解一元一次方程(去括号)优秀课件
合集下载
人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)
![人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)](https://img.taocdn.com/s3/m/a8146325178884868762caaedd3383c4bb4cb43b.png)
3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.
解一元一次方程(二)—去括号课件
![解一元一次方程(二)—去括号课件](https://img.taocdn.com/s3/m/e21a74447dd184254b35eefdc8d376eeaeaa1706.png)
步骤四:移项与合并
将方程中的项移至等式同一边,以便进一步合并同类项或求解未知数。
注意事 项
注意一
括号前的系数
注意二
括号的嵌套
注意事 项
处理嵌套的括号时, 需按照运算顺序,先 处理最内层的括号。
去括号时,要注意运 算符号的变化,特别 是当括号前面是负号 时。
注意三:运算符号的 处理
注意事 项
注意四:检验方程的平衡性
完成去括号后,应检查方程是否保持平衡,即等式两边是否相等。
03
去括号的例题解析
ห้องสมุดไป่ตู้
例题一
题目
$(3x - 2) + 5 = 6$
解析
首先将方程中的括号去掉,得到$3x - 2 + 5 = 6$。然后移项,将$3x$单独放在等式的一 侧,得到$3x = 6 - 5 + 2$。最后系数化为1,将等式两边同时除以3,得到$x = frac{3}{1}$。
答案
$x = -13$
例题三
题目
$-4(x - 2) + (3x - 1) = -7$
解析
首先将方程中的括号去掉,得到$-4x + 8 + 3x - 1 = -7$。然后移项,将$-x$单独放在 等式的一侧,得到$-x = -7 + 1 - 8$。最后 系数化为1,将等式两边同时除以-1,得到 $x = 14$。
答案
$x = 14$
04
练习题与答案
练习题
题目1
解方程:$3(x - 1) = 5x + 2$
题目2
解方程:$-2(x + 3) = 4$
题目3
解方程:$4(x - 1) - 3(2x + 1) = 5$
将方程中的项移至等式同一边,以便进一步合并同类项或求解未知数。
注意事 项
注意一
括号前的系数
注意二
括号的嵌套
注意事 项
处理嵌套的括号时, 需按照运算顺序,先 处理最内层的括号。
去括号时,要注意运 算符号的变化,特别 是当括号前面是负号 时。
注意三:运算符号的 处理
注意事 项
注意四:检验方程的平衡性
完成去括号后,应检查方程是否保持平衡,即等式两边是否相等。
03
去括号的例题解析
ห้องสมุดไป่ตู้
例题一
题目
$(3x - 2) + 5 = 6$
解析
首先将方程中的括号去掉,得到$3x - 2 + 5 = 6$。然后移项,将$3x$单独放在等式的一 侧,得到$3x = 6 - 5 + 2$。最后系数化为1,将等式两边同时除以3,得到$x = frac{3}{1}$。
答案
$x = -13$
例题三
题目
$-4(x - 2) + (3x - 1) = -7$
解析
首先将方程中的括号去掉,得到$-4x + 8 + 3x - 1 = -7$。然后移项,将$-x$单独放在 等式的一侧,得到$-x = -7 + 1 - 8$。最后 系数化为1,将等式两边同时除以-1,得到 $x = 14$。
答案
$x = 14$
04
练习题与答案
练习题
题目1
解方程:$3(x - 1) = 5x + 2$
题目2
解方程:$-2(x + 3) = 4$
题目3
解方程:$4(x - 1) - 3(2x + 1) = 5$
人教版七年级数学上册解一元一次方程(二)去括号课件(第一课时21张)
![人教版七年级数学上册解一元一次方程(二)去括号课件(第一课时21张)](https://img.taocdn.com/s3/m/9bebfa49a31614791711cc7931b765ce04087a60.png)
x+x-2000=150000÷6
移项得,x+x=25000+2000
合并同类项得,2x=27000
系数化为1 得,x=13500
教学新知
例1:解下列方程 (1)2x-(x+10)=5x+2(x-1)
去括号得,2x-x-10=5x+2x-2 移项得,2x-x-5x-2x=-2+10 合并同类项得,-6x=8 系数化为1 得,x= 4
3.3 解一元一次方程(二)
第1课时 去括号
1.掌握去括号解一元一次方程的方法;
2.会从实际问题中抽象出数学模型,会用一元一次方 程解决一些实际问题。
回顾:解一元一次方程时,最终结果一般是化成什么情 势化?成x=a的情势 一元一次方程的解法我们学了几步?
