初中数学平行线的性质2含答案

合集下载

初中数学第五章 相交线与平行线(讲义及答案)附解析

初中数学第五章 相交线与平行线(讲义及答案)附解析

初中数学第五章 相交线与平行线(讲义及答案)附解析一、选择题1.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠42.下列说法中,正确的有( )①等腰三角形的两腰相等; ②等腰三角形底边上的中线与底边上的高相等; ③等腰三角形的两底角相等; ④等腰三角形两底角的平分线相等.A .1个B .2个C .3个D .4个3.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠54.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°5.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒ 6.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°7.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒8.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补9.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线二、填空题11.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.12.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.13.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________14.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.16.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.17.如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别与直线a,c相交于点B,C,则∠1+∠2的度数是___________.18.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒; (3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.23.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)25.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.26.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.C解析:C【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.6.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用7.B解析:B【分析】AD ∥BC ,∠D=∠ABC ,则AB ∥CD ,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF 中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.8.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.二、填空题11.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 12.70°【分析】此题要构造辅助线:过点E ,F 分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.13.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.14.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.16.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.17.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.18.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.(n ﹣1)×180【分析】分别过P1、P2、P3作直线AB 的平行线P1E ,P2F ,P3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n∠=∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CGEF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.22.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.23.(1)35°;(2)见解析;(3)30°或65°或175°或210°【分析】(1)利用AB ∥CD ,得到∠B =∠BFD ,又∠B=∠EFB ,由此得到∠EFB=∠BFD=12∠EFD=35°; (2)由(1)知∠EFB =∠BFD ,利用FH ⊥FB ,得到∠BFD +∠DFH =90°,∠EFB +∠GFH =90°,再由等角的余角相等得到∠DFH =∠GFH 即可求解;(3)按QH 分别与△EBF 的三边平行三种情况分类讨论即可.【详解】解:(1)AB ∥CD ,∴∠B =∠BFD .∵∠EFB =∠B ,∴∠EFB =∠BFD =12∠EFD =35°, ∴∠B =35°,故答案为:35°;(2)∵FH ⊥FB ,∴∠BFD +∠DFH =90°,∠EFB +∠GFH =90°∵∠EFB =∠BFD ,由等角的余角相等可知,∴∠DFH =∠GFH .∴FH 平分∠GFD .(3)分类讨论:情况一:QH 与△EFB 的边BF 平行时,如下图1和图4所示:当为图1时:∵BF与HQ平行,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,此时旋转角α=∠BFQ=120°-∠HFQ=120°-90°=30°,当为图4时:此时∠HFB=∠H=60°,旋转角α=∠1+∠2+∠3=360°-(∠HFB+∠HFQ)=360°-(60°+90°)=210°;情况二:QH与△EFB的边BE平行时,如下图2所示:此时∠1=∠3=35°,∠2=∠4=30°,∴旋转角α=∠BFQ=∠1+∠2=35°+30°=65°;情况三:QH与△EFB的边EF平行时,如下图3所示:此时∠3=∠Q=30°,∴旋转角α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上所述,旋转角α=30°或65°或175°或210°.故答案为:α=30°或65°或175°或210°.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,周角的定义等,熟练掌握平行线的性质是解决本题的关键.24.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.25.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC +∠ABC =180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.。

苏教版七下7.2 探索平行线的性质(2)

苏教版七下7.2  探索平行线的性质(2)

数学教学设计教材:义务教育教科书·数学(七年级下册)作者:王灿龙(泰州市靖江外国语学校)7.1 探索平行线的性质(2)几何画板”制作的课件的动画演示两直线平行,同位角相等”“两同旁内角互补”.教师用《几何画板》课件验证,让学生直观感受猜想.在学生操作感知的基础上,画板”演示,从而让学生在观察悟“两直线平行,同位角相等”行,同旁内角互补”这一性质.据“两直线平行,同位角相等”说平行,内错角相等”.学生尝试着用演绎推理的方法说明两直线平行,内错角相等.参考答案:因为a∥b,所以∠1=∠2.又因为∠1与∠3是对顶角,所以∠1=∠3.所以∠2=∠3.让学生经历观察、实验、猜数学活动过程,发展合情推理能演绎推理能力.通过师生互动,口头表达能力,树立学生勇于发的信心.流:据“两直线平行,同位角相等”说平行,同旁内角互补”.学生动手解题,然后由学生发表意见,表达观点,相互补充.参考答案:因为a∥b,所以∠1=∠2.又因为∠1+∠3=180º,所以∠2+∠3=180º.引导学生从“说点儿理”向过渡,由模仿到独立操作逐步培理能力. 教师关注学生推理过程知识的合理迁移、书写是否正确生生互动,既是学生与学生交换思想的过程,又是拓展他们培养思维能力的过程,同时也是作精神、交往能力得到培养和提°,∠D=又因为∠C=40°,所以∠CED=180º-40º=140º.,AB、CD被所截,AB∥CD.=°(已知AB∥CD,AD∥BC.AB∥CD=∠(用三种语言表示平行线的性质与角相等的方法有哪些?性质的方法,提升学生的认识.条件:角的关系→平行关系特征:平行关系→角的关系。

人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)

一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③B解析:B【分析】 由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A、命题有真命题和假命题,此项说法错误;B、定理都是经过推论、论证的真命题,此项说法正确;C、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.下列所示的四个图形中,∠1和∠2是同位角的是()A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A .75︒B .120︒C .135︒D .无法确定A解析:A【解析】 分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

初中数学相交线与平行线知识点总复习含答案

初中数学相交线与平行线知识点总复习含答案

初中数学相交线与平行线知识点总复习含答案一、选择题1.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识2.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.3.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.5.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.6.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o7.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=o,则1244α-A.14o B.16o C.90α-o D.44o【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.8.下列结论中:①若a=b a b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】≥a b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离33正确的个数有②④两个9.下列命题是真命题的是( )A .同位角相等B .对顶角互补C .如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABE+∠E+∠CDE=180°+180°=360°,∴∠ABE+∠CDE=360°−100°=260°,又∵BF、DF平分∠ABE和∠CDE,∴∠FBE+∠FDE=130°,∴∠BFD=360°−100°−130°=130°,故选B.【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD这条辅助线.12.如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°【答案】D【解析】分析:根据平行线的性质,可得∠DBC=56°,∠E=∠EBC,根据角平分线的定义,可得∠EBC=12∠DBC=28°,进而得到∠E=28°.详解:∵AE∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC,∵BE平分∠DBC,∴∠EBC=12∠DBC=28°,∴∠E=28°,故选D.点睛:本题主要考查了角平分线的定义和平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题的关键.13.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.14.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.15.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A .45°B .60°C .75°D .82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l 平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C .【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.16.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20° B .160° C .20°或160° D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.17.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.18.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.19.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略20.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】利用E、F分别是线段BC、BA的中点得到EF是△BAC的中位线,得出∠CAB的大小,再利用CD∥AB得到∠DCA的大小,最后在等腰△DCA中推导得到∠D.【详解】∵点E、F分别是线段CB、AB的中点,∴EF是△BAC的中位线∴EF∥AC∵∠1=40°,∴∠CAB=40°∵CD∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF是△ABC的中位线.。

初中数学《平行线的性质》第2课时课件

初中数学《平行线的性质》第2课时课件
4.如何过直线外一点画已知直线的垂线;
5.如何过直线外一点画已知直线的平行线。
看一看,想一想
楼梯的两边像两条 平行线,观察思考:楼 梯的宽度指的是哪些线 段的长?它们都相等吗? 这些线段与这两条平行 线有怎样的位置关系?
画一画,量一量
画两条平行线,过其中一条直线 上任意一点画另一条直线的垂线,测 量垂线段的长度,再过直线上的另一 点画平行线的垂线段,度量所画线段 的长度,你有什么发现?
例题分析
已知:直线AB//直线CD,△ACD的面积是8,CD=4, (1)求:这两条平行线之间的距离; (2)求:△BCD的面积 (3)通过计算你发现△BCD的面积与△ACD的面积有什么 关系? (4)请找出面积相等的三角形有哪几对?
【总结提升】
1.三种距离:两点之间的距离 点到直线的距离
ห้องสมุดไป่ตู้两条平行线之间的距离
2.平行线性质:两条平行线间的距离处处相等. 转化为符号语言:
∵直线m//直线n, AB ⊥直线n, CD⊥直线n,
∴AB=CD 3.应用找平行线间的等积三角形。
谢谢大家!祝同学们学习进步!
反思发现
平行线间的距离 两条平行线,其中一条直线上的任
意一点到另一条直线的距离叫做这两条平 行线间的距离.
如图:直线s//直线t,AB ⊥直线t, 则AB的长是直线s、t的距离
平行线性质 文字语言: 两条平行线间的距离处
处相等. 符号语言:∵直线m//直线n,
AB⊥直线n, CD⊥直线n, ∴AB=CD
两条平行线之间的距 离
明确目标
1.通过实际操作、观察、思考、总结两 条平行线之间的距离的定义和两条平行 线之间距离处处相等的性质。体会新知 识的形成过程。 2.会画图测量两条平行线之间的距离. 3.能运用平行线之间的距离这一概念及 平行线的性质进行简单的计算和说理。

