三角形回路,而三相出线则连接在每个相之间。
这种连接方式可以提供相对较低的线电压,适合用于较小范围的配电系统。
需要注意的是,变压器的出线连接标准可能会根据具体情况而有所变化,因此在安装和连接变压器时,应该严格按照变压器的制造商提供的相关标准进行连接,以确保安全和正常运行。
变压器接法详解
变压器接法详解常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“•”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。
变压器接线方式
变压器接线方式变压器是电力系统中重要的电力设备。
它通过变换电压实现电能的传输和分配。
在使用变压器时,正确的接线方式是非常关键的。
不仅可以确保电能的高效传输,还可以保证电路的安全运行。
本文将介绍常见的变压器接线方式及其特点。
一、单相变压器的接线方式1. Y-△接法(星形-三角形接法)在Y-△接法中,低压绕组为星形接法,高压绕组为三角形接法。
这种接线方式适用于低压侧需要较大的电流和较小的电压,而高压侧需要较小的电流和较大的电压的情况。
Y-△接法的特点是:低压绕组电流较大,高压绕组电流较小;低压绕组电压较小,高压绕组电压较大。
2. △-Y接法(三角形-星形接法)在△-Y接法中,低压绕组为三角形接法,高压绕组为星形接法。
与Y-△接法相反,△-Y接法适用于低压侧需要较小的电流和较大的电压,而高压侧需要较大的电流和较小的电压的情况。
△-Y接法的特点与Y-△接法相反:低压绕组电流较小,高压绕组电流较大;低压绕组电压较大,高压绕组电压较小。
二、三相变压器的接线方式1. Y-Y接法(星形-星形接法)在Y-Y接法中,低压绕组和高压绕组均为星形接法。
这种接线方式适用于需要将电压降低或升高到相同比例的情况。
Y-Y接法的特点是:低压侧电流较大,高压侧电流较小;低压侧电压较小,高压侧电压较大。
2. △-△接法(三角形-三角形接法)在△-△接法中,低压绕组和高压绕组均为三角形接法。
与Y-Y接法相反,△-△接法适用于需要将电压降低或升高到相同比例的情况。
△-△接法的特点与Y-Y接法相反:低压侧电流较小,高压侧电流较大;低压侧电压较大,高压侧电压较小。
3. Y-△接法(星形-三角形接法)在Y-△接法中,低压绕组为星形接法,高压绕组为三角形接法。
这种接线方式适用于需要将电压降低或升高到不同比例的情况。
Y-△接法的特点是:低压侧电流较大,高压侧电流较小;低压侧电压较小,高压侧电压较大。
4. △-Y接法(三角形-星形接法)在△-Y接法中,低压绕组为三角形接法,高压绕组为星形接法。
变压器供电方案与接线方式
牵引变电所的供电方案与接线方式我国现行的牵引变电所供电方式绝大多数为三相-两相制式,即其原边取自电力系统的110kV 或220kV 三相电压,次边向两个单相供电臂馈电,其母线额定电压为27.5kV 或55kV 。
对于三相YN,d11或V ,v 接线的牵引变电所,次边两相电压的相别是原边三个相(或线)电压相别三中取二的某种组合;而对于平衡变压器,经变压器的变换,次边形成大小相等而相位相互垂直的两相电压。
从广义的角度上讲,牵引变压器原次边之间除了有电压的变换外,还有电流和阻抗变换,可称为系统变换,如 通过系统变换,可以获得一次侧的电力系统、牵引变压器的等值电路模型,或二次侧的电力系统、牵引变压器等值电路模型。
这两个等值电路模型对于牵引供电系统的电气分析十分方便、有用,如用于电压损失,故障分析,电能计量,负序含量,谐波水平等计算。
(一)纯单相接线变压器电力机车是单相交流负荷,显然,牵引变电所采用单相变压器最为直观、简单,单相牵引变压器和一般的单相变压器不同,一般单相变压器,都是一端接高压,另一端接地或接中性点,故可采用分级绝缘,而单相牵引变压器的高压绕组两端都接高压,故对地的绝缘要求相同,故采用全绝缘。
单相牵引变电所中的两台变压器并联接线完全一样。
两台变压器的高压绕组金额相同的两相,地压绕组的一端接母线,同时供给变电所的两个臂的负荷。
相邻两段接触网绝缘分开,既利于缩小事故停电范围,又提高了供电的灵活性。
低压....A B C οαβ⇔绕组的另一端与接地网和钢轨以及回流线可靠连接,以便使钢轨、回流线中的负荷电流以及地中电流流回变压器。
纯单相接线的主要优点是变压器的容量利用率为100%,且变电所的主接线简单,设备少、占地面积小,缺点是在三相系统形成较大的负序电流,为了减少负序电流对系统的影响,各变电所变压器高压绕组所结相序依次轮换,即所谓换相连接。
纯单相接线的另一个缺点是不能实现双边供电,并且变电所无三相电源,变电所的所用电须由附近地方电网引入。
接地变压器Z型接线
对于三角形接线的配电系统,要造成系统的中性点,必须接入接地变压器。
接地变压器有二种:Z型接地变压器(ZN、ZN,yn)和星形/三角形接线变压器(YN,d)。
现在,多用Z型接地变压器,其中性点可接入消弧线圈。
Z型接地变压器,在结构上与普通三相芯式电力变压器相同,只是每相铁芯上的绕组分为上、下相等匝数的两部分,接成曲折形连接。
接线方式不同,又分为ZN,yn1和ZN,yn11两种形式。