移项;合并同类项;系数化为 1
在这些变形中,我们要注意什么问题?
2.在解方程3(x-1)-2(2X+3)=6中,下列去括号正确
的是( )
A 3x-1-4x+3=6 B 3x-3-4x-6=6 C 3x+1-4x-3=6 D 3x-1+4x-6=6
3.方程4(a-x)-4(X+1)=60的解是x=-1,则a是( ) A -14 B 20 C 14 D -16
4.为了参加全校文艺演出,某年级组建了46人的合唱队和30 人的舞蹈队,现在根据演出的需要,从舞蹈队抽调了部分同 学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍, 设从舞蹈队中抽调了x人,可得正确的方程是( )
移项要变号; 合并同类项,只把有同类项的系数相加作为所得项的系数, 字母部分不改变; 系数化为 1,使方程两边同时除以未知数的系数
同学们还记得如何去括号吗?
移项得,x+x=25000+2000
合并同类项得,2x=27000
系数化为1 得,x=13500
教学新知
例1:解下列方程 (1)2x-(x+10)=5x+2(x-1)
去括号得,2x-x-10=5x+2x-2 移项得,2x-x-5x-2x=-2+10 合并同类项得,-6x=8 系数化为1 得,x= 4
3.3 解一元一次方程(二)
第1课时 去括号
1.掌握去括号解一元一次方程的方法;
2.会从实际问题中抽象出数学模型,会用一元一次方 程解决一些实际问题。
回顾:解一元一次方程时,最终结果一般是化成什么情 势化?成x=a的情势 一元一次方程的解法我们学了几步?
移项;合并同类项;系数化为 1
在这些变形中,我们要注意什么问题?
2.在解方程3(x-1)-2(2X+3)=6中,下列去括号正确
的是( )
A 3x-1-4x+3=6 B 3x-3-4x-6=6 C 3x+1-4x-3=6 D 3x-1+4x-6=6
3.方程4(a-x)-4(X+1)=60的解是x=-1,则a是( ) A -14 B 20 C 14 D -16
4.为了参加全校文艺演出,某年级组建了46人的合唱队和30 人的舞蹈队,现在根据演出的需要,从舞蹈队抽调了部分同 学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍, 设从舞蹈队中抽调了x人,可得正确的方程是( )
移项要变号; 合并同类项,只把有同类项的系数相加作为所得项的系数, 字母部分不改变; 系数化为 1,使方程两边同时除以未知数的系数
同学们还记得如何去括号吗?
5.2 第3课时 利用去括号解一元一次方程 课件 (共18张PPT) 北师大版数学七年级上册
![5.2 第3课时 利用去括号解一元一次方程 课件 (共18张PPT) 北师大版数学七年级上册](https://img.taocdn.com/s3/m/4d7e085177c66137ee06eff9aef8941ea76e4bbd.png)
4. 解下列方程: (1) 6x =-2(3x-5) +10; (2) -2(x+5)=3(x-5)-6.
解:(1) 6x =-6x+10+10 (2) -2x-10=3x-15-6
6x +6x=10+10
12x=20
x=
5 3
.
-2x-3x=-15-6+10 -5x=-11 x=151.
5. 某羽毛球会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为 300 元/张和 400 元/张 的两种门票共 8 张,总费用为 2700 元.请问该协会 购买了这两种门票各多少张?
讨论:比较上面两种解法,说说它们的区别.
练一练
1. 解方程:2(x+3)-5(1-x)=3(x-1). 解:去括号,得 2x+6-5+5x=3x-3.
移项,得 2x+5x-3x=5-6-3. 合并同类项,得 4x=-4. 方程两边同时除以 4,得x=-1.
