几种无线充电解决方案特点及原理图

合集下载

大功率无线充电解决方案

大功率无线充电解决方案

大功率无线充电解决方案概述随着移动设备的普及和功能的增强,对电池续航能力的要求越来越高。

传统有线充电方式存在诸多不便,例如线缆的限制、插拔频繁导致的接口损坏等问题。

因此,无线充电技术成为了解决这些问题的一大趋势。

本文将针对大功率的无线充电需求,介绍几种常见的大功率无线充电解决方案,包括电磁感应式充电、谐振式充电和射频能量传输等技术。

电磁感应式充电电磁感应式充电是目前应用最为广泛的无线充电技术之一。

其基本原理是通过电磁感应将电能传输到接收设备中进行充电。

电磁感应式充电系统由发射器和接收器两部分组成。

发射器通过交流电源产生高频交变电流,通过发射线圈产生磁场。

接收器中的接收线圈通过感应发射器产生的磁场,将电能转变为电流,进而进行充电。

特点与优势•简单、成本相对较低:电磁感应式充电需要的设备和元件相对较少,易于实现和维护。

•高效能量传输:传输效率高,能够满足大功率充电要求。

•环保节能:充电效率高,能够减少能源浪费。

局限性•传输距离受限:电磁感应式充电传输距离通常较短,大功率下传输距离更是受到限制。

•批量充电受限:电磁感应式充电适合单个设备的充电,批量充电时可能会受到空间的限制。

谐振式充电是一种基于谐振原理的无线充电技术。

其通过共振装置将电能从发射器传输到接收器,实现高效的无线充电。

工作原理谐振式充电系统由发射器和接收器组成。

发射器利用电子器件产生高频交变电流,将电能传输到共振线圈。

接收设备通过调整自身的谐振频率与发射器保持同步,吸收电能。

特点与优势•高效能量传输:谐振式充电具有较高的传输效率,能够有效地传输大功率的电能。

•传输距离相对较远:相比电磁感应式充电,谐振式充电能够实现较远距离的无线充电。

•可扩展性强:谐振式充电技术能够应用于多设备同时充电,解决了电磁感应式充电批量充电受限的问题。

局限性•系统复杂度高:谐振式充电系统需要设计精确的频率匹配,调整谐振装置的参数较为繁琐。

•成本较高:谐振式充电系统的设计与制造成本相对较高。

无线充电的原理图解

无线充电的原理图解

无线充电的原理图解
无线充电系统主要采纳电磁感应原理,通过线圈进行能量耦合实现能量的传递,原理类似于变压器。

在发送和接收端各有一个线圈,发送端线圈连接有线电源产生电磁信号,接收端线圈感应发送端的电磁信号从而产生电流给电池充电。

物理学家早就知道,在两个共振频率相同的物体之间能有效地传输能量,而不同频率物体之间的相互作用较弱。

唱歌家演唱能将装有不同水量瓶子中的一个震碎,而不影响其他瓶子就是这个道理。

这也好比我们荡秋千时,只需坐在上面让下垂的双腿同步摇摆就能给秋千带来动力一样,无线充电技术正是利用了这个道理。

原理很简洁,就是电磁感应,不过实际的无线充电器确定简单一些,由于需要配套程序功能,比如异物检测、温控、变频等。

假如只是玩玩试验下,弄2个一样规格的线圈(不一样也可以,但电压会变),一个输入5V的沟通电进去,另一个接到手机充电口就能充电,不过效率确定很低的。

现在手机充电器充电距离(线圈之间的间隙)一般定在3-8mm,太近简单有互感,过远自然是感应太弱甚至感应不到。

充电效率(转换率),现在按QI标准试验室能达到80-84%,量产的以76%标准,但实际使用起来也就60—73%差不多,和放置的位置、线损有肯定关系。

无线充电器原理图

无线充电器原理图

无线充电器正向我们走来,本文介绍了无线充电器的结构与原理.爱好电子产品设计的朋友们可以参考.
简单实用的无线传能充电器,通过线圈将电能以无线方式传输给电池.只需把电池和接收设备放在充电平台上即可对其进行充电.实验证明.虽然该系统还不能充电于无形之中.但已能做到将多个校电器放置于同一充电平台上同时充电.免去接线的烦恼.
1无线充电器原理与结构
无线充电器系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递.如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电.经过无线充电器电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组.通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电.
2无线充电器发射电路模块
如图3,无线充电器主振电路采用2MHz有源晶振作为振荡器.有源晶振输出的方波,经过二阶低通滤波器滤除高次谐波,得到稳定的正弦波输出,经三极管13003及其外围电路组成的丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量.
测得与电容组成的并联谐振回路的空芯耦合线圈的线径为O.5mm,直径为7cm,电感为47uH,载波频率为2MHz.根据并联谐振公式得匹配电容C约为140pF.因而.无线充电器发射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率.。