Z型接地变压器同一柱上两半部分绕组中的零序电流方向是相反的,因此零序电抗很小,对零序电流不产生扼流效应。
当Z型接地变压器中性点接入消弧线圈时,可使消弧线圈补偿电流自由地流过,因此Z型变压器广为采用作接地变压器。
Z型接地变压器,还可装有低压绕组,接成星形中性点接地(yn)等方式,作为所用变压器使用。
Z型接地变压器有油浸式和干式绝缘两种,其中树脂浇注式是干式绝缘的一种。
适用范围适用于容量为220千伏安与以下,电压为35千伏与以下的油浸式Z型接地变压器。
接地变压器原理图:对于35KV、66KV配电网,变压器绕组通常采用Y接法,有中性点引出,就不需要使用接地变压器。
对于6KV、10KV配电网,变压器绕组通常采用△接法,无中性点引出,这就需要用接地变压器引出中性点。
接地变压器的作用就是在系统为△型接线或Y型接线中性点未引出时,用于引出中性点以连接消弧线圈。
接地变压器采用Z型接线(或者称曲折型接线),即每一相线圈分别绕在两个磁柱上,两相绕组产生的零序磁通相互抵消,因而Z型接地变压器的零序阻抗很小(一般小于10Ω),空载损耗低,变压器容量可以利用90%以上。
而普通变压器零序阻抗要大很多,消弧线圈容量一般不应超过变压器容量的20%,由此可见,Z型接线的变压器作为接地变压器是一种比较好的选择。
一般系统不平衡电压较大时,Z型变压器的三相绕组做成平衡式,就可以满足测量需要。
当系统不平衡电压较小时(例如全电缆网络),Z型变压器的中性点要做出30V~70V的不平衡电压以满足测量需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器接线方式详解
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
[分享]变压器接线方式详解(标题无法改,这是共享资源)
例1:一台双绕组变压器,高压星形联结绕组额定电压为10000V,低压为中性点引出的星形联结绕组,额定电压为400V。
两个星形联结绕组的电压同相位(钟时序数0)。
其联结组标号为Y,yn0。
例2:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为,低压为三角形联结绕组,额定电压为。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,联结组标号为YN,yn0,d11。
例3:一台带第三绕组的自耦变压器,自耦联结的一对绕组为中性点引出的星形联结,其额定电压分别为220kV,121kV;第三绕组为三角形联结,额定电压为11kV。
自耦联结的一对绕组电压同相位(钟时序数0),而三角形联结绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。
所以,联结组标号为YN,a0,d11。
例4:一台单相双绕组变压器,高压绕组额定电压为550kV,低压绕组额定电压为20kV。
则,连接组标号为I,I0。
例5:一台双绕组变压器,高压绕组为星三角变换,低压绕组为三角形联结,低压绕组电压超前于高压为星形联结时的电压30°(钟时序数11),与三角形联结时的电压同相位。
则,联结组标号为Y-D,d11-0
例6:一台带分裂绕组的变压器,高压绕组为星形联结有中性点引出,低压绕组为两个三角形联结的分裂绕组,低压绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。
则,联结组标号为YN,d11-d11。
变压器采用三角形接法和星形接法各有什么意义
D-D;Y-Y;D-Y;Y-D这四种变压器用于什么场合有什么不同吗
另外比如一个Y-Y变压器下级再接一个D-Y变压器,那么Y-Y的n线能不能和下级的D-Y变压器的n线接到一起好像不对吧,该怎么处理这种情况
Y型因为有中性点可以接地所以多用于为高压侧提供接地,也就是说:
Y-D 一般做降压变压器,
D-Y 一般做升压变压器,但是事实上很多配电变压器(属于降压变压器)也采用D-Y接法,只是接地测变成了低压侧而已。
D-D的好处是在其中一组坏的情况下,可以将这组移去检修而保持另两足继续工作只是容量变为原来的58%,
Y-Y一般不采用,因为它没有谐波通路,会使变压器输出产生很大的畸变。
对于两级变压器的问题,比方说你们办公楼会有一个10/的变压器供电,它的Y 测中性点是接地的,但是你需要将400V或者380V的电压变换成110V供给你的特殊设备,那么这个小变压器事实上的n线就是通过上一级的变压器n线而最终接地的
关于变压器星形三角形那种接法可以防止三次谐波的问题,原理是什么,求助高手给解释一下还有最好能给讲解一下,三次谐波产生的原因,不胜感激。
简单回答一下,希望对你有帮助. 谐波产生的原因谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。
谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。
由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源.