思考交流 思考:两种解方程的方法,说出它们的区别,并与同 伴进行交流。
括号前为“-”, 去括号后_符__号__改__变__; 括号前为“+”, 去括号后_符__号__不__变__
课堂练习
1. 对于方程 2(2x-1)-(x-3) = 1 去括号正确的是
( D) A. 4x-1-x-3 = 1
B. 4x-1-x + 3 = 1
C. 4x-2-x-3 = 1 D. 4x-2-x + 3 = 1
重点:正确用去括号法则解方程。 难点:去括号法则和乘法对加法的分配律的正确使用。
导入新课 去括号规律是什么?
去掉“+( )”,括号内各项的符号不变. 去掉“–( )”,括号内各项的符号改变.
+ (a - b)= a - b - (a - b)= -a + b
初一数学-解一元一次方程——去括号与去分母市公开课获奖课件省名师示范课获奖课件
![初一数学-解一元一次方程——去括号与去分母市公开课获奖课件省名师示范课获奖课件](https://img.taocdn.com/s3/m/abe8ac12ff4733687e21af45b307e87100f6f805.png)
3
巩固训练
解下列方程:
(1) x 1 4x 2 2(x 1)
2
5
(3) 5x 1 2x 1 2
4
4
(4) Y 4 Y 5 Y 3 Y 2
3
32
课堂小结
解一元一次方程旳一般环节:
变形名称 •
详细旳做法
去分母
• 乘全部旳分母旳最小公倍数.
• 根据是等式性质二
去括号
• 先去小括号,再去中括号,最终去大 括号.
系数化为1,得 x 7.5 .
解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2) (2) 3(2-3x)-3[3(2x-3)+3]=5.
【例 1】一艘船从甲码头到乙码头顺 流行驶,用了 2 小时;从乙码头返回 甲码头逆流行驶,用了 2.5 小时.已 知水流的速度是 3 千米/时,求船在 静水中的速度.
题目:一种两位数,个位上旳数是2,
十位上旳数是x,把2和x对调,新两位
数旳2倍还比原两位数小18,你能想出
x是几吗?
去括号错 移项错
小方: 解:(10x 2) 2(x 20) 18 .
去括号,得 10x+2-2x-20=18 . 移项,得 10x 2x 18 20 22 . 合并同类项,得 8x=40 .
6x+6x -12 000=150 000 移项
6x+6x =150 000+12 000 合并同类项
12x=162 000 系数化为1
x=13 500
解下列方程:
( 1) 3x 7(x 1) 3 2( x 3) (2)4x 3(2x 3) 12 (x 4)
期中数学考试后,小明、小方和小华 三名同学对答案,其中有一道题三人答案 各不相同,每个人都以为自己做得对,你 能帮他们看看究竟谁做得对吗?做错旳同 学又是错在哪儿呢?
解一元一次方程(二)去括号与去分母课件
![解一元一次方程(二)去括号与去分母课件](https://img.taocdn.com/s3/m/938d0f45bb1aa8114431b90d6c85ec3a87c28bf3.png)
解得
x = 0。
去分母的案例解析
1 2 3
案例三 解方程 $frac{x + 1}{3} = frac{2x - 1}{2}$
解析 为了去分母,找到两个分母的最小公倍数,这里 是6。两边乘以6,得到 2(x + 1) = 3(2x - 1)。
解 展开并整理,得到 -4x + 3 = 0。
去分母的案例解析
解一元一次方程(二)去括号与 去分母课件
• 去括号的方法与技巧 • 去分母的方法与技巧 • 实际应用案例解析 • 练习题与答案 • 总结与回顾
01
去括号的方法与技巧
括号前是加号的情况
总结词
直接去掉括号
详细描述
当括号前是加号时,直接去掉括号,括号内的各项符号不变。例如:$x + (y z) = x + y - z$。
去分母的案例解析
解
展开并整理,得到 -15 = 0。
解得
此方程无解。
04
练习题与答案
练习题
练习1
练习2
练习3
练习4
解方程 $frac{x + 1}{2} frac{2x - 3}{3} = 1$
解方程 $3(x - 2) - 4(x 5) = 7$
解方程 $2x - frac{x}{2} = 5$
解方程 $frac{x + 1}{3} + frac{x - 2}{6} = frac{x + 3}{2}$
答案解析
练习1解析
练习2解析
练习3解析
练习4解析
首先去分母,得到方程 $3(x + 1) - 2(2x - 3) = 6$,然后 去括号,得到 $3x + 3 - 4x + 6 = 6$,移项合并同类项, 得到 $-x = -3$,最后系数化
x = 0。