无线充电技术方案

无线充电技术方案

无线充电技术方案无线充电技术是一种近年来不断发展的新兴领域,在无需使用传统充电线的情况下,通过无线电波或者其他形式的电磁波将电能传输到设备中,以实现充电效果。

本文将介绍几种常见的无线充电技术方案,并对其优劣进行评估。

一、电磁感应充电技术电磁感应充电技术是目前应用最广的无线充电技术之一。

基于法拉第电磁感应定律,该技术通过一个发射端产生的交变电磁场来感应接收端的线圈,进而实现无线能量传输。

这种技术在近距离传输方面效果良好,但受到距离限制,传输效率较低,且不适用于大功率设备充电。

二、磁共振充电技术磁共振充电技术通过发射端和接收端之间的磁场共振来传输电能。

与电磁感应充电技术相比,磁共振充电技术可以实现更远距离的无线充电,并且传输效率较高。

然而,由于磁场共振需要精确匹配频率,因此设备之间的传输效率会受到外界干扰的影响。

三、射频充电技术射频充电技术利用无线电波通过发射端和接收端之间的电磁耦合来传输电能。

相比其他技术,射频充电技术的传输距离较远,传输效率也较高。

它还可以同时给多个设备充电,为用户提供更便捷的充电体验。

然而,射频充电技术也存在电磁波对人体健康的潜在影响以及功率损耗较大的问题。

四、纳米发电充电技术纳米发电充电技术是一种新兴的无线充电技术方案。

它利用纳米材料的特殊性质,通过温差、压力或者光敏等方式将环境中的能量转化为电能。

这种技术在某些特殊情况下效果显著,例如可以将人体体温转化为电能进行充电。

然而,由于纳米材料的制备成本较高,该技术仍处于实验室研究阶段。

综上所述,无线充电技术方案具有各自的优势和不足。

电磁感应充电技术适用于近距离传输;磁共振充电技术实现了远距离传输;射频充电技术提供了更便捷的充电体验;而纳米发电充电技术则具备一定的创新潜力。

未来的发展中,我们可以综合利用不同的无线充电技术方案,以满足不同场景下的充电需求,进一步提高充电效率和用户体验。

无线充电工作原理

无线充电工作原理

无线充电技术工作原理无线充电的工作原理主要基于电磁感应、电磁共振、无线电波(RF)、电场耦合传输技术,这些技术允许电能通过非物理接触的方式从充电基座(或发射器)传输到电子设备(或接收器)的电池中。