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,将直尺与30角的三角尺叠放在一起,若270,则1∠的大小是( )A .45︒B .50︒C .55︒D .40︒4.如图,BE ,CF 都是△ABC 的角平分线,且∠BDC =110°,则∠A 的度数为( )A .40°B .50°C .60°D .70°5.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒A .0B .1C .2D .3 6.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒7.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .58.下列命题是假命题的是( )A .三角形的内角和是180°B .两直线平行,内错角相等C .三角形的外角大于任何一个内角D .同旁内角互补,两直线平行 9.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 10.若AD ∥BE ,且∠ACB=90°,∠CBE=30°,则∠CAD 的度数为( )A .30°B .40°C .50°D .60°11.已知下列命题 (1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有( )A .1个B .2个C .3个D .4个 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.16.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.17.命题“面积相等的三角形全等”的逆命题是__________.18.如图,已知//DE FG ,则12A ∠+∠-∠=________________19.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.20.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.25.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:∵12∠=∠(已知),且14∠=∠(__________),∴24∠∠=(__________).∴//BF _____(__________). ∴∠____3=∠(__________).又∵B C ∠=∠(已知),∴_____________(等量代换).∴//AB CD (__________).26.已知:如图,//AB CD ,BD 平分ABC ∠,CE 平分DCF ∠,90ACE ︒∠=.(1)请问BD 和CE 是否平行?请你说明理由;(2)AC 和BD 的位置关系怎样?请说明判断的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC ,设∠EAF=x ,∠ECF=y ,∴∠EAB=3x ,∠ECD=3x ,∴∠FAB=4x ,∠FCD=4x ,∵AB ∥CD ,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA )=180°-(∠EAF+∠ECF+∠FCA+∠FAC )=180°-(x+y+60°)=90°故选C .【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用. 2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB∥CD,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.4.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+1∠A,2∴∠A=2(110°-90°)=40°.故答案为:A.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.5.D解析:D【分析】根据同角的余角相等可得∠AOC=∠BOD ;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB ,即∠AOC=∠BOD ,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB 与OC 交于点P ,∵∠CPE=∠APO ,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°, ∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE 平分∠AOD ,故①错误.综上,②③④正确,共3个,故选:D .【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.6.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 7.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.8.C解析:C【分析】根据三角形内角和定理、外角性质、平行线的性质与判定进行判断即可.【详解】解:A 选项,三角形的内角和是180°,是真命题,不符合题意;B 选项,两直线平行,内错角相等,是真命题,不符合题意;C 选项,三角形的外角大于任何一个内角,是假命题,符合题意;D 选项,同旁内角互补,两直线平行,是真命题,不符合题意;故选:C .【点睛】本题考查了三角形内角和定理和外角的性质,平行的性质与判定,解题关键是熟练准确掌握基础知识.9.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10.D解析:D【解析】延长AC 交BE 于F.90,306060ACB CBE AFB AD BECAD AFB ∠=︒∠=︒∴∠=︒∴∠=∠=︒故选D.11.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B .【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.16.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG 中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.17.全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题【详解】解:∵原命题的条件是:三角形的面积相等结论是:该三角形是全等三角形∴其逆命题是:全等三角形的面积相等故答案为:全等三角形的 解析:全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形. ∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题. 18.180【分析】根据平行线的性质得到根据平角的性质得到然后根据三角形内角和定理即可求解【详解】∵∴∵又∵∴∴故答案为180【点睛】本题考查了平行线的性质—两直线平行同位角相等三角形的内角和解题过程中注 解析:180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】∵//DE FG∴2AHF ∠=∠∵180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又∵180AHC ACH A ∠+∠+∠=︒∴180********A ︒-∠+︒-∠+∠=︒∴12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.19.5【分析】设∠BCE=4x ∠CBF=5x 设∠ADE=∠EDC=y 构建方程组求出xy 证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x 则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去),∴CE=2m=5,故答案为5.【点睛】本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.20.35°【分析】根据三角形内角和定理用∠B∠M表示出∠BAM-∠BCM再用∠B∠M表示出∠MAD-∠MCD再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD然后求出∠M与∠B∠D关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF,GF的同侧,并且在第三条直线BC的同旁,∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF,DE两条直线之间,并且在第三条直线AC的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 23.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++,∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.(1)见解析;(2)∠D EC =108°【分析】(1)由AC //DE 可得∠D=∠ABD ,根据等量代换得到∠C=∠ABD ,从而可证BD//C E ; (2)设∠ABD=2x , ∠D EC=3x ,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F ,∴AC //DE ,∴∠D=∠ABD ,∵∠D=∠C ,∴∠C=∠ABD ,∴BD//C E ;(2)∵BD//C E ,DF//BC ,∴∠ABD =∠C ,∠D EC +∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x ,∠D EC=3x ,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.见解析【分析】根据平行线的判定和性质解答.【详解】解:证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴BF ∥EC (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 26.(1)平行,理由见解析;(2)垂直,理由见解析【分析】(1)根据平行线性质得出ABC DCF ∠=∠,根据角平分线定义求出24∠∠=,根据平行线的判定推出即可;(2)根据平行线性质得出180DGC ACE ∠+∠=︒,根据90ACE ∠=︒,求出90DGC ∠=︒,根据垂直定义推出即可.【详解】解:(1)//BD CE .理由://AB CD ,ABC DCF ∴∠=∠,BD ∴平分ABC ∠,CE 平分DCF ∠,122ABC ∴∠=∠,142DCF ∠=∠, 24∴∠=∠,//BD CE ∴(同位角相等,两直线平行);(2)AC BD ⊥,理由://BD CE ,180DGC ACE ∴∠+∠=︒,90ACE ∠=︒,1809090DGC ∴∠=︒-︒=︒,即AC BD ⊥.【点睛】本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,注意:①同位角相等,两直线平行,②两直线平行,同旁内角互补.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)(2)