去分母的案例解析
1 2 3
案例三 解方程 $frac{x + 1}{3} = frac{2x - 1}{2}$
解析 为了去分母,找到两个分母的最小公倍数,这里 是6。两边乘以6,得到 2(x + 1) = 3(2x - 1)。
解 展开并整理,得到 -4x + 3 = 0。
去分母的案例解析
解一元一次方程(二)去括号与 去分母课件
• 去括号的方法与技巧 • 去分母的方法与技巧 • 实际应用案例解析 • 练习题与答案 • 总结与回顾
01
去括号的方法与技巧
括号前是加号的情况
总结词
直接去掉括号
详细描述
当括号前是加号时,直接去掉括号,括号内的各项符号不变。例如:$x + (y z) = x + y - z$。
去分母的案例解析
解
展开并整理,得到 -15 = 0。
解得
此方程无解。
04
练习题与答案
练习题
练习1
练习2
练习3
练习4
解方程 $frac{x + 1}{2} frac{2x - 3}{3} = 1$
解方程 $3(x - 2) - 4(x 5) = 7$
解方程 $2x - frac{x}{2} = 5$
解方程 $frac{x + 1}{3} + frac{x - 2}{6} = frac{x + 3}{2}$
答案解析
练习1解析
练习2解析
练习3解析
练习4解析
首先去分母,得到方程 $3(x + 1) - 2(2x - 3) = 6$,然后 去括号,得到 $3x + 3 - 4x + 6 = 6$,移项合并同类项, 得到 $-x = -3$,最后系数化
人教版七年级数学上册3.利用去括号解一元一次方程课件
![人教版七年级数学上册3.利用去括号解一元一次方程课件](https://img.taocdn.com/s3/m/4c8fc457bb1aa8114431b90d6c85ec3a87c28be7.png)
x=- 4 . 3
(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.
(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.
解一元一次方程(二)——去括号与去分母(第1课时32张)课件人教版数学七年级上册
![解一元一次方程(二)——去括号与去分母(第1课时32张)课件人教版数学七年级上册](https://img.taocdn.com/s3/m/ef5a33744a73f242336c1eb91a37f111f1850dd2.png)
号与本来的符号相反.
巩固新知
解方程:4x+2(4x-3) =2-3(x+1).
解:去括号,得 4x+8x-6=2-3x-3.
移项,得 4x+8x+3x=2-3+6.
合并同类项,得15x=5.
1
3
系数化为1,得 x= .
符号有何变化?
根据是?
这里符号
是如何变
化的呢?
课堂练习
1.方程 3x+2(1-x) =4的解是( C )
B.3(x+30)=4(30-x)
C.3(x-30)=4(x+30)
D.3(30-x)=4(30+x)
7.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的
汽车是乙车队的汽车的两倍,则需要从乙车队调( D )辆汽车到甲车队.
A.36
B.18
C.16
D.12
8.甲、乙二人同时从相距30千米的两地相向而行,2小时相遇.
12
移项、合并同类项,得 15x=36,系数化为 1,得 x= .
5
17.A,B两地相距720千米,一列慢车从A地开出,每小时行80千米,
一列快车从B地开出,每小时行100千米.
(1)两车同时开出,相向而行,x小时相遇,
80x+100x=720
则可列方程为_____________________;
人教版· 数学· 七年级(上)
第三章 一元一次方程
3.2 解一元一次方程(一)
——去括号与去分母
第1课时 利用去括号解一元一次方程
学习目标
1.了解“去括号”是解方程的重要步骤。(重点)
2.熟练地运用去括号法则解带有括号的一元一次方
5.2解一元一次方程(第3课时 去括号)(教学课件)七年级数学上册
![5.2解一元一次方程(第3课时 去括号)(教学课件)七年级数学上册](https://img.taocdn.com/s3/m/c6d9d590f80f76c66137ee06eff9aef8941e483e.png)
第三步
第四步
以上解方程步骤中,开始出现错误的是( B )
A.第一步
B.第二步
C.第三步
D.第四步
4.解下列方程:
(1)2(x+3)=5x;
(2)4x+3(2x-3)=12-(x+4)
1
1
(3)6( x-4)+2x=7-( x-1);
2
3
(4)2-3(x+1)=1-2(1+0.5x).