以下是这三种主要无线充电技术的工作原理:①电磁感应式无线充电:1.这是目前应用最广泛、技术最成熟的无线充电方式。

其基本原理与变压器相似,利用交变电流通过初级线圈产生交变磁场,次级线圈则感应出电动势并转换为电流,从而实现电能的无线传输。

2.充电时,充电设备(如手机)放置在无线充电板上,两者内置的线圈相互靠近。

充电板上的线圈连接至电源并产生交变磁场,手机内的线圈感应到这一磁场后产生电流,进而为手机电池充电。

3.优点:效率高、技术成熟、成本相对较低。

4.缺点:传输距离短(一般需几毫米至几厘米),且要求设备位置相对固定。

②电磁共振式无线充电:1.电磁共振技术通过调整发射器和接收器的频率,使它们在同一频率上共振,从而更有效地传输电能。

这种技术的传输距离比电磁感应更远,可达数米。

2.发射器和接收器都包含能够产生和接收共振的线圈,它们被调谐到相同的频率。

当发射器通电并产生交变磁场时,与接收器线圈频率相同的部分会被放大并传输给接收器。

3.优点:传输距离较远,适用于多个设备同时充电。

4.缺点:效率相对较低,且对设备位置和方向有一定要求。

③无线电波(RF)传输式无线充电:1.无线电波式无线充电利用微波或毫米波等无线电波将电能传输到接收设备。

这种方法类似于无线通信,但传输的是电能而非信息。

2.发射器将电能转换为无线电波并发射出去,接收器则捕捉这些无线电波并将其转换回电能。

这种技术可以实现较远距离的电能传输,但技术复杂度和成本较高。

3.优点:传输距离远,理论上可以实现较远的无线充电。

4.缺点:效率低,能量在传输过程中会有较大损失;且可能对周围电子设备产生干扰。

总的来说,无线充电技术的发展为人们的生活带来了极大的便利,不同的技术各有优缺点,适用于不同的应用场景。

无线充电接收方案

无线充电接收方案

无线充电接收方案无线充电是一种不需要通过传统的电线连接,而是通过无线电波或电磁波向设备输送能量的技术。

它具有便捷、简单、不受限制的特点,越来越受到人们的关注和使用。

本文将介绍几种常见的无线充电的接收方案。

一、电磁感应充电电磁感应充电是目前最常见的无线充电接收方案之一、该方案通过一个充电底座和一个接收器来实现充电过程。

充电底座通过电源提供交流电,产生频率稳定的高频电磁场。

接收器中的线圈接收到电磁场并将其转换为电能,然后通过电池管理系统存储和控制充电。

电磁感应充电系统具有较高的效率和充电距离的限制。

充电底座和接收器之间的距离通常不能超过几厘米,而且如果有障碍物阻挡也会影响充电效率。

因此,电磁感应充电主要适用于一些局部充电的场景,如手机无线充电器、电动牙刷等。

二、电磁谐振充电电磁谐振充电是一种利用电磁共振现象进行无线充电的接收方案。

它通过调节底座和接收器之间的电容和电感参数,使它们在共振频率上保持一致。

这样就可以实现能量的传输,同时充电距离和效率也会得到提高。

电磁谐振充电系统的充电距离通常可以达到数十厘米,效率也比电磁感应充电更高。

但是,电磁谐振充电的参数调节比较复杂,需要保证底座和接收器之间的频率匹配,同时还需要考虑到功率传输的安全性。

因此,目前电磁谐振充电主要应用于一些特定的领域,如电动车无线充电和智能家居等。

三、齿轮感应充电齿轮感应充电是一种利用齿轮运动产生电能的充电方案。

它通过将齿轮放置在转动部件上,当齿轮转动时,通过磁感应原理可以产生电能。

然后将这些电能经过调整和存储后,供应给设备进行充电。

齿轮感应充电系统与电磁感应和电磁谐振充电系统不同,它不需要外部电源供电,可以自给自足地进行充电。

因此,齿轮感应充电可以应用于一些被动设备,如体内植入物、远程传感器等。

综上所述,无线充电接收方案有电磁感应充电、电磁谐振充电和齿轮感应充电等。

这些方案各有优缺点,并且适用于不同的场景和应用。

随着技术的进步和发展,无线充电的效率和充电距离将会不断提高,无线充电技术也将会得到更广泛的应用。

无线充电方案

无线充电方案

无线充电方案随着智能手机的普及和使用,无线充电技术也越来越受到关注和重视。

无线充电是指通过电磁波传输能量来给设备充电,无需连接任何线缆或插头。

市场上已经有很多不同的无线充电技术方案,下面我们将介绍几种常用的无线充电方案。

一、感应式无线充电感应式无线充电是目前最主流的无线充电方案之一。

它利用电磁感应原理,将电能通过感应线圈在发送端与接收端之间无线传输。

在感应式无线充电中,发送端将能量转换为电磁波并通过感应线圈发送出去,接收端的感应线圈将电磁波转换回电能来为设备充电。

感应式无线充电的优点是充电效率高,充电速度快,还带有保护措施,可确保设备充电过程中不会受到过多的热量损耗。

但该技术也有一些缺点,比如需要在充电装置和设备之间放置线圈,充电距离较短等。

二、磁共振无线充电磁共振无线充电技术是一种高效、距离较远的无线充电方案。

该技术是利用磁共振原理,两个线圈之间通过磁共振能量传输达到充电的目的。

充电底座发送出能量的频率,通过类似共振的方式,匹配设备上的接收线圈,达到能量的传输和充电。

相比较感应式无线充电,磁共振无线充电距离更远,具有充电的灵活性和可扩展性,并且还能支持多台设备同时充电,充电速度也相对较快。

但该技术的唯一缺点是充电效率不如感应式无线充电。

三、射频天线无线充电射频天线无线充电技术是一种较新的无线充电方案,其原理是通过微小的天线在特定的频率下发射射频信号,以无线方式为设备充电。

该技术的工作原理类似于在 WiFi 无线网络中使用的路由器或基站,只不过在这种情况下,路由器或基站使用的是射频信号来连接设备,而不是数据包。

射频天线无线充电的优点是具有更长的充电范围和适用于不同类型的设备,并且可以将设备集成到更远的位置。

但是,它也有一些缺点,首先是充电的效率较低,并且无法同时充电多台设备。

四、太阳能无线充电太阳能无线充电是一种新兴的环保充电方案,它利用太阳能源将充电器以及设备直接连接到外部电源上,以无线方式为设备充电。

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电技术(四种主要方式)原理与应用实例图文详解无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。

未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供电。

以下是四种主要无线充电方式:无线充电方式充电效率使用频率范围传输距离电场耦合方式电磁感应方式92%22KHz数mm-数cm磁共振方式95%13.56MHz 数cm-数m 无线电波方式38% 2.45GHz 数m- 1.电磁感应方式无线供电驱动一枚60W电灯泡,效率高达75%。

电磁感应无线充电产品示意图电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。

稍有错位的话,传输效率就会急剧下降。

下图靠移动送电线圈对准位置来提高效率。

目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。

Qi源自汉语“气功”中的“气”,无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。

通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。

在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图一种无线充电器发送和接收原理图2. 磁共振方式磁共振方式的原理与声音的共振原理相同。

排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。

同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。

相比电磁感应方式,利用共振可延长传输距离。

磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。

应用:三菱汽车展示供电距离为20cm,供电效率达90%以上。

线圈之间最大允许错位为20cm。

如果后轮靠在车挡上停车,基本能停在容许范围内。

一篇读懂无线充电技术(附方案选型及原理分析)

一篇读懂无线充电技术(附方案选型及原理分析)

一篇读懂无线充电技术(附方案选型及原理分析)••0.背景•1.无线供电特点•2.无线供电原理及实现方式•3.现有解决方案分析•4.FAQ及相关测试•5.参考资料作者:HowieXue0.背景现今几乎所有的电子设备,如手机,MP3和笔记本电脑等,进行充电的方式主要是有线电能传输,既一端连接交流电源,另一端连接便携式电子设备充电电池的。

这种方式有很多不利的地方,首先频繁的插拔很容易损坏主板接口,另外不小心也可能带来触电的危险。

无线充电运用了一种新型的能量传输技术——无线供电技术。

该技术使充电器摆脱了线路的限制,实现电器和电源完全分离。

在安全性,灵活性等方面显示出比传统充电器更好的优势。

在如今科学技术飞速发展的今天,无线充电显示出了广阔的发展前景。

无线充电已从梦想成为现实,从概念变成商用产品。

产品实例:图:手机笔记本无线充电器图:新能源汽车无线充电图:电动牙刷无线充电1.无线供电特点1.1优点:(1)便捷性:非接触式,一对多充电与一般充电器相比,减少了插拔的麻烦,同时亦避免了接口不适用,接触不良等现象,老年人也能很方便地使用。