一、选择题1.如图,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、分别是边AB AC 、上的点,将ABC ∆沿着DE 折叠压平,A 与A '重合,若50A ∠=︒,则12∠+∠=( )A .90︒B .100︒C .110︒D .120︒ 2.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 4.满足下列条件的三角形中,不是直角三角形的是( ) A .∠A -∠B =∠CB .∠A :∠B :∠C =3:4:7 C .∠A =2∠B =3∠CD .∠A =9°,∠B =81°5.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个6.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 7.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 8.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于09.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角10.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒ 11.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤ 12.如图,在ABC ∆中,CD 是ACB ∠的平分线,80A ∠=︒,40ABC ∠=︒,那么BDC ∠=( )A .80︒B .90︒C .100︒D .110︒二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 15.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A =_____.16.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.把“同角的补角相等”改成“如果···那么···”的形式_________________.18.在△ABC 中,∠A=60°,∠B=∠C ,则∠B=______.19.下列命题中,其逆命题成立的是_____.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.20.如图,已知△ABC,∠B 的角平分线与∠C 的外角角平分线交于点 D,∠B 的外角角平分线与∠C 的外角角平分线交于点 E,则∠E+∠D=_____.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A、B、P均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P画直线AB的平行线;(2)连接PA、PB,则三角形PAB的面积= ;(3)若三角形QAB面积与三角形PAB的面积相等,且格点Q与P不重合,则格点Q有个.22.如图,AD平分∠BAC,点E,F分别在边BC,AB上,且∠BFE=∠DAC,延长EF,CA 交于点G,求证:∠G=∠AFG.23.如图,AB∥CD,点E是CD上一点,连结AE.EB平分∠AED,且DB⊥BE,AF⊥AC,AF与BE交于点M.(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.24.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.25.如图,直线MN 与直线PQ 垂直相交于点Q ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AF 、BF 分别是BAO ∠和ABO ∠的平分线,点A 、B 在运动的过程中,AFB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由,并求AFB ∠的大小;(2)如图2,点F 是BAP ∠和ABM ∠的角平分线的交点,点A 、B 在运动过程中,F ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由;(3)如图 3,在(2)的条件下将FCD 沿直线CD 翻折,使点F 落在点E 处,已知AB 不平行于CD ,直接写出E ∠、BCE ∠、ADE ∠之间的数量关系.26.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的内角和等于180°求出∠ADE+∠AED ,再根据翻折变换的性质可得∠A′DE=∠ADE ,∠A′ED=∠AED ,然后利用平角等于180°列式计算即可得解.【详解】∵∠A=50°,∴∠ADE+∠AED=180°-50°=130°,∵△ABC 沿着DE 折叠压平,A 与A′重合,∴∠A′DE=∠ADE ,∠A′ED=∠AED ,∴∠1+∠2=180°-(∠A′ED+∠AED )+180°-(∠A′DE+∠ADE )=360°-2×130°=100°. 故选:B .【点睛】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便. 2.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.3.C解析:C【分析】根据三角形内角和求出∠ABC 的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC 中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=12∠ABC=30°, ∵//DE BC ,∴BDE ∠=∠CBD=30°,故选C .【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.4.C解析:C【分析】依据三角形内角和定理,求得三角形的最大角是否大于90°,进而得出结论.【详解】解:A .∵∠A-∠B=∠C ,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B .∵∠A :∠B :∠C=3:4:7,∴∠C=180°×714=90°,∴该三角形是直角三角形; C .∵∠A=2∠B=3∠C ,∴∠A=180°×611>90°,∴该三角形是钝角三角形; D .∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C .【点睛】本题考查了三角形内角和定理.解题的关键是灵活利用三角形内角和定理进行计算. 5.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBES S =△△,故⑤正确; ⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.6.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 8.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A选项中,两直线平行,同位角相等,说法正确,是真命题;B选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C选项中,只有两直线平行时,同旁内角才互补,是假命题;D选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题.故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.10.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.11.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠BCD+∠D=180°,∴AD∥CB,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.综上,正确的有①②⑤.故选:C.【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.D解析:D【分析】根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.【详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,∵CD是∠ACB的平分线,∠ACB=30°(角平分线的性质),∴∠ACD=12∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).故选:D.【点睛】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题13.14°【分析】根据∠A=52°可求∠B由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB=90°∠A=52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A=52°∠A′DB【分析】根据∠A=52°,可求∠B,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB=90°,∠A=52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A=52°,∠A′DB=∠D A′C-∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.35°【分析】先根据折叠性质可求得∠A′DE=∠ADE∠A′ED=∠AED再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°然后利用三角形的内角和定理即可求得∠A的度数【详解】解解析:35°【分析】先根据折叠性质可求得∠A′DE=∠ADE,∠A′ED=∠AED,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°,然后利用三角形的内角和定理即可求得∠A的度数.【详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=180°-(∠ADE+∠AED)=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.16.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.17.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°∠B=∠C进而得到∠B的度数【详解】解:∵∠A∠B∠C是△ABC的三个内角∴∠A+∠B+∠C=180°∵∠A解析:60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.19.①④【分析】分别写出原命题的逆命题然后判断正误即可【详解】①同旁内角互补两直线平行的逆命题是两直线平行同旁内角互补成立符合题意;②如果两个角是直角那么它们相等的逆命题为相等的两个角都是直角不成立不符解析:①④【分析】分别写出原命题的逆命题,然后判断正误即可.【详解】①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意;②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意;成立的有①④,故答案为:①④.【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.20.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE分别是∠B的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD,BE分别是∠B的角平分线和外角平分线,∴∠DBE=12×180°=90°,∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.三、解答题21.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP,过点P作∠APQ=∠PAB,利用内错角相等,两直线平行可得PQ∥AB即可;(2)连PB,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB 或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ即可.【详解】(1)连结AP,过点P作∠APQ=∠PAB,∴PQ∥AB,则PQ为所求;(2)连PB,S△PAB=4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5,故答案为:6.5;(3)三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ,则Q、Q1、Q2三点为所求,则格点Q有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.22.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.23.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.24.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.25.(1)AFB ∠的大小不变,135AFB ∠=︒;(2)F ∠的大小不变,理由见解析;(3)2BCE ADE E ∠+∠=∠【分析】(1)∠AFB 的大小不变.根据三角形内角和定理,角平分线的定义计算即可;(2)∠AFB 的大小不变.根据三角形内角和定理,邻补角的定义,角平分线的定义计算即可;(3)利用折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义即可求解.【详解】(1)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∵AF 、BF 分别是∠BAO 和∠ABO 角的平分线,∴∠FAB=12∠OAB ,∠FBA=12∠OBA ,∴∠FAB+∠FBA=12(∠OAB+∠OBA)=45°, ∴∠AFB=180°-45°=135°;(2)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠BAP+∠ABM=360︒-90°=270°, ∵AF 、BF 分别是∠BAO 和∠ABO 的外角的平分线,∴∠FAB=12∠PAB ,∠FBA=12∠MBA , ∴∠FAB+∠FBA=12(∠PAB+∠MBA)=135°, ∴∠AFB=180°-135°=45°;(3)在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E , 根据折叠的性质得:∠FCD=∠ECD ,∠FDC=∠EDC ,∠F=∠E ,∴∠BCE=180︒-∠FCD-∠ECD=180︒-2∠FCD ,∠ADE=180︒-∠FDC -∠EDC =180︒-2∠FDC ,∴∠BCE+∠ADE=360︒-2(∠FCD+∠FDC),在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E ,∴∠BCE+∠ADE=360︒-2(180︒-∠E)=2∠E .【点睛】本题考查了折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.注意:三角形内角和等于180°.26.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.。

2020春北师大版初中数学七年级下册习题课件--第2课时 平行线性质与判定的综合

2020春北师大版初中数学七年级下册习题课件--第2课时 平行线性质与判定的综合

4.如图,∠1=∠2,∠A=60°,则∠ADC= 120°.
5.如图,BC∥DE,∠E+∠B=180°,则 AB 和 EF 的位置关系为平行 .
6.如图所示,AB∥DC,∠ABC=∠ADC,BF 和 DE 分别平分∠ABC 和∠ADC.试说明:ED∥BF.
解:因为 BF 和 DE 分别平分∠ABC 和∠ADC(已知),
数学 第二章 相交线与平行线
3 平行线的性质 第2课时 平行线性质与判定的综合
01 基础题
知识点 1 综合运用平行线的性质与判定进行计算 或说理
1.如图,直线 a,b,c,d,已知 c⊥a,c⊥b,直线 b,c,d 交于一点.
若∠1=50°,则∠2 等于( B )
A.60° C.40°
B.50° D.30°
16.如图,按下面方法折纸,然后解答问题:若∠1=40°,你能求出∠2 的度数吗?试着做一做.
解:因为 AP∥BF, 所以∠1=∠CFB=40°. 因为∠CFB+2∠CFE=180°, 所以∠CFE=70°. 因为 AE∥BF, 所以∠2+∠BFE=180°. 所以∠2=180°-∠CFE-∠CFB=180°-70°-40°=70°.
03 综合题
18.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确 定 AB 与 DE 的位置关系,并说明理由.
解:AB∥DE. 理由:过点 C 作 FG∥AB, 所以∠BCG=∠ABC=80°. 又因为∠BCD=40°,
所以∠DCG=∠BCG-∠BCD=40°. 因为∠CDE=140°, 所以∠CDE+∠DCG=180°. 所以 DE∥FG. 又因为 FG∥AB, 所以 AB∥DE.
7.如图,已知∠B+∠BCD=180°,∠B=∠D.请你观察图形,写出∠E 和∠DFE 满足什么数量关系?并说明理由. 解:∠E=∠DFE.理由如下: 因为∠B+∠BCD=180°, ∠B=∠D, 所以∠D+∠BCD=180°. 所以 AD∥BE. 所以∠E=∠DFE.

2022年初中数学同步 7年级下册 第04课 平行线的性质及平移(教师版含解析)

2022年初中数学同步 7年级下册 第04课  平行线的性质及平移(教师版含解析)

第04课 平行线的性质及平移课程标准1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;4.了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.知识点01 平行线的性质如右图:a ∥b, 截线c 与这两条平行线相交,他们相交所成的角分别为∠1, ∠2………. ∠8.测量他们的角并填入下表中。