(1)解:去括号,得
A.-4x+1=-x
B.-4x+2=-x
C.-4x-1=x
D.-4x-2=x
1.将方程7 2x − 1 − 3 4x − 1 = 10去括号正确的是( B )
A.14x − 7 − 12x + 1 = 10
B.14x Βιβλιοθήκη 7 − 12x + 3 = 10
C.14x − 1 − 12x − 3 = 10
平均用电是多少?
(x-2000)
设上半年每月平均用电xkW·h,则下半年每月用电_________kW
·h;上半
3x
6x
6(x-2000)
年共用电____kW
·h,下半年共用电___________kW
·h.
根据全年用电15万kW·h,列得方程
6x+6(x-2000)=150000
问题二:解方程 6x+6(x-2000)=150000
针对练习
3.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h,当逆风飞行时
则需3.2h.已知风速为30km/h,求无风时飞机的航速和这两个城市之间
的航程.
解:设无风时飞机的航速为xkm/h.
数学人教版(2024)七年级上册 5.2.3利用去括号解一元一次方程 课件(共16张PPT)
![数学人教版(2024)七年级上册 5.2.3利用去括号解一元一次方程 课件(共16张PPT)](https://img.taocdn.com/s3/m/db500e58cd1755270722192e453610661fd95a5c.png)
跟踪训练
1.一个长方形的长减少2cm,宽增加2cm后,面积保持不变,已 知这个长方形的长是6cm,求它的宽.
解:设它的宽为xcm,则新长方形的长为(6-2)cm,宽为(x+2)cm. 由题意得6x=(6-2)(x+2), 去括号,得6x=4x+8, 移项,得6x-4x=8, 合并同类项,得2x=8, 系数化为1,得x=4.
(2)去括号,得4x+6x-9=12-x-4, 移项,得4x+6x+x=12-4+9, 合并同类项,得11x=17, 系数化为1,得x= 17 .
11
解下列方程:(1) 2(x+3)=5x; (2) 4x+3(2x-3)=12-(x+4); (3) 6( x-4)+2x=7-( x-1); (4) 2-3(x+1)=1-2(1+0.5x).
6x+6(x-2 000)=150 000 .
问题3:如何解方程? 去括号,得6x+6x-12 000=150 000. 移项,得6x+6x=150 000+12 000. 合并同类项,得12x=162 000. 系数化为1,得x=13 500. 问题4:由此可知,这个工厂去年上半年平均每月的用电量是
3
2
解:(1)去括号,得3x-5x+15=9-x-4, (2)去括号,得4x-30-x=6 1 x-1,
2
移项,得3x-5x+x=9-4-15,
移项,得4x-x+ 1 x=6-1+30,
合并同类项,得-x=-20,
2 合并同类项,得 7 x=35,
系数化为1,得x=20.
2
系数化为1,得x=10.
解一元一次方程——去括号ppt课件
![解一元一次方程——去括号ppt课件](https://img.taocdn.com/s3/m/247dc721aef8941ea66e0556.png)
半年共用电___________度。 (x-2000)
6x
6(x-2000)
依据上面的等量关系得方程:
6x+6(x-2000)=150000
你会解这个方程吗? 再解这个方程是需要先解决什么?
5
解:6x+6(x-2000)=150000 去括号得:
6x+6x-12000=150000 移项得:
6x+6x=150000+12000 合并同类项得:
-2x=-10 系数化为1得:
X=5
7
尝试应用: 1、4x+3(2x-3)=12-(x+4)
解:去括号得: 4x+6x-9=12-x-4 移项得: 4x+6x+x=9+12-4 合并同类项得: 11x=17 系数化1得: x=
17 11
2、6( x-41)+2x=9-3( x-1)
1
2类项得:
解:去括号得:
2x-6-3x+15=7x-7 移项得:
2x-3x-7x=6-15-7 -8x=-16
系数化1得: x=2
合并同类项得:
4 3
9
补偿提高: 同步学习P82开放性作业
10
反思总结 请同学们谈谈这节课有哪些收获?