一台充电器可以对多个负载充电,一个家庭购买一台充电器就可以满足全家人使用。

(2)通用性:应用范围广只要使用同一种无线充电标准,无论哪家厂商的哪款设备均可进行无线充电。

(3)新颖性,用户体验好(4)具有通用标准主流的无线充电标准有:Qi标准、PMA标准、A4WP标准。

Qi标准:Qi标准是全球首个推动无线充电技术的标准化组织——无线充电联盟(WPC,2008年成立)推出的无线充电标准,其采用了目前最为主流的电磁感应技术,具备兼容性以及通用性两大特点。

只要是拥有Qi标识的产品,都可以用Qi无线充电器充电。

2017年2月,苹果加入WPC。

PMA标准:PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。

PMA也是采用电磁感应原理实现无线充电。

四种常见的无线充电工作原理和优缺点分析

四种常见的无线充电工作原理和优缺点分析

四种常见的无线充电工作原理和优缺点分析现在的手机发展的越来越智能,各种高科技也加入到我们的生活,比如说现在的一项高科技,那就是无线充电的功能。

想必大家还是能够想起以前我们使用万能充充电的时候吧,那个时候的手机还不是一体机,电池还是可以被拆下来的,那个时候我们有两种充电的方式,一种就是依靠万能充,一种就是依靠数据线充电。

到后来,手机已经发展到一体机的的时代,我们不能在将电池拆卸下来,只能依靠数据线的方式充电。

近几年来,智能机开始配备了一种新的充电方式,也就是无线充电的功能,对于这一项功能虽然科技感超强,但是很多人还是觉得很奇怪,没有数据线的支撑,那么两个设备是怎么样开始电流的传输呢?现在有四种这样的电流传输方式,这篇文章我们就来说一说各种的充电方式。

第一种:电磁感应无线充电,这一种充电的方式就是利用了一个供无线充电板和手机上感应的磁铁之间产生的感应磁通量,将这种磁力转换成一个电力,进行电流的传输。

这一种充电方式所要求的电路结构就比较简单,成本上来说也不会太高,但是这种充电的方式也存在着一个缺点,那就是传输的距离过短,如果手机摆放的位置没有摆好,那么就很有可能充不上电,或者充电速度特别缓慢。

第二种:磁场共振式充电,这一种充电的原理是需要两方的谐振器产生一个磁场共振,跟第一种一样,也是通过磁力将它变成电力,进行一个充电,这种方式是需要连接的两方在同一个频率上有震动感,那么就可以充上电,而且适用于距离比较长的传输,不过还是有缺点的,那就是充电的效率会比较低,目前这一种充电方式还正在研究当中,估计要将这个缺点进行一定的改善之后才能出现在市场上。