并回答下列问题角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8 度数100°80°100°80°100°80°100°80°哪些角是同位角,他们具有怎样的数量关系?同位角 ∠1=100° ∠5=100° ∠2=80° ∠2=80° ∠3=100° ∠7=100° ∠4=80° ∠8=80° 关系相等相等相等相等由此得出平行线的性质1:两直线平行,同位角相等;哪些角是 内错角,他们具有怎样的数量关系?内错角 ∠3=100° ∠5=100° ∠4=80° ∠6=80° 关系相等相等目标导航知识精讲由此得出平行线的性质2:两直线平行,内错角相等;由此得出平行线的性质3:两直线平行,同旁内角互补.注意:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”,即没有说明两直线平行,同位角,内错角及同旁内角的关系不确定;(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.知识点02 两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.注意:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.知识点03 命题、定理、证明1.命题:判断一件事情的语句,叫做命题.注意:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.知识点04 平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.注意:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.注意:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.能力拓展考法01 平行线的性质【典例1】下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1B.2C.3D.4【答案】A【分析】①根据平行线的定义进行判定;②根据平行线的性质进行判定;③根据平行线的性质定理进行判定,两条直线平行,同位角相等;④根据平行线的判定定理进行判定,同旁内角互补两条直线平行.【详解】①在同一平面内,不相交的两条直线叫做平行线,故原命题错误;②过直线外一点,有且只有一条直线平行于已知直线,故原命题错误;③两条平行直线被第三条直线所截,同位角相等,正确;④同旁内角互补,两直线平行,故原命题错误.故选:A【点睛】本题考查了平行线的定义,平行线性质定理和平行线的判定定理.【典例2】下列图形中,由AB∥CD,能得到∠1=∠2的是A.B.C.D.【答案】B【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.【即学即练】如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【答案】D【详解】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.【即学即练】如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为( )A.52°B.54°C.64°D.69°【答案】C【分析】先根据两直线平行,同旁内角互补求出∠AOB=128°,再根据角平分线的定义得到∠BOC=64°,继而根据平行线的性质即可求得答案.【详解】∵l//OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又∵l//OB,∴∠2=∠BOC=64°,故选C.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解本题的关键.【即学即练】如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20B.30C.40D.60【答案】B【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B 【点睛】熟练运用平行线的判定和性质.【即学即练】如图,AB//CD ,AD CD =,165∠=,则2∠的度数是( )A .50B .60C .65D .70【答案】A 【分析】直接利用平行线的性质结合等腰三角形的性质得出∠2的度数. 【详解】AB//CD ,ACD 165∠∠∴==,AD CD =,CAD ACD 65∠∠∴==,2∠∴=180°-∠ACD -∠CAD=180656550--=, 故选A . 【点睛】本题考查了平行线的性质和等腰三角形的性质,正确得出CAD ∠的度数是解题关键. 【即学即练】如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°【答案】B 【详解】因为AB ∥DF ,所以∠D+∠DEB=180°,因为∠DEB 与∠AEC 是对顶角, 所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B .【即学即练】如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .70【答案】B 【分析】根据平行线的性质可得170ABC ∠=∠=,再根据角平分线的定义可得答案. 【详解】 ∵//DE BC , ∴170ABC ∠=∠=, ∵BE 平分ABC ∠,∴1352CBE ABC ∠=∠=,故选B . 【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.【典例3】如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( )A .48°B .78°C .92°D .102°【答案】D 【分析】直接利用已知角的度数结合平行线的性质得出答案.【详解】解:如图:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102° 故选D . 【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.【即学即练】将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B 【分析】根据平行的性质即可求解. 【详解】根据平行线的性质得到∠3=∠1=30°, ∴∠2=45°-∠3=15°.以及等腰直角三角形的性质,故选B【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.【即学即练】如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°【答案】C 【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE ∥CD ,即可得出∠1=∠EBC=16°. 【详解】 如图,∵∠ABC=60°,∠2=44°, ∴∠EBC=16°, ∵BE ∥CD , ∴∠1=∠EBC=16°, 故选C . 【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【即学即练】把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°【答案】D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC ,∴∠2=180°-∠AEF=124°,故选:D .【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.考法02 辅助线与平行线【典例4】如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°【答案】B【详解】 试题分析:如图,过点A 作AB ∥b ,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a ∥b ,AB ∥B ,∴AB ∥b ,∴∠2=∠4=32°,故选B .考点:平行线的性质.【即学即练】如图,//AB CD ,120BAE ∠=︒,40DCE ∠=︒,则AEC ∠=( )A .70︒B .80︒C .90︒D .100︒【答案】D【分析】 过点E 作//EF AB ,先根据平行线的判定可得//EF CD ,再根据平行线的性质分别可得AEF ∠和CEF ∠的度数,然后根据角的和差即可得.【详解】如图,过点E 作//EF AB ,120BAE ∠=︒,18060AEF BAE ∴∠=︒-∠=︒,又//AB CD ,//EF CD ∴,40DCE CEF ∴=∠=∠︒,6040100AEC AEF CEF ∴∠=∠+∠=︒+︒=︒,故选:D .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.【即学即练】如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°【答案】C【分析】 过点E 作EF ∥AB ,如图,易得CD ∥EF ,然后根据平行线的性质可得∠BAE +∠FEA =180°,∠C =∠FEC =γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.【即学即练】如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A.20°B.30°C.40°D.70°【答案】B【详解】试题分析:延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选B.考点:平行线的性质.【即学即练】如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y【答案】B【分析】 根据平行线的性质可得∠CEF=180°-y ,x=z+∠CEF ,利用等量代换可得x=z+180°-y ,再变形即可.【详解】解:∵CD ∥EF ,∴∠C+∠CEF=180°,∴∠CEF=180°-y ,∵AB ∥CD ,∴x=z+∠CEF ,∴x=z+180°-y ,∴x+y -z=180°,故选:B .【即学即练】如图,AB ∥CD ,则下列等式成立的是( )A .∠B +∠F +∠D =∠E +∠GB .∠E +∠F +∠G =∠B +∠DC .∠F +∠G +∠D =∠B +∠ED .∠B +∠E +∠F =∠G +∠D【答案】A【分析】 E 作EM AB ,过F 作FH AB ,过G 作GH AB ,推出AB EM GN CD FH ,得出B BEM ∠∠=,FEM HFE =∠∠,HFG FGN ∠∠=,.D NGN ∠∠=,求出B EFH HFG D BEM MEF FGN NGD +++=+++∠∠∠∠∠∠∠∠即可.【详解】过E 作EM AB ,过F 作FH AB ,过G 作GN AB ,AB CD , AB EM GN CD FH ∴.,,B BEM FEM HFE HFG FGN ∠∠∠∠∠∠===,D DGN =∠∠,B EFH HFG D BEM MEF FGN NGD ∠∠∠∠∠∠∠∠∴+++=+++,B EFG D EFG FGD ∠∠∠∠∠∴++=+,所以A 选项是正确的.【点睛】本题主要考查了平行线的性质的应用,主要考查学生的推理能力.【即学即练】如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.【答案】∠A+∠C ﹣∠P=180°【详解】如图所示,作PE ∥CD ,∵PE ∥CD ,∴∠C+∠CPE=180°,又∵AB ∥CD ,∴PE ∥AB ,∴∠A=∠APE ,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.【即学即练】珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.【答案】20【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【详解】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.【即学即练】如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【答案】B【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.【即学即练】如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.【答案】40【详解】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF ∥CD ,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF -∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.考法03 折叠问题【典例5】如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.【答案】55°【详解】a b ∥ ,3170∴∠=∠= ,()1218070552∴∠=-⨯= . 【即学即练】如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°【答案】D【详解】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD ∥BC ,即可得到∠GHC=180°﹣∠DGH=106°. 详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∵AD ∥BC ,∴∠GHC=180°﹣∠DGH=106°.故选D .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.【即学即练】如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.【答案】50°【分析】先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.【详解】∵AD ∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF ,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.【即学即练】将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.70°【答案】D【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.【即学即练】如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.【答案】65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.【即学即练】如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′、D′处,C′E交AF于点G,若∠CEF=64°,则∠GFD′=_____________.【答案】520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.【即学即练】如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于__.【答案】115【详解】∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE=180502-=65°, ∵∠AEF+∠BFE=180°,∴∠AEF=115°.故答案为115°.考法04 综合证明【典例6】如图,已知EF BC ⊥,1C ∠∠=,23180.∠∠+=试说明直线AD 与BC 垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:1C ∠∠=,(已知)∴______//______,(______)2∠∴=______.(______)又23180∠∠+=,(已知)3∠∴+______180.(=等量代换)∴______//______,(______)ADC EFC.(∠∠∴=______)EF BC ⊥,(已知)EFC 90∠∴=,ADC 90∠∴=,∴______⊥______.【答案】GD AC 同位角相等,两直线平行 DAC ∠ 两直线平行,内错角相等 DAC ∠ AD EF 同旁内角互补,两直线平行 两直线平行,同位角相等 AD BC【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:1C ∠∠=,(已知)GD //AC ∴,(同位角相等,两直线平行)2DAC.(∠∠∴=两直线平行,内错角相等)又23180∠∠+=,(已知)3180.(DAC ∠∠∴+=等量代换)//AD EF ∴,(同旁内角互补,两直线平行).(ADC EFC ∠∠∴=两直线平行,同位角相等)EF BC ⊥,(已知)90EFC ∠∴=,90ADC ∠∴=,AD BC ∴⊥.【点睛】本题主要考查了平行线的判定和性质,已经垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.【即学即练】如图,已知AC ∥DF,直线AF 分别与直线BD 、CE 相交于点G ,H,∠1=∠2.求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH( ),∴∠2=_______( 等量代换 )∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF( )∴∠D=∠ABG ( )∴∠C=∠D ( )【答案】对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,【详解】整体分析:根据平行线的性质,判定和对顶角相等解题,注意理解图形.证明:∵∠1=∠2(已知)∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABG(两直线平行,同位角相等)又∵AC∥DF(已知)∴∠D=∠ABG(两直线平行,内错角相等)∴∠C=∠D(等量代换).【即学即练】如图,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠AGD=∠ACB,求证:∠1=∠2.【答案】见解析.【分析】由EF⊥AB,CD⊥AB可得EF∥CD,由∠AGD=∠ACB可得DG∥BC.再利用平行线的性质可证∠1=∠2.【详解】∵EF⊥AB,CD⊥AB,∴EF∥CD,∴∠2=∠3.又∵∠AGD=∠ACB,∴DG∥BC,∴∠1=∠3;∴∠1=∠2.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定和性质是解题的关键.【即学即练】如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.考法05 命题【典例7】把命题“等角的补角相等”改写成“如果…那么…”的形式是______.【答案】如果两个角是等角的补角,那么它们相等.【分析】弄清命题的题设(条件)和结论即可写出.【详解】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为如果两个角是等角的补角,那么它们相等.【点睛】本题考查了将原命题写成“如果…那么…”即题设(条件)与结论的形式,解决问题的关键是找出相应的题设和结论.【即学即练】将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.【即学即练】下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.【即学即练】将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.【即学即练】将命题“同角的补角相等”改写成“如果……,那么……”的形式为_________________.【答案】如果两个角是同一个角的补角,那么这两个角相等【详解】试题考查知识点:命题改写思路分析:每一个命题都是基于条件的一个判断,只要把条件部分和判断部分分开即可具体解答过程:如果两个角是同一个角的补角,那么这两个角相等试题点评:这是关于命题的基本题型.考法06 平移【典例8】如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.【答案】D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.【典例9】如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【答案】C【详解】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.【即学即练】如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.26【答案】D 【详解】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=12(AB+EH)×BE=12(8+5)×4=26.故选D.【即学即练】如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【答案】D【详解】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.【即学即练】如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定【答案】B【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.【即学即练】如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2【答案】B【详解】 解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .【即学即练】如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=3,那么平移的距离为( )A .2B .3C .5D .7【答案】A【详解】 试题分析:观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离=BE=5﹣3=2.考点:平移的性质.【即学即练】如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.【即学即练】某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需______元.【答案】512元【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元)【点睛】本题考查平移性质的实际运用.解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.【即学即练】如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.【答案】144【分析】先求出道路的总长度,进而求出道路的面积,最后用总面积减去道路的面积即可.【详解】解:由图形得到了的总长度为20+10-2=28米,所以道路的总面积为28×2=56米2,所以草地面积为20×10-56=144米2.故答案为:144【点睛】本题考查了请不规则图形的面积,根据题意求出道路的总长度是解题关键,注意应减去重合的部分.分层提分题组A 基础过关练1.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )。