11
12x=162000 系数化为1得:
x=13500
答:这个工厂去年上半年每月平均用电13500度。
思考本题还有其他列方程的方法吗?用其他方法列的方程应怎样解
6
例1 解方程3x-7(x-1)=3-2(x+3) 解:去括号得:
3x-7x+7=3-2x-6 移项得:
3x-7x+2x=3-6-7 合并同类项得::
5.2 第3课时 去括号 课件(共20张PPT) 人教版七年级数学上册
![5.2 第3课时 去括号 课件(共20张PPT) 人教版七年级数学上册](https://img.taocdn.com/s3/m/784f495991c69ec3d5bbfd0a79563c1ec4dad71e.png)
1.请同学们完成以下题目:(1)a-(-b+c)=___________;(2)-(a+b)-(-c-d)=______________;(3)2(a-b)-3(-c+d)=___________________;(4)m-(2m-n-p)×2=_________________;(5)a2-2(a2-3a+1)=____________;(6)1-(a-2b+c) =_______________.
1. 本节课我们学习了哪些知识?2.去括号时要注意什么问题?
含有括号的一元一次方程的解法
当括号前是减号时,去括号时要注意括号内的每一项都需要变号
同学们,这节课我们学会了利用去括号解一元一次方程,与我们之前学习的整式运算中的去括号法则相同,在计算时一定要细心,心中默念法则,相信大家都可以正确地解出方程.
a+b-c
-a-b+c+d
2a-2b+3c-3d
-3m+2n+2p
-a2+6a-2
1-a+2b-c
2.请同学们阅读课本124-125页,思考并回答以下问题:(1)解方程:4x+2(x-2)=8.解:去括号,得_____________.移项,得______________.合并同类项,得__________.系数化为1,得_________.(2)解方程:3x-7(x-1)=3-2(x+3).解:去括号,得___________________________.移项,得______________________.合并同类项,得____________.系数化为1,得____________.
教材习题:完成课本130页习题2,5题.
同学们再见!
授课老师:
时间:2024年9月15日
2.去括号时需要注意什么?
当括号外是负号时,去括号时,括号内的每一项都需要变号.当有多重括号时,要按一定顺序去括号
1. 本节课我们学习了哪些知识?2.去括号时要注意什么问题?
含有括号的一元一次方程的解法
当括号前是减号时,去括号时要注意括号内的每一项都需要变号
同学们,这节课我们学会了利用去括号解一元一次方程,与我们之前学习的整式运算中的去括号法则相同,在计算时一定要细心,心中默念法则,相信大家都可以正确地解出方程.
a+b-c
-a-b+c+d
2a-2b+3c-3d
-3m+2n+2p
-a2+6a-2
1-a+2b-c
2.请同学们阅读课本124-125页,思考并回答以下问题:(1)解方程:4x+2(x-2)=8.解:去括号,得_____________.移项,得______________.合并同类项,得__________.系数化为1,得_________.(2)解方程:3x-7(x-1)=3-2(x+3).解:去括号,得___________________________.移项,得______________________.合并同类项,得____________.系数化为1,得____________.
教材习题:完成课本130页习题2,5题.
同学们再见!
授课老师:
时间:2024年9月15日
2.去括号时需要注意什么?
当括号外是负号时,去括号时,括号内的每一项都需要变号.当有多重括号时,要按一定顺序去括号
第五章 5.2 解一元一次方程 第三课时 去括号 课件(共20张PPT)
![第五章 5.2 解一元一次方程 第三课时 去括号 课件(共20张PPT)](https://img.taocdn.com/s3/m/31d0456df68a6529647d27284b73f242336c31c0.png)
合并同类项,得2x 12 系数化为1,得x 6
巩固提升
6.一架飞机在两个城市之间飞行,顺风飞行需要2.9h,逆风飞 行同一航线则需3.2h.已知风速为30 km/h,求无风时飞机的平 均速度. 解:设无风时飞机的平均速度为xkm/h.