第三种:无线电波式充电,这一种充电方式是在供电方上配置一个可以进行无线电波的发射的设备,当然有了一个发射设备,就必须要有一个接受的设备,以一种直流电压输出和。

无线充电技术方案

无线充电技术方案

无线充电技术方案随着移动设备的广泛应用和智能家居的普及,无线充电技术已经成为一种趋势。

传统的有线充电方式存在一系列的不便之处,如充电线的丢失、断裂或者充电宝的容量限制。

而无线充电技术的出现,可以有效解决这些问题,并且提供更加便捷的充电方式。

一、无线充电技术的原理和工作方式无线充电技术主要基于电磁感应原理或者电磁辐射原理,通过将电能通过空气或者磁场传送到接收装置上。

其中比较常见的两种无线充电技术为电磁感应式无线充电和射频无线充电。

1. 电磁感应式无线充电电磁感应式无线充电利用接收器和发送器之间的配对线圈进行电能传输。

发送器产生变化的电流,通过产生的交变磁场作用于接收器,在接收器中的线圈就会感应出电流。

通过配对线圈的感应和转换,将电能从发送器传输到接收器实现充电。

2. 射频无线充电射频无线充电则是通过射频信号来传输能量。

发送器通过产生射频信号,并将能量传送到接收器上,接收器利用射频信号接收器内的天线来感应和接收能量。

射频无线充电具有传输距离远、充电效果稳定等优点。

二、无线充电技术的应用无线充电技术的应用具有广泛的前景,下面主要对其中的几个领域进行介绍。

1. 移动设备充电无线充电技术对于移动设备的充电具有很大的便利性。

在日常使用中,用户只需要将移动设备放置在充电区域内,就能实现自动充电,无需插拔充电器,方便快捷。

2. 智能家居充电随着智能家居的普及,无线充电技术也逐渐应用于智能家居领域。

比如,可以将充电技术应用在智能家居系统中的各类传感器和控制设备上,实现长时间、稳定的供电。

3. 电动汽车充电无线充电技术也可以应用于电动汽车的充电领域。

传统的有线充电方式需要车辆停放在特定的充电位置上,而无线充电技术则可以通过在停车场地面或者车道上设置充电设备,实现无人值守的充电,提高充电效率和用户体验。

三、无线充电技术的优势和挑战虽然无线充电技术具有便利和灵活性的优点,但仍然面临一些挑战。

1. 传输效率与有线充电相比,无线充电的传输效率相对较低,一部分电能会在传输过程中被消耗。

无线充电技术的原理与特点

无线充电技术的原理与特点

无线充电技术的原理与特点随着科技的不断发展,无线充电技术逐渐成为人们日常生活中的重要一部分。

无线充电技术是指通过无线方式为电子设备提供电能的技术。

本文将详细介绍无线充电技术的原理、特点以及在生活和工作中的应用,并展望无线充电技术未来的发展趋势和应用前景。

无线充电技术的原理主要基于电磁感应、电容充电和无线电波等方式。

电磁感应是一种通过磁场变化产生电流的物理现象。

无线充电技术利用这一原理,将电能转化为磁场能,电子设备通过内置的磁感应线圈将磁场能再转化为电能。

电磁感应方式的传输距离较近,一般为几厘米到几米之间。

电容充电是利用电容器的原理,将电能储存于一个电容器中,通过电容器放电为电子设备提供电能。

无线充电技术中的电容充电方式是将电能以电场的形式储存于一个大的电容中,然后通过放电为电子设备供电。

电容充电方式的传输距离也相对较近。

无线电波是利用电磁波传输能量的方式。

无线充电技术中的无线电波方式是将电能转化为无线电波,通过空气或者介质传播,电子设备接收无线电波并转化为电能。

无线电波方式的传输距离较远,但能量损耗较大,效率较低。

无线充电技术最显著的特点就是便捷,用户无需插拔线缆,只需将电子设备放在充电座上即可。

这种充电方式为消费者带来了极大的便利,尤其适用于那些需要频繁充电的电子设备,如智能手机、平板电脑等。

无线充电技术相对于传统有线充电方式,其效率更高。

由于避免了线缆的传输损耗,无线充电的能量转换效率可以达到有线充电的80%以上。

同时,无线充电可以有效避免因线缆破损或质量不佳而导致的充电中断或效率降低等问题。

无线充电技术具有较高的安全性。

无线充电过程中产生的磁场对人体无害,不会影响人体健康。

无线充电的输出功率较低,一般仅为有线充电的50-70%,因此即使发生意外触电,对人体的危害也相对较小。

无线充电技术还具备过热保护、过充保护等安全功能,有效保障了电子设备和用户的安全。

无线充电技术在生活和工作中有广泛的应用,以下列举几个典型的实例。

无线充电方案

无线充电方案

无线充电方案近年来,随着电子产品的普及和人们对便利性的追求,无线充电技术逐渐成为电子行业关注的焦点。

传统的有线充电方式存在着诸多不便之处,而无线充电方案则能够解决这些问题,为用户带来更加便捷的充电体验。

本文将介绍几种常见的无线充电方案,并探讨其在不同场景下的应用。

一、电磁感应充电方案电磁感应充电是一种常见的无线充电技术,其原理基于电磁感应现象。

在这种方案中,充电器和接收器之间通过电磁场相互作用,实现能量传输。

目前市面上的许多无线充电宝和智能手机都采用了电磁感应充电方案。

电磁感应充电方案的优点之一是充电效率高,能够快速为设备充电。

同时,充电器和接收器之间的距离可以适度延长,用户无需担心充电设备与充电底座之间的接触问题。

然而,电磁感应充电方案也存在一些缺点。

首先,由于充电器和接收器之间需要通过电磁场进行传输,存在一定的能量损耗。

其次,电磁感应充电设备的成本相对较高,需要在充电器和接收器中都加入电磁感应线圈等组件,使得产品的造价上升。

二、磁共振充电方案磁共振充电是一种相对较新的无线充电技术,其原理基于磁场共振效应。

在磁共振充电方案中,充电器和接收器之间通过共振磁场相互作用,实现能量传输。

相较于电磁感应充电方案,磁共振充电具有一定的优势。

首先,磁共振充电方案能够实现距离更远的充电传输。

用户可以在一定范围内自由地移动充电设备和接收器,而不会对充电效果产生明显的影响。

其次,磁共振充电方案的效率相对较高,能够快速为设备充电。

此外,磁共振充电设备还具备一定的兼容性,能够为不同品牌和型号的设备提供充电支持。

然而,磁共振充电方案也存在一些挑战和改进空间。

由于共振磁场的传输距离较远,存在一定的能量损耗。

此外,磁共振充电设备的成本较高,需要在充电器和接收器中都加入共振线圈等组件。