初中数学:平行线的性质

初中数学:平行线的性质

c
d
2
a
1
3
b
已知a//b, ∠1=∠2吗?
平行线的性质2
两条平行直线被第三条直线所截, 内错角相等。
简单说成:两直线平行,内错角相等 几何语言:∵a//b
∴∠1=∠2
已知a//b,∠1+∠2=180°吗?
c
a
2
b
1
c
平行线的性质3
a
2
b1
两条平行直线被第三条直线所截, 同旁内角互补。
简言之:两直线平行,同旁内角互补 几何语言:∵a//b
c
12
a
34
56
b
78
平行线的性质1
两条平行直线被第三条直线所截, 同位角相等。
简单说成:两直线平行,同位角相等 几何语言:∵a//b
∴∠1=∠2
1、如图,已知a//b, ∠1=50°,求 ∠2的度数。
证明:∵a//b ∴∠1=∠2=50°
(两直线平行,同位角相等)
2、如图,若a//b, ∠1=70°, ∠2=100°,则∠3=__1_0_0_°__
课堂小结:
一、平行线的性质: 二、平行线的性质与判定的区别:
必做题:平行线的性质 1-12
选做题: 平行线的性质 13、14
复习回顾
判定方法1:同位角相等,两直线平行。 判定方法2:内错角相等,两直线平行。
判定方法3:同旁内角互补,两直线平行。
复习回顾
1、同位角相等 2、内错角相等 3、同旁内角互补
两直线平行
条件
结论
梳理旧知,引出新课
两条平行线 被第三条直线
所截
同位角? 内错角? 同旁内角 ?
条件
结论

平行线的判定 习题 (含答案)

平行线的判定 习题 (含答案)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如右图所示,在下列条件中,不能判断l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4+∠5=180°D.∠2+∠4=180°【答案】B【解析】【分析】直接利用平行线的判定方法分别分析得出答案.【详解】解:A、∠1=∠3根据内错角相等,两直线平行能判定l1∥l2,故此选项不符合题意;B. ∠2=∠3无法判定l1∥l2,故此选项符合题意;C. ∠4+∠5=180°, ∠2=∠5,所以∠4+∠2=180°, 根据同旁内角互补,两直线平行能判定l1∥l2,故此选项不符合题意;D. ∠2+∠4=180°,能判定l1∥l2,故此选项不符合题意;故选:B.【点睛】本题考查平行线的判定,正确掌握判定方法是解题关键.2.如图,直线a,b被直线c所截,下列条件能判断a//b的是().A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理,同位角相等,两直线平行即可解题.【详解】解:A. ∠1=∠2是对顶角,无法判断,B. ∠1=∠4,根据同位角相等,两直线平行即可判定a//b,正确,C. ∠3+∠4=180°,邻补角互补无法判断平行,D. ∠2+∠4=180°,内错角不是互补的,错误,故选B.【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理是解题关键.3.如图,下列条件:①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.如图,下列条件中,不能判断直线的是()∠1=∠3∠2=∠3∠4=∠5A.B.C.D.∠2+∠4=180°【答案】B【解析】【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【详解】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.的是( )5.如图,点E在AD延长线上,下列条件中不能判定BC∥ADA.B.∠3=∠4∠C+∠ADC=180∘C.D.【答案】A【解析】【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.解:A、∵∠1=∠2,∴AB∥CD,本选项符合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠3=∠4,∴BC∥AD,本选项不合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:A.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.)6.如图,下列条件中能得到AB∥CD的是(【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、因为∠1=∠2,不能得出AB∥CD,错误;B、∵∠2=∠3,∴AD∥BC,错误;C、∵∠1=∠4,∴AB∥CD,正确;D、因为∠3=∠4,不能得出AB∥CD,错误;故选C.本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行【答案】A【解析】【分析】根据两条直线的位置关系直接可以找出错误的选项.【详解】在同一平面内,不相交的两条直线必然平行; 在同一平面内,不平行的两条线段延长后必然相交; 在同一平面内,两条直线没有公共点,那么两条直线平行;只有A选项中,在同一平面内,不相交的两条线段不一定平行,故A错误.故选A.【点睛】此题重点考察学生对两直线的位置关系的理解,掌握两直线的位置关系是解题的关键. 8.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【答案】C【解析】【分析】根据线段有固定长度这一特点来解题即可.【详解】同一平面内的两条线段,可以出现相交,平行,也可以出现既不平行也不相交的状态.故选C【点睛】此题重点考察学生对两条线段位置关系的理解,抓住线段有固定长度是解题的关键.9.在同一平面内,两条不重合直线的位置关系可能是( )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【答案】C【解析】【分析】根据前提条件结合直线的位置关系直接可以得到答案.【详解】在同一平面内,两条不重合的直线的位置关系只有两种:平行或相交.故选C【点睛】此题重点考察学生对两直线位置关系的理解,掌握两直线的位置关系是解题的关键.的是( )10.如图,已知点E在BC的延长线上,则下列条件中不能判断AB∥CDA.∠B=∠DCE B.∠BAD+∠D=180°C.∠1=∠4 D.∠2=∠3【答案】D【解析】【分析】根据平行线的判定定理即可直接作出判断.【详解】A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选:D.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.如图,下列判定两直线平行错误的是()A.若∠D=∠3,则BE∥DF B.若∠B=∠2,则AB∥CD18001800C.若∠1+∠D=,则BE∥DF D.若∠1+∠B=,则AB∥CD【答案】A【解析】【分析】根据平行线的判定逐一判断即可.【详解】A. ∠D和∠3是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项错误;B. ∠B和∠2是一组同位角角,根据“同位角相等,两直线平行”,可得本选项正确;18001800C. 因为∠1 = ∠3,若∠1+∠D=,则∠3+∠D=,根据“同旁内角互补,两直线平行”,可得本选项正确;D. ∠1和∠B,是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项正确.故选:A.【点睛】本题考查平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解题关键.65012.如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是()6501150A.当∠C=时,AB∥CD B.当∠A=时,AC∥DE12501150C.当∠E=时,CD∥EF D.当∠BOC=时,BF∥DE【答案】D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】本题考查平行线的判定,解题关键是在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.13.如图,下列条件中,能判断FB∥CE的是()A.∠F+∠C=B.∠ABF=∠C C.∠F=∠C D.∠A=∠D【答案】B【解析】【分析】分析四个选项,看哪个选项的条件满足平行线的判定定理,由此即可得出结论.【详解】解:A、∠F+∠C=180°,不能得出FB∥CE,A不可以;B、∠ABF=∠C,同位角相等,两直线平行,B可以;C、∠F=∠C,不能得出FB∥CE,C不可以;D、∠A=∠D,内错角相等,两直线平行,但得出的是DF∥AC,D不可以.故选:B.【点睛】本题考查平行线的判定定理,解题的关键是牢记平行线的判定定理.本题属于基础题,难度不大,解决该题型题目时,寻找相等或互补的角去证明直线平行.30014.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度数为()A.B.C.D.【答案】C【解析】【分析】根据平行线的判定方法即可解答.【详解】解:因为三角板含有30°的角,所以∠B=60°,当∠ENB+∠B=180°时,根据“同旁内角互补,1200两直线平行”,可使CB∥EF,此时∠ENB=180°-∠B=180°-60°=.故选:C.【点睛】本题考查平行线的判定方法,解题关键是熟练掌握判定方法,根据题目要求选择简单方法.15.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69° B.49° C.31° D.21°【答案】D【解析】【分析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【详解】∵b⊥c,∴∠2=90°.∵∠1=69°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣69°=21°,故选D.【点睛】本题考查了垂直的定义,平行线的判定,熟练掌握和正确运用相关知识是解题的关键. 16.如图是小敏作“过已知直线外一点画这条直线的平行线”,从图中可知,小敏画平)行线的依据是(①两直线平行,同位角相等②两直线平行,内错角相等③同位角相等,两直线平行④内错角相等,两直线平行A.①②B.②③C.③④D.①④【答案】C【解析】【分析】①②为平行线的性质,③④为平行线的判定定理.【详解】解:根据平行线的判定与性质可知,①②为平行线的性质,③④为平行线的判定定理,∴小敏是依据③④画平行线的.故选:C.【点睛】本题主要考查平行线的判定与性质,解此题的关键在于熟记平行线的判定定理与性质的区别.①∠1=∠3AB CD②∠2=∠4AB CD③17.如图,下列结论:若,则∥;若,则∥;若④∠ADC=∠5,则AD//BC;若∠DAB+∠ABC=180°,则AD//BC,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据内错角相等,两直线平行可以对①②③进行判断,根据同旁内角互补,两直线平行可以对④进行判断,由此即可得答案.【详解】①若∠1=∠3,则AB∥CD,正确;②若∠2=∠4,则AD∥BC,故②错误;③若∠ADC=∠5,则AD//BC,正确;④若∠DAB+∠ABC=180°,则AD//BC,正确,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.如图,下列推理正确的是( )A.∵∠1=∠2,∴AD∥BC B.∵∠3=∠4,∴AB∥CDC.∵∠3=∠5,∴AB∥DC D.∵∠3=∠5,∴AD∥BC【答案】C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠3=∠5,∴AB∥DC(同位角相等,两直线平行).故选C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、解答题EF//AB∠AED=∠C∠1=∠B19.如图,,,说明:.【答案】见解析.【解析】【分析】先由同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【详解】∠AED=∠C∵(已知)DE//BC∴(同位角相等,两直线平行)∠1=∠EFC又∵(两直线平行,内错角相等)∠B=∠EFC∴(等量代换)EF//AB∴(同位角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质,解题时注意:两直线平行,内错角相等;同位角相等,两直线平行.20.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;的度数.(2)若∠ADB=36°,求∠EFC【答案】(1)证明见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.21.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).【答案】详见解析.【解析】【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想..如图,根据要求填空.22(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.【答案】 (1)DC;(2)DC;(3)AB;(4)延长线.【解析】【分析】根据要求,直接进行作图就可以解决.【详解】;(1)过A作AE∥BC,交DC于点E(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.23.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2 011的位置关系.【答案】(1)a1⊥a3,理由详见解析;(2)a1∥a4;(3)a1⊥a2 011.【解析】【分析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.【详解】.(1)a1⊥a3理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a2⊥a3,直线a1与a4的位置关系是:a1∥a4∥a5,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2009,a1⊥a2010,所以直线a1与a2011的位置关系是:a1⊥a2011.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.三、填空题24.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).【解析】【分析】根据平行线的判定定理,即可直接写出条件.【详解】添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.【点睛】本题考查了平行线的判定定理,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.25.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则______.【答案】a∥b【解析】【分析】根据平行线的判定解答即可.【详解】在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则a∥b.故答案为:a∥b.【点睛】本题考查了平行线的判定与性质,在同一平面内,垂直于同一直线的两直线平行的性质,是基础题,熟记平行线的判定是解题的关键.126.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.【解析】【分析】(1)根据两条直线的位置关系直接写出答案.(2)根据垂线的性质去解答即可.【详解】设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关是a∥c,(2)若a⊥b,b⊥c,则a与c的位置关系是a∥c.故答案为(1). a∥c (2). a∥c【点睛】此题重点考察学生对两直线的位置关系和垂线性质的理解,掌握两直线的位置和垂线的性质是解题的关键.27.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,”)∠EDC=154°,则此工件________.(填“合格”或“不合格【答案】合格【解析】【分析】作CF∥AB,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF∥ED,证出AB∥ED,即可得出结论.【详解】,如图所示:作CF∥AB则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF∥ED,∴AB∥ED;故答案为:合格.【点睛】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键28.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥CD.【答案】66.【解析】【分析】过点E作EF∥AB,由平行线的性质可得∠BME=MEF,利用平行线的判定定理和性质定理可得∠NEF=90°,易得∠BME.【详解】,过点E作EF∥AB∴∠BME=MEF,∵AB∥CD,∴EF∥CD,∵EN⊥CD,∴EN⊥EF,∴∠NEF=90°,∵∠MEN=156°,∴∠MEF+90°=156°,∴∠MEF=∠BME=156°-90°=66°.故答案为:66.【点睛】本题主要考查了平行线的判定定理及性质定理,综合运用定理是解答此题的关键.29.如图,已知CD⊥DA,DA⊥AB,∠1=∠2. 试说明DF∥AE. 请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°( ).∴∠CDA=∠DAB(等量代换).从而∠CDA-∠1=∠DAB-________(等式的性质).即∠3=_______.).∴DF∥AE(【答案】垂直的定义;∠2;∠4;内错角相等,两直线平行【解析】【分析】(1)根据垂直的定义填空;(2)根据等式的性质进行填空;(3)根据图象中角的位置关系进行解答;(4)根据平行线的判定定理进行解答即可.【详解】解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°(垂直的定义),∴∠CDA=∠DAB(等量代换),又∠1=∠2,从而∠CDA-∠1=∠DAB-∠2 (等式的性质).即∠3=∠4,∴DF∥AE(内错角相等,两直线平行).故答案为:垂直的定义;∠2;∠4;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理等知识点,解此题的关键在于熟记书本中基本的知识点..30.如图,当∠1=∠__时,AB∥DC【答案】4【分析】当∠1=∠4 时,根据内错角相等,两直线平行可以判定AB∥DC.【详解】∵∠1=∠4,∴AB∥DC(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定,内错角相等,两直线平行.。