2.9(x 30) 3.2(x 30)
解得x 610
第五章 一元一次方程
5.2解一元一次方程 第3课时 去括号
学习目标
(1)了解“去括号”是解方程的重要步骤,运 用去括号法则解带有括号的一元一次方程.
(2)体会化归思想,发展运算能力和推理能力.
正确去括号并解一元一次方程. 确定相等关系列出一元一次方程,并解一元一 次方程.
复习旧知
1.去括号法则是什么?
B. 6x 3 5x
C. 6x 3 5x
D. 6x 1 5x
例题讲解
知识点1:利用去括号法则解方程
例5:解下列方程
(1)2x (x 10) 5x 2(x 1)
解:去括号,得 2x x 2 10
合并同类项,得 6x 8 系数化为1,得 x 4
因此,这工厂去年上半年每月平均用电13500 kW·h.
探究新知
知识点1:利用去括号法则解方程
思考:利用去括号解一元一次方程的一般步骤是什么?
1.去括号(按照去括号法则) 2.移项(变号) 3.合并同类项 4.系数化为1
跟踪练习
1.解方程 3(2x 1) 5x ,以下去括号正确的是(C )
A. 6x 1 5x
3
例题讲解
知识点1:利用去括号法则解方程 例5:解下列方程
(2)3x 7(x 1) 3 2(x 3)
解:去括号,得 3x 7x 7 3 2x 6 移项,得 3x 7x 2x 3 6 7
巩固提升
6.一架飞机在两个城市之间飞行,顺风飞行需要2.9h,逆风飞 行同一航线则需3.2h.已知风速为30 km/h,求无风时飞机的平 均速度. 解:设无风时飞机的平均速度为xkm/h.
2.9(x 30) 3.2(x 30)
解得x 610
第五章 一元一次方程
5.2解一元一次方程 第3课时 去括号
学习目标
(1)了解“去括号”是解方程的重要步骤,运 用去括号法则解带有括号的一元一次方程.
(2)体会化归思想,发展运算能力和推理能力.
正确去括号并解一元一次方程. 确定相等关系列出一元一次方程,并解一元一 次方程.
复习旧知
1.去括号法则是什么?
B. 6x 3 5x
C. 6x 3 5x
D. 6x 1 5x
例题讲解
知识点1:利用去括号法则解方程
例5:解下列方程
(1)2x (x 10) 5x 2(x 1)
解:去括号,得 2x x 2 10
合并同类项,得 6x 8 系数化为1,得 x 4
因此,这工厂去年上半年每月平均用电13500 kW·h.
探究新知
知识点1:利用去括号法则解方程
思考:利用去括号解一元一次方程的一般步骤是什么?
1.去括号(按照去括号法则) 2.移项(变号) 3.合并同类项 4.系数化为1
跟踪练习
1.解方程 3(2x 1) 5x ,以下去括号正确的是(C )
A. 6x 1 5x
3
例题讲解
知识点1:利用去括号法则解方程 例5:解下列方程
(2)3x 7(x 1) 3 2(x 3)
解:去括号,得 3x 7x 7 3 2x 6 移项,得 3x 7x 2x 3 6 7
解一元一次方程去括号与去分母示范课公开课一等奖课件省赛课获奖课件
![解一元一次方程去括号与去分母示范课公开课一等奖课件省赛课获奖课件](https://img.taocdn.com/s3/m/0f26d4d2cd22bcd126fff705cc17552706225e78.png)
4.解方程: (1)17(2x+14)=4-2x; (2)2x-3 1-10x6+1=2x+4 1-1. 解:(1)去分母,得 2x+14=28-14x, 移项,得 2x+14x=28-14, 合并同类项,得 16x=14, 系数化为 1,得 x=78.
(2)去分母,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12, 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得-18x=-3,系数化为 1,得 x=16.