三、射频充电方案射频充电是一种基于无线射频信号的充电技术。

在射频充电方案中,充电器通过射频信号向接收器发送能量,并实现无线充电。

射频充电方案相较于其他无线充电技术具有更长的充电距离和更大的充电范围。

无线充电原理图文详解

无线充电原理图文详解

无线充电原理图文详解
无线充电是一种不需要通过电线或接触物理接口,通过电磁场或者其他形式的无线传输能量的方式进行充电的技术。

其原理主要包括两个部分:能量的传输和能量的接收。

能量的传输部分主要由一个功率源、一个发射器和一个传输介质组成。

功率源通常是一个电源或者电池,用来提供电能。

发射器是一个产生电磁场的装置,通常使用电磁感应原理或者谐振原理来产生电磁脉冲或者电场。

传输介质可以是空气、水或者其他物质,其作用是传输电磁脉冲或电场。

能量的接收部分主要由一个接收器和一个负载组成。

接收器是一个接收电磁脉冲或电场的装置,通常使用电磁感应原理或者谐振原理来接收电能。

负载是一个需要能量的装置,比如移动设备或者电动车。

在充电过程中,功率源提供电能,发射器产生电磁脉冲或电场,并将其传输到接收器。

接收器接收电磁脉冲或电场,并通过电磁感应或者谐振将其转换为电能。

转换后的电能通过导线或者其他方式传输到负载上,以供其使用或者充电。

无线充电的原理在于电磁感应或者谐振。

电磁感应原理是指通过变化的磁场产生感应电流,而谐振原理是指通过共振的方式实现能量的传输。

需要注意的是,无线充电在传输过程中会有能量损耗,因此效率相对有线充电会稍低。

此外,无线充电技术目前还面临一些
挑战,比如距离限制、传输效率等问题。

随着技术的不断发展,相信无线充电将会越来越普及,并且在未来的应用中发挥重要的作用。

无线充电技术详解

无线充电技术详解

无线充电技术详解无线充电技术是一种通过非物理接触方式实现电能传输的技术,正在逐渐改变人们的充电方式和生活方式。

其起源可追溯到19世纪,尼古拉·特斯拉曾进行无线输电试验。

目前,无线充电主要有电磁感应式、电磁共振式、无线电波式和电场耦合式四种实现模式。

电磁感应式无线充电原理是电流通过送电线圈产生磁场,对受电线圈产生感应电动势从而产生电流,转化效率较高但传输距离短,对摆放位置要求高,且金属感应接触易发热。

磁场共振式无线充电原理是发送端和接收端调整到相同频率共振来传输电能,传输距离较远、功率较大,适合远距离大功率充电,但效率较低,传输损耗大,且需保护频段免受干扰。

无线电波式无线充电原理是将环境电磁波转换为电流并传输,其传输间隔中等、速度较快,但稳定性、安全性较低,成本投入高。

电场耦合式无线充电原理是通过垂直方向耦合两组非对称偶极子产生的感应电场传输电力,适合短距离充电,转换效率高,位置可不固定,但需大体积设备且功率较小。

近年来,无线充电技术发展迅速。

2007 年,麻省理工学院的研究团队成功为两米外的60 瓦灯泡供电。

2010 年,WPC 发布了Qi 1.0 标准。

2012 年,第一批无线充电手机发布,此后三星、苹果、华为、小米等品牌相继入局。

2019 年,苹果发布了磁吸无线充电。

2023 年9 月,苹果携手WPC 带来了Qi2。

无线充电技术应用广泛,包括电子设备充电(如智能手机、平板电脑、可穿戴设备)、汽车充电(电动汽车在行驶或停车时自动充电)、家居和办公场所(无线充电家具、公共区域设置无线充电设备)、医疗设备(无线充电心脏起搏器、假肢等)以及工业制造、航空航天等多个领域。

然而,目前无线充电技术仍面临一些挑战,如传输距离有限、传输效率待提高、成本较高等。

未来需要继续加强技术研发和创新,推动无线充电技术不断进步和完善。

无线充电技术的起源和发展历程无线充电技术的起源可以追溯到19世纪。

1890年,物理学家尼古拉·特斯拉就进行了无线输电实验,构想通过地球和电离层建立低频共振来传输能量,但因经费等问题未能实现。

无线充电技术详解

无线充电技术详解
A4WP标准 A4WP是Alliance for Wireless Power标准的简称,由美国高通公司、韩国三
星公司以及Powermat公司共同创建的无线充电联盟创建。该联盟还包括 Ever Win Industries、Gill Industries、Peiker Acustic和SK Telecom等成员,目 标是为包括便携式电子产品和电动汽车等在内的电子产品无线充电设备设 立技术标准和行业对话机制。
Qi标准
Qi是全球首个推动无线充电技术的标准化组织--无线充电联盟(Wireless Power Consortium,简称WPC)推出的“无线充电”标准,具备便捷性和通用性 两大特征。首先,不同品牌的产品,只要有一个Qi的标识,都可以用Qi无 线充电器充电。其次,它攻克了无线充电“通用性”的技术瓶颈,在不久的 将来,手机、相机、电脑等产品都可以用Qi无线充电器充电,为无线充电 的大规模应用提供可能。 目前,市场比较主流的无线充电技术主要通过三种方式,即电磁感应、无 线电波、以及共振作用,而Qi采用了目前最为主流的电磁感应技术。在技 术应用方面,中国公司已经站在了无线充电行业的最前沿。据悉,目前Qi 在中国的应用产品主要是手机,这是第一个阶段,以后将发展运用到不同 类别或更高功率的数码产品中。截至目前,联盟成员数量已增加到74家, 包括飞利浦、HTC、诺基亚、三星、索尼爱立信、百思买等知名企业都已 是联盟的成员。
2.磁场共振充电:由能量发送装置,和能量接收装置组成,当 两个装置调整到相同频率,或者说在一个特定的频率上共振,它们 就可以交换彼此的能量,它是目前正在研究的一种技术,还无法实 现商用化。
3.无线电波式充电:这是发展较为成熟的技术,类似于早期使 用的矿石收音机,主要有微波发射装置和微波接收装置组成,可以 捕捉到从墙壁弹回的无线电波能量,在随负载作出调整的同时保持 稳定的直流电压。此种方式只需一个安装在墙身插头的发送器,以 及可以安装在任何低电压产品的“蚊型”接收器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种无线充电解决方案特点及原理图无线充电技术发展至今在电子领域已经被深入研究应用,虽然还未曾大范围普及,但在消费电子领域的发展已经取得不错的成绩。