北师大版八年级数学上册《平行线的性质》平行线的证明

北师大版八年级数学上册《平行线的性质》平行线的证明

,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .

苏教版七下7.2 探索平行线的性质(2)

苏教版七下7.2  探索平行线的性质(2)

7.1 探索平行线的性质(2)
比一比
平行线的“判定”与“性质”有什么不同.
已知角之间的关系(相等或互补),得到两直线平行 的结论是平行线的判定. 已知两直线平行,得到角之间的关系(相等或互补) 的结论是平行线的性质.
7.1 探索平行线的性质(2)
填空:
如图:∵∠1=∠2(已知), ∴AD∥BC( 内错角相等,两直线平 行 ), ∴∠BCD+∠D=180°(两直线平行, 同旁内角互补) .
C
(2)∵ DE∥BC (已证), ∴∠CED+∠C=180º (两直线平行,同旁内角互补) , 又∵∠C=40° (已知) , ∴∠CED=180º-40º=140º (等式性质) .
7.1 探索平行线的性质(2)
1.如图,AB、CD被EF所截,AB//CD.
按要求填空: 120 ° 若∠1=120°,则∠2=_ ___ ( 两直线平行,内错角相等. );
7.1 探索平行线的性质(2)
例1
如图是梯形有上底的一部分.已经量得A=115°, D=100°,梯形另外两个角各是多少度? A D 解:∵AD//BC (已知), ∴A+B=180°, (两直线平行,同旁内角互补) 即 B=180 °-A=180 °-115 °=65 °, ∵AD//BC(已知) , B C ∴D+C=180 °, (两直线平行,同旁内角互补) 即C=180 °-D=180 °-100 °=80 °. 答:梯形的另外两个角分别为65 °、80 °.
7.1 探索平行线的性质(2)
如图:已知a//b,那么2与3有什么关系呢? 解:∵ a//b(已知), ∴ 1= 2(两直线平行,同位角相等), ∵ 1+ 3=180°(邻补角定义), ∴ 2+ 3=180°(等量代换).

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。

平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。

本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。

一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。

同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。

例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。

根据同位角性质,可知∠A = ∠B = ∠C。

2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。

内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。

例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。

根据内错角性质,可知∠A = ∠B。

3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。

同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。

例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。

根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。

二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。

例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。

2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。

例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。

3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。

(典型题)初中数学七年级数学下册第一单元《相交线与平行线》检测卷(含答案解析)(1)

(典型题)初中数学七年级数学下册第一单元《相交线与平行线》检测卷(含答案解析)(1)