变压器谐波的产生变压器的谐波电流是由其励磁回路的非线性引起的。
加在变压器上的电压通常是正弦电压,因此铁芯中磁通也是按照正弦规律变化的,但是由于铁芯磁化曲线的非线性,产生正弦磁通的励磁电流也只能是非线性的,励磁电流已经变为尖顶波了,进行傅立叶分析可知,其中含有全部奇次谐波,以3次为最大. 角接变压器作用有利于抑制高次谐波电流:对Yyn0结线的二相变压器,原边星形连接而无中线,故三次谐波电流不能流通。
原边激磁电流波形为正弦波时,则铁芯中磁通为平顶波,副边感应电势波形所含高次谐波分量大;激磁电流中以三次谐波为主的高次谐波电流在原边接成三角形条件下,可在原边形成环流,与原边接成星形相比,有利于抑制高次谐波电流,在当前电网中接用电力电子元件、气体放电灯等日益广泛,其功率越来越大的情况下,会使得电流波形畸变。
即使三相负荷平衡,中性线中也流过以三次谐波为主的高次谐波电流,配电变压器的原边(常为10kV侧)采用三角形结线就抑制了此类高次谐波电流,这样就能保证供电波形的质量。
谐波对变压器危害对变压器而言,谐波电流可导致铜损和杂散损耗增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。
须注意的是:这些由谐波所引起的额外损失将与电流和频率的平方成
比例上升,进而导致变压器的基波负载容量下降。
而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因子,以确保变压器温升在允许的范围内。
还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(千瓦·一小时)反应在电费上,而且谐波也会导致变压器噪声增加。
讲的太棒了发电机接成双星形目的是减少三次谐波能具体讲解一下吗。
谢谢回复楼上版主的帖,版主讲的很详细,但由于只有文字讲解,我还有以下几个相关问题不解: 1、发变组单元中,主变通常结成三角形/星型,是否为抑制三次谐波电压输送到电网,但如果如版主所说三次谐波电流在变压器低压侧形成环流,是否会增加变压器损耗 2、发电厂高压厂用变压器,通常结成三角形/三角形接线,这又是什么原理 3、发电机中性点一般经接地变压器接地,是否与三次谐波影响有关。
为了避免负荷侧产生的三次谐波进入电力系统,一般变压器的负荷侧采用三角形接线,其机理简单地说,就是因为三次谐波属于零序分量。
当变压器接成Y/Y时,各相励磁电流的三次谐波分量在无中线的星形接法中无法通过,此时励磁电流仍保持近似正弦波,而由于变压器铁芯磁路的非线性,主磁通将出现三次谐波分量。
由于各相三次谐波磁通大小相等,相位相同,因此不能通过铁芯闭合,只能借助于油、油箱壁、铁轭等形成回路,结果在这些部件中产生涡流,引起局部发热,并且降低变压器的效率。
所以容量大和电压较高的三相变压器不宜采用Y/Y接法。
厂变接线当绕组按成△/Y时,一次侧励磁电流的三次谐波分量可以通过,于是主磁通可保持为正弦波而没有三次谐波分量。
当绕组接成Y/△时,一次侧励磁电流中的三次谐波虽然不能通过,在主磁通中产生三次谐波分量,但
因二次侧为△接法,三次谐波电动势将在△中产生三次谐波环流,一次没有相应的三次谐波电流与之平衡,故此环流就成为励磁性质的电流。
此时变压器的主磁通将由一次侧正弦波的励磁电流和二次侧的环流共同励磁,其效果与△/Y接法时完全一样,因此,主磁通亦为正弦波面没有三次谐波分量,这样三相变压器采用△/Y或Y/△接法后就不会产生因三次谐波涡流而引起的局部发热现象。
还有厂用变压器的低压负荷有单相负荷。
发电机接成双星形目的是减少三次谐波谁说的三次谐波的相位相同,和零序一样,如果没有通路的话就不会产生,这与主变中性点不接地没有零序电流一样发电机中性点一般经接地变压器接地,是否与三次谐波影响有关;没关系,主要是补偿接地电容电流,使电容电流在允许值范围内。