手机厂商也纷纷在自家旗舰机上加入这一革新性的先进充电技术,如三星S6、索尼Xperia Z3+、谷歌Nexus 6、诺基亚Lumia 930等手机均采用了无线充电技术。

那么,未来无线充电技术发展会如何呢?现如今都有哪些常见的无线充电解决方案,下面让我们一起来了解下:一、无线充电联盟(WPC):电磁感应方式,2008年12月成立。

目前WPC在商业推广中的QI标准目前已有172家会员公司:德州仪器(TI)、飞利浦、飞思卡尔(Freescale)、东芝(Toshiba) 、微软、松下、三星、索尼、高通(最后加入)等等。

无线充电联盟(WPC)共同制定的无线充电标准Qi采用的是电磁感应方式。

但这技术还有比较多的缺陷,比如最大输出功率只有5W,所以充电速度上会非常有局限。

从市场规模上,Qi无疑是目前最为普及的,值得关注的是,Qi的最新标准可实现7至45毫米的无线充电距离,算是一个小小的突破。

QI标注采用的电磁感应技术的优缺点:优点:原理简单,制作容易缺点:传输距离严重受限实例如下:1、德州仪器(TI):最早量产无线充电方案公司第一种:WPC主要会员之一的德州仪器(TI),已推出业界首款无线电源传输控制芯片套片。

该套片包含一片bq500110单通道发射控制芯片,一片bq51013单通道接收控制芯片。

TI是最早量产无线充电方案公司。

第二种:1、15V 输入发射端:(1)功能描述:第二代数字无线电源控制发射端用于便携式设备如手机等的充电输入 5V 直流电,输出 10V 交流电可寻找将被供电的 WPC 兼容器件接收来自被供电器件数据包通信并管理电源传送(2)重要特征:动态电源限制 (DPL)符合无线电源联盟 (WPC) 类型 A5 和类型 A11 发送器规范的 5V 运行数字解调减少了组件综合充电状态模式和故障指示(3)功能框图:(4)方案照片:2、12V 输入发射端:(1)功能描述:TI 自由定位无线充电发送端应用在 WPC 1.1 可用的手机, 车载和桌面充电三个线圈发送数组: 充电区域 > 70 mm×20mm12V DC 输入, 5V AC 输出(2)重要特征:符合无线供电联盟(WPC)A6 发送机技术规范外来物体检测增强型寄生金属检测确保安全性数字解调过流保护(3)功能框图:(4)方案照片:3、5V 输出接收端(1)功能描述:提供 5V 稳压电源输出应用于便携式设备提供无线充电(2)重要特征:93% 的整体峰值 AC-DC 效率符合 WPC v1.1 标准的通信控制输出电压调节内部集成整流器 , 低压降压稳压器 , 数字控制热关断(3)功能框图:(4)方案照片:2、飞思卡尔(Freescale)高效定位无线充电方案5V 输入发射端:(1)功能描述:自由定位充电设备应用在 WPC Qi可用的手机, 车载和桌面充电提供准确、高效充电电流输入电压可调(2)重要特征:符合 WPC 规范采用 DSC 内核技术的软件平台,高效的 PID 控制环路输入电压范围 9~18 V(3)功能框图:(4)方案照片:3、东芝(Toshiba)简单快速无线充电方案5V 输出接收端:(1)功能描述:基于 TC7761WBG 的无线充电接收端应用于智能手机 , 平板电脑的电池块符合 WPC 1.1 协议(2)重要特征:全桥整流电路欠压锁定 / 过压保护最大输出电压 / 电流 : 5V/1A热关断检测和保护(3)功能框图:(4)方案照片:4、凌阳:凌阳无线充电芯片GPM8F3132AGPM8F3132A 凌阳公司摔出的首款无线充电芯片,采用LQFP44封装,最大功率达到75%,优越的性能和性价比,是目前最为通用的。

二、A4WP(无线能源联盟):磁共振,2012年5月成立由三星与高通创立的A4WP(无线能源联盟)目前已有超过40个成员:三星、高通、博通、Gill Industries、Integrated Device Technology(IDT)、Intel等等。

A4WP(无线能源联盟)的无线充电技术名为“Rezence”,采用磁共振(谐振感应,又名谐振耦合技术),虽然在一些电子消费展上偶尔露面,但仍未正式商用。

A4WP采用的磁共振技术的优缺点:优点:传输距离长,效率高缺点:电路调频不易实例如下:1、Intel英特尔(1)2015 CES Asia英特尔与海尔合作推无线充电方案。

(2)在IDF 2015的第二日,英特尔提到了一个老生常谈的技术——无线充电,虽然这早已不是英特尔第一次发力该技术了,但与以往不同的是,本次英特尔宣布将会利用自家将于下半年发布的第六代酷睿处理器“Skylake”中集成的无线充电功能,像12年前利用迅驰平台推广无线上网技术一样,来推动无线充电的普及。