一、选择题1.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°2.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 3.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角4.下列语句是命题的是( ) A .平分一条线段 B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 5.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155 6.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°7.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 9.交换下列命题的题设和结论,得到的新命题是假命题的是( ) A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个12.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°二、填空题13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.14.给出下列说法:①同角的补角相等;②相等的角是对顶角;③两点确定一条直线;④过一点有且只有一条直线与已知直线平行,其中正确的有___个.15.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口, 疏散1000名乘客所需的时间如下:安全出口编号A ,B B ,C C ,D D ,E A ,E 疏散乘客时间()s120 220 160 140 200 16.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0、1、2、3、4和数轴上的﹣1、﹣2、﹣3、﹣4、﹣5分别对应.现把直尺向右平移5个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是______.17.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .18.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.19.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.三、解答题21.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠BOF=38°.(1)求∠AOC的度数;(2)过点O作射线OG,使∠GOE=∠BOF,求∠FOG的度数.22.在ABC中,AB AC=,直线l经过点A,且与BC平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l上画出一点P,使得APC ACB∠=∠;(2)如图②,在直线l上画出所有的点Q,使得12AQC ACB ∠=∠.23.如图,直线AB,CD相交于O,OE⊥CD于O,OF是∠BOE的平分线,∠DOF=25°.求∠AOC的度数.24.如图:AD是BAC∠的角平分线,点E是射线AC上一点,延长ED至点F,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠25.已知:如图,∠AGD =∠ACB ,∠1=∠2,CD 与EF 平行吗?为什么?26.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键. 2.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62° ,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B 观察点A 的方向是北偏东28°,故选:B .【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE 的度数是解题的关键. 3.C解析:C【分析】利用反例对A 进行判断;根据平行线的性质对B 进行判断;根据三角形内角和定理对C 进行判断;根据对顶角定义对D 进行判断.解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C.【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.6.C解析:C【分析】根据题意作直线l平行于直线l1和l2,再根据平行线的性质求解即可.解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.7.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC ,再根据四边形ABFD 的周长=AD+AB+BF+DF 即可得出结论.【详解】∵将周长为6的△ABC 沿边BC 向右平移1个单位得到△DEF ,∴AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=6,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B .【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.11.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.B解析:B【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质二、填空题13.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 14.2【分析】根据补角的性质对顶角的性质直线的性质平行线的性质依次判断【详解】同角的补角相等故①符合题意;对顶角相等但相等的角不一定是对顶角故②不符合题意;两点确定一条直线故③符合题意;过直线外一点有且 解析:2【分析】根据补角的性质、对顶角的性质、直线的性质、平行线的性质依次判断.【详解】同角的补角相等,故①符合题意;对顶角相等,但相等的角不一定是对顶角,故②不符合题意;两点确定一条直线,故③符合题意;过直线外一点有且只有一条直线与已知直线平行,故④不符合题意;故答案为:2.【点睛】此题考查了平行线的判定等知识,掌握补角的性质、对顶角的性质、直线的性质、平行线的判定是解题的关键.15.D【分析】利用同时开放其中的两个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE两个安全出口疏散1000名乘客所需的时间为200s同时开放DE两个安全出口疏散1000名乘客解析:D【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.16.2【分析】画出示意图找出平移后数轴上的数与刻度尺上的读数相同的数字即可【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2故答案为:2【点睛】本题主要考查平移的概念以及数轴根据题意画出示意图解析:2【分析】画出示意图,找出平移后数轴上的数与刻度尺上的读数相同的数字即可.【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2.故答案为:2.【点睛】本题主要考查平移的概念以及数轴,根据题意画出示意图是解题关键.17.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.18.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.20.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.(1)52°;(2)图见解析,26°或102°(1)依据OF⊥CD,∠BOF=38°,可得∠BOD=90°−38°=52°,依据对顶角相等得到∠AOC =52°;(2)分两种情况求解即可.【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.【点睛】本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.22.(1)见解析;(2)见解析【分析】(1)以C为圆心,以CA为半径画弧,交点即为所求;(2)以A为圆心,以AC为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠.(2)如图所示,点12Q Q 、即为所求,理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.23.∠AOC =40°.【分析】利用垂直定义结合条件可得∠EOF =65°,然后再利用角平分线定义可得∠BOF =∠EOF =65°,然后再计算∠BOD 的度数,进而可得∠AOC 的度数.【详解】解:∵OE ⊥CD 于O ,∴∠EOD =90°,∵∠DOF =25°,∴∠EOF =65°,∵OF 是∠BOE 的平分线,∴∠BOF =∠EOF =65°,∴∠BOD =65°﹣25°=40°,∴∠AOC =40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.24.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键. 25.平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行. 理由如下:∵ ∠AGD =∠ACB , (已知)∴ GD ∥BC (同位角相等,两直线平行)∴∠1=∠BCD (两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD (等量代换)∴ CD ∥EF (同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键. 26.(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。