3.解下列方程: (1)2(x-1)-(x+2)=3(4-x); (2)2(x-2)-3(4x-1)=9(1-x). 解:(1)去括号,得 2x-2-x-2=12-3x, 移项,得 2x-x+3x=12+2+2, 合并同类项,得 4x=16,系数化为 1,得 x=4. (2)去括号,得 2x-4-12x+3=9-9x, 移项,得 2x-12x+9x=9+4-3, 合并同类项,得-x=10,系数化为 1,得 x=-10.
3.3 解一元一次方程(二)—— 去括号与去分母
1.去括号 探究:解方程:
-
归纳:括号外的因数是正数,去括号后各项的符号与原括
号内对应各项的符号______相__似;括号外的因数是负数,去括号 后各项的符号与原括号内对应各项的符号________.相反
2.去分母 探究:解方程:
88
x
归纳:去分母的办法是方程两边同乘各分母的最__小__公__倍__数__. 注意:不要漏乘不含分母的项,注意分数线的括号作用.
思路导引:相向行驶时,从相碰到全部错开,两车行程关 系为甲车行程+乙车行程=甲车长+乙车长.
解:设乙车的速度为 x m/s,则甲车的速度为(x+4)m/s. 根据题意得 9(x+4)+9x=144+180, 去括号,得 9x+36+9x=144+180, 移项,得 9x+9x=144+180-36, 合并同类项,得 18x=288, 系数化为 1,得 x=16. x+4=16+4=20. 答:甲车的速度为 20 m/s,乙车的速度为 16 m/s.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结
1. 解一元一次方程的步骤:去括号→移项→合并 同类项→系数化为1.
2. 若括号外的因数是负数,去括号时,原括 号内各项的符号要改变.
x 4 5
2(10 0.5y) (1.5y 2)
x 44
2、下列变形对吗?若不对,请说明理由,并改正:
解方程 3 2(0.2x 1) 1 x 5
去括号变形错,有一项 没变号,改正如下:
去括号,得 3 0.4x 2 0.2x 去括号,得3-0.4x-2=0.2x
移项,得 0.4x 0.2x 3 2 移项,得 -0.4x-0.2x=-3+2
① 32y 5 6y 15
② 3x 2y 3x 2y
③ (3x 5) 3x 5
④ 21 3ab 2 6ab
某工厂加强节能措施,去年下
半年与上半年相比,月平均用电量减 少2000度,全年用电15万度,这个 工厂去年上半年每月平均用电多少度?
分析:若设上半年每月平均用电x度,
则下半年每月平均用电(x-2000)度
上半年共用电 6x
度,
下半年共用电 6(x-2000)度
等量关系:上半年用电+下半年用电=全年用电15万度
所以,可列方程
6x+ 6(x-2000)=15。0000
6x + 6 ( x-2000 ) = 150000
去括号
6x+6x-12000=150000
移项 6x+6x=150000+12000
3.3 解一元一次方程(一) 去括号
学习目标
1. 学会用去括号的方法解方程; 2.准确而熟练地运用去括号法则解带有括号的一
元一次方程. (难点、重点)
知识回顾
移项要变号
1、 解方程 9-3x项得 2x 4
系数化为1得 x 2
2、去括号
合并同类项得:
-6x = 8
系数化为1得:
X=-4/3
例2 解方程 3x-7(x-1)=3-2(x+3)
解: 去括号得:
3x-7x+7=3-2x-6
移项得:
3x-7x+2x=3-6-7
合并同类项得:
-2x = -10
系数化为1得:
X=5
1.解方程
2(x 8) 3(x 1)
x 19
8x 2(x 4)
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
解一元一次方程的步骤: 去括号 移项
合并同类项 系数化为1
例1 解方程 2x-(x+10)=5x+2(x-1)
解: 去括号得:
2x-x-10=5x+2x-2
移项得:
2x-x-5x-2x=-2+10
合并同类项,得 0.2x 5 合并同类项,得 -0.6x=-1
两边同除以-0.2得x 25
∴
x 5
3
3. 当x为何值时,代数式2(x2-1)-x2的值比代数式 x2+3x-2的值大9.
解:依题意得 2( x2-1 )-x2-( x2+3x-2 ) =9, 去括号,得2x2-2-x2-x2-3x+2=9, 移项、合并同类项,得-3x=9, 系数化为1,得x=-3.