2、IDT公司IDT公司 (Integrated Device Technology, Inc.)正致力于开发一款基于共振技术的集成发送器和接收器芯片组,用于英特尔的无线充电技术。

英特尔公司借助IDT的领先技术,致力于提供针对超极本、一体机、智能手机和独立充电器开发的验证参考设计。

3、美国Witricity公司美国Witricity公司同样利用磁共振传输电量,传输距离可达到几米远。

麻省理工学院已经通过谐振感应技术,将无线充电的有效距离提升至两米左右,该技术被命名为“WiTricity”,研究人员之一此后离职创业,开发了一套系统,但售价较为昂贵,达到了995美元(约合人民币6240元)。

三、PMA(电力联盟):电磁感应方式由Procter & Gamble与Powermat Technologies共同创立的PMA已有超过70家的会员:包含了不少通讯及手机制造商,如三星、Broadcom、宏达电、LG及华为等等。

PMA(电力联盟)也是采用的电磁感应技术,比WPC要晚一些,PMA的产品虽然可以在市场中找到,但为数不多,最大的商业活动是获得星巴克支持,在国一些分店中推出了免费无线充电服务,但反响平平。

另一方面它已经是北美地区覆盖速度最快的无线充电标准了,它的显著特征它更偏向于充电器件,像桌子、家具等等。

值得注意的是:A4WP与PMA两大阵营还宣布正式合并,未来二者将致力于整合磁共振和磁感应两项技术,以早日促进无线充电标准统一。

四、WiFi无线充电:十米距离优点:随走随充,符合无线充电的理念缺点:充电对象定位不易,浪费电量美国华盛顿大学已经成功研发了利用Wi-Fi网络给硬件设备充电的技术,已经在大约十米的Wi-Fi覆盖距离内,成功给数码相机等设备充满电。

未来有望给手机充电。

Wi-Fi网络几乎随处可见,美国华盛顿大学研发团队的目的,就是利用Wi-Fi路由器充当无线充电设备,给智能手机等设备进行充电。

这将比目前的无线充电技术更能解决用户现实问题。

该大学研发了一个所谓的“Wi-Fi供电系统”。

该系统主要包括两个组成部分,一个是Wi-Fi接入点(路由器),另外一个部分是定制的充电传感器。

该项目的研究人员唐拉(VamsiTalla)表示,安装在硬件设备上的充电传感器,目的是接收射频信号(RF)中的电能,并将其转化为直流电进行充电。

该团队专门研发了软件的解决方案,可以让Wi-Fi路由器成为一个供电电源,与此同时扮演传统路由器的数据传输角色。

需要指出的是,这种Wi-Fi充电技术,并不需要对传统的无线路由器进行更换,只需要部署软件等方案,提供充电功能之后,并不会对互联网接入的功能造成影响。

根据美国记者的报道,此前美国Energous公司已经推出了一种利用射频信号在空中提供电能的设备,这种设备在提供充电时,将无法再充当Wi-Fi路由器使用。

华盛顿大学的新技术,可以让Wi-Fi网络同时传输电能和数据。

更准确的说,这种技术利用了Wi-Fi数据传输中的无线电波,来传输电能。

据报道,华盛顿大学的研究团队,寻找到了巧妙的解决方案,让Wi-Fi网络的数据传输和电能传输,互相不干扰。

“连线”网站评论指出,虽然目前的Wi-Fi充电技术,暂时还只能以“细水长流”而不是“如潮洪水”的方式给设备充电,但这仍然是一个了不起的成就。

随着技术成熟,未来的手机和消费电子设备用户,或许可以将充电接口、充电线等概念遗忘,只需要利用Wi-Fi网络来充电。

五、超声波无线充电:有效范围接近5米优点:技术非常安全 ;接收器价格便宜,体积小;可以用于数据传输。

缺点:最终的产品可能无法在价格、功率、速度和安全方面达到预期。

一家名叫uBeam的公司发明了一种全新的无线充电模式,可以利用超声波将电力隔空输送到15英尺(约合4.6米)外的地方。

有了这样的产品,只要使用专用的无线充电套,你就可以在充电的同时拿着手机在屋里走动。

此技术是一名25岁的纽约女孩Meredith Perry想到的。

uBeam已获得170万美元的种子轮融资,其投资人包括Yahoo CEO Marissa Mayer、Founders Fund以及Andreessen Horowitz等。

该公司已经申请了18项与无线充电和超声波有关的专利。

六、微软拟利用聚焦光线来充电微软研究院已经制定出了一个潜在的解决方案:AutoCharge。

微软研究人员们描述AutoCharge是一种自动定位桌子上的智能手机,并为它们充电的技术。

他们制造的原型充电器可以被安装在天花板上,有两个工作模块:一个监测模块,其采用的是微软的Kinect 摄像头,可以扫描像智能手机样子的物体;另一个是充电模式,采用了UltraFire CREE XM-L T6来聚焦LED光线。

该AutoCharge系统采用了基于图像处理来监测和追踪桌上的智能手机,并自动为智能手机充电。

充电器会不断地旋转,直到它检测到一个看起来像智能手机的物体,之后将使用太阳能发电技术所产生的光束为智能手机远程充电。

换句话说,就是无需电线。

相关文档
最新文档