北师大版初中数学七年级下册《2.3 平行线的性质》同步练习卷(含答案解析

北师大版初中数学七年级下册《2.3 平行线的性质》同步练习卷(含答案解析

北师大新版七年级下学期《2.3 平行线的性质》同步练习卷一.选择题(共25小题)1.如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为()A.28°B.29°C.30°D.32°2.如图,AB∥CD,∠AFE=135°,∠D=80°,则∠E等于()A.55°B.45°C.80°D.50°3.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.70°B.65°C.50°D.140°4.如图,DE∥AB,若∠A=60°,则∠ACE=()A.30°B.60°C.70°D.120°5.如图,∠A的一边AB为平面镜,另一边AC上有一点D,从D点射出一束光线经AB上一点E反射,反射光线EF恰好与AC平行,已知∠AED=∠BEF,∠EDC=70°,则∠A的度数是()A.30°B.35°C.40°D.45°6.如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2的度数是()A.50°B.70°C.90°D.110°7.如图,现将一块三角板的含有60°的角的顶点放在直尺的一边上,若∠1=80°,那么∠2的度数为()A.30°B.40°C.50°D.60°8.如图,直线a∥b,则∠1与∠2不一定相等的是()A.B.C.D.9.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°10.如图,AB∥EF,点D是AB上一点,且DC⊥BE于点C,若∠A=36°,则∠ADC 的度数()A.106°B.116°C.126°D.136°11.如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b 上,若∠1=55°,则∠2的度数为()A.30°B.35°C.45°D.55°12.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠FEG=36°,则∠EFG=()A.36°B.72°C.108°D.144°13.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°14.如图,直线m∥n,一个含30°角的直角三角板ABC的顶点A在直线m上,则∠α等于()A.38°B.42°C.52°D.68°15.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°16.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°17.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°18.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯是()A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30°19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,这两次拐弯的角度可能是()A.第一次向左拐50°,第二次向左拐130°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐30°,第二次向右拐30°20.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对21.如图所示,AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,则图中与∠CGE 相等的角共有(不包括∠CGE)()个.A.5B.6C.7D.822.如图,a∥b,将一块三角板的直角顶点放在直线a上,若∠1=42°,求∠2的度数.以下是排乱的推理过程:①∵∠1=42°②∵a∥b③∴∠3=90°﹣42°=48°④∴∠2=48°⑤∴∠2=∠3推理步骤正确的顺序是()A.①→③→②→④→⑤B.①→③→②→⑤→④C.①→⑤→②→③→④D.②→③→①→④→⑤23.如图,已知直线a∥b,将一块含有60°角的直角三角板的两个顶点分别放在直线a、b上,若∠1=62°,则∠2的度数为()A.28°B.32°C.38°D.40°24.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为()A.66°B.132°C.48°D.38°25.如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°二.填空题(共14小题)26.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.27.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,则图中∠1与∠2之间的数量关系为.28.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=.29.如图,直线m∥n,若∠1=70°,∠2=25°,则∠A等于.30.如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=(用含α的式子表示)31.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是.32.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2=.33.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.34.如图,D、E分别是AB、AC上的点,DE∥BC,若∠C=50°,则∠AED=°.35.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=.36.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=.37.如图是一架婴儿车,其中AB∥CD,∠BFG=50°,∠D=40°,那么∠AEF=.38.如图,已知直线a∥b,∠1=72°,∠2=38°,则∠3=°.39.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.三.解答题(共11小题)40.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,求∠FAG的度数.41.如图,点D,E,F分别在AB,BC,AC上,且DE∥AC,EF∥AB,下面写出了证明“∠A+∠B+∠C=180°”的过程,请补充完整:证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠,∠3=∠,∠4=∠(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4()∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°()∴∠A+∠B+∠C=180°(等量代换).42.如图,已知EF∥AB,∠1=∠B,求证:∠EDC=∠DCB.43.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.44.如图DE⊥AB,EF∥AC,∠A=35°,求∠DEF的度数.45.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,问:EP⊥FP吗?请说明理由.46.已知AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.47.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由.(2)求∠AFE的度数.48.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出∠EAD、∠DAC、∠EAC的度数吗?49.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.50.已知AB∥CD,AD∥BC,E为CB延长线上一点,∠EAF=∠EFA.(1)求证:AF平分∠EAD;(2)若AG平分∠EAB,∠D=70°,求∠GAF的度数.北师大新版七年级下学期《2.3 平行线的性质》同步练习卷参考答案与试题解析一.选择题(共25小题)1.如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为()A.28°B.29°C.30°D.32°【分析】根据两直线平行,内错角相等,可得∠EHF的度数,再根据三角形外角的性质即可求解.【解答】解:∵AB∥CD,∠BEG=58°,∴∠EHF=58°,∵∠G=30°,∴∠HFG=58°﹣30°=28°.故选:A.【点评】本题主要考查了平行线的性质与三角形外角的性质的定义,解题的依据是:两直线平行,内错角相等.2.如图,AB∥CD,∠AFE=135°,∠D=80°,则∠E等于()A.55°B.45°C.80°D.50°【分析】先根据两直线平行内错角相等得出∠DGF=∠AFE=135°,由邻补角定义得出∠DGE=45°,最后根据三角形的内角和为180°可得答案.【解答】解:∵AB∥CD,∠AFE=135°,∴∠DGF=∠AFE=135°,∴∠DGE=180°﹣∠DGF=45°,∵∠D=80°,∴∠E=180°﹣∠D﹣∠DGE=55°,故选:A.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.70°B.65°C.50°D.140°【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【解答】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点评】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.4.如图,DE∥AB,若∠A=60°,则∠ACE=()A.30°B.60°C.70°D.120°【分析】根据两直线平行,同旁内角互补求解.【解答】解:∵DE∥AB,∴∠A+∠ACE=180°,∴∠ACE=180°﹣60°=120°.故选:D.【点评】本题考查了平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.如图,∠A的一边AB为平面镜,另一边AC上有一点D,从D点射出一束光线经AB上一点E反射,反射光线EF恰好与AC平行,已知∠AED=∠BEF,∠EDC=70°,则∠A的度数是()A.30°B.35°C.40°D.45°【分析】过点E作EH⊥AB交AC于点H.根据题意知,EH是∠DEF的角平分线,故∠1=∠3;然后又由两直线EF∥AC推知内错角∠1=∠2;最后由三角形的内角和定理求得∠A的度数.【解答】解:过点E作EH⊥AB交AC于点H.∵入射角等于反射角,∴∠1=∠3,∵EF∥AC,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);∵∠EDC=70°,∴∠2=∠3=55°,在Rt△AEH中,∠AEH=90°,∠2=55°,∴∠A=90°﹣55°=35°;故选:B.【点评】本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.6.如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2的度数是()A.50°B.70°C.90°D.110°【分析】根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.【解答】解:∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°,故选:B.【点评】本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.7.如图,现将一块三角板的含有60°的角的顶点放在直尺的一边上,若∠1=80°,那么∠2的度数为()A.30°B.40°C.50°D.60°【分析】先根据两直线平行的性质,得到∠3=∠2,再根据平角的定义,即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=80°,∴80°+60°+∠3=180°,∴∠3=40°,∴∠2=40°,故选:B.【点评】本题主要考查了平行的性质,解题的关键是掌握:两直线平行,同位角相等.8.如图,直线a∥b,则∠1与∠2不一定相等的是()A.B.C.D.【分析】根据平行线的性质分析选择.【解答】解:A、∵a∥b,∴∠1=∠2,正确;B、∵a∥b,∴∠1=∠2,正确;C、∵a∥b,∴∠1=∠2,正确;D、∵a∥b,∴∠1+∠2=180°,错误;故选:D.【点评】此题考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.故选:D.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.如图,AB∥EF,点D是AB上一点,且DC⊥BE于点C,若∠A=36°,则∠ADC 的度数()A.106°B.116°C.126°D.136°【分析】依据BE∥AF,∠A=36°,即可得到∠B=∠A=36°,再根据DC⊥BE,即可得出∠ADC=∠B+∠BCD=36°+90°=126°.【解答】解:∵BE∥AF,∠A=36°,∴∠B=∠A=36°,又∵DC⊥BE,∴∠ADC=∠B+∠BCD=36°+90°=126°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.11.如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b 上,若∠1=55°,则∠2的度数为()A.30°B.35°C.45°D.55°【分析】依据直角顶点落在直线b上,∠1=55°,即可得到∠3=90°﹣55°=35°,再根据平行线的性质,即可得到∠2=∠3=35°.【解答】解:∵直角顶点落在直线b上,∠1=55°,∴∠3=90°﹣55°=35°,又∵a∥b,∴∠2=∠3=35°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠FEG=36°,则∠EFG=()A.36°B.72°C.108°D.144°【分析】依据EG平分∠AEF,∠FEG=36°,即可得到∠AEF=72°,再根据平行线的性质,即可得出∠EFG=180°﹣∠AEF=108°.【解答】解:∵EG平分∠AEF,∠FEG=36°,∴∠AEF=72°,又∵AB∥CD,∴∠EFG=180°﹣∠AEF=108°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.13.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°【分析】先利用平行线的性质得出∠1=∠3,∠2=∠4,最后利用直角三角形的性质即可.【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°.故选:A.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.14.如图,直线m∥n,一个含30°角的直角三角板ABC的顶点A在直线m上,则∠α等于()A.38°B.42°C.52°D.68°【分析】先求出∠1,再根据两直线平行,同位角相等可得∠α=∠1.【解答】解:如图,∠1=180°﹣60°﹣52°=68°,∵直线m∥n,∴∠α=∠1=68°.故选:D.【点评】本题考查了平行线的性质,平角的定义,要求正确观察图形,熟练掌握平行线的性质.15.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°【分析】由三角形外角性质求出∠3的度数,再由a与b平行,利用两直线平行同旁内角互补,得到∠3+∠4+∠2的度数,根据∠3与∠4的度数求出∠2的度数即可.【解答】解:∵∠3为三角形的外角,∴∠3=∠1+∠B=70°,∵a∥b,∴∠3+∠4+∠2=180°,∵∠4=90°,∠3=70°,∴∠2=20°.故选:A.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.16.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=40°,∴∠3=90°﹣∠1=90°﹣40°=50°,∴∠4=180°﹣50°=130°,∵直尺的两边互相平行,∴∠2=∠4=130°.故选:A.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.17.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°【分析】根据平行线的性质可得∠GEB=∠1=42°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=40°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=21°,∴∠2=180°﹣∠FEB=159°.故选:A.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.18.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯是()A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30°【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【解答】解:如图所示,∵∠1=∠2=30°,∴AB∥CD,且两次拐弯方向相反,∴第一次向左拐30°,第二次向右拐30°.故选:D.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,这两次拐弯的角度可能是()A.第一次向左拐50°,第二次向左拐130°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐30°,第二次向右拐30°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:A.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.20.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对【分析】由∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,然后设∠α=x°,由∠α比∠β的3倍少36°,分别从∠α与∠β相等或互补去分析,求得方程,解方程即可求得∠α的度数.【解答】解:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补,设∠α=x°,∵∠α比∠β的3倍少36°,∴若∠α与∠β相等,则x=3x﹣36,解得:x=18,若∠α与∠β互补,则x=3(180﹣x)﹣36,解得:x=126,∴∠α的度数是18°或126°.故选:C.【点评】此题考查了平行线的性质.此题难度适中,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.21.如图所示,AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,则图中与∠CGE 相等的角共有(不包括∠CGE)()个.A.5B.6C.7D.8【分析】根据平行线的性质,角平分线的定义解答即可.【解答】解:∵AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,∴图中与∠CGE相等的角有∠HFG,∠DCG,∠ECG,∠CAF,∠BAF,∠AHC,∠DHF故选:C.【点评】本题考查了平行线性质,对顶角相等,角平分线的定义的应用,主要考查学生的推理能力.22.如图,a∥b,将一块三角板的直角顶点放在直线a上,若∠1=42°,求∠2的度数.以下是排乱的推理过程:①∵∠1=42°②∵a∥b③∴∠3=90°﹣42°=48°④∴∠2=48°⑤∴∠2=∠3推理步骤正确的顺序是()A.①→③→②→④→⑤B.①→③→②→⑤→④C.①→⑤→②→③→④D.②→③→①→④→⑤【分析】根据直角的定义求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:①∵∠1=42°,③∴∠3=90°﹣42°=48°②∵a∥b⑤∴∠2=∠3④∴∠2=48°故推理步骤正确的顺序是①→③→②→⑤→④.故选:B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.23.如图,已知直线a∥b,将一块含有60°角的直角三角板的两个顶点分别放在直线a、b上,若∠1=62°,则∠2的度数为()A.28°B.32°C.38°D.40°【分析】根据平行线的性质求出∠3的度数,再根据角的和差关系即可求解.【解答】解:如图,∵a∥b,∠1=62°,∴∠3=62°,90°﹣60°=30°,∴∠2=62°﹣30°=32°.故选:B.【点评】考查了平行线的性质,平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.24.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为()A.66°B.132°C.48°D.38°【分析】先根据平角的定义求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【解答】解:∵∠EFB=66°,∴∠EFC=180°﹣66°=114°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°﹣∠EFC=180°﹣114°=66°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°﹣66°﹣66°=48°.故选:C.【点评】本题考查了折叠性质,矩形性质,平行线的性质的应用,解题时注意:两直线平行,同旁内角互补.25.如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°【分析】先根据三角形内角和定理得到∠BEC的度数,再根据折叠的性质即可得到∠AEF的度数,最后根据平行线的性质,即可得到∠DFE的度数.【解答】解:∵∠BCE=30°,∠B=90°,∴∠BEC=60°,由折叠可得,∠AEF=∠CEF,∴∠AEF=(180°﹣∠BEC)=60°,由CD∥AB,可得∠AEF+∠DFE=180°,∴∠DFE=180°﹣60°=120°.故选:A.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.二.填空题(共14小题)26.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为15°.【分析】过点E作EF∥AB,利用平行线的性质可知∠1+∠2=∠AEC=90°,进而得到∠2的度数.【解答】解:如图,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠1=∠AEF,∠2=∠CEF,∴∠1+∠2=∠AEF+∠CEF=∠AEC=90°,又∵∠1=75°,∴∠2=15°.故答案为:15°.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.27.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,则图中∠1与∠2之间的数量关系为∠2﹣∠1=90°.【分析】先根据平角的定义得出∠3=180°﹣∠2,再由平行线的性质得出∠4=∠3,根据∠4+∠1=90°即可得出结论.【解答】解:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.∴∠1与∠2之间的数量关系为:∠2﹣∠1=90°,故答案为:∠2﹣∠1=90°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.28.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=59°.【分析】由折叠可得,∠2=∠BEF,依据∠1=62°,即可得到∠2=(180°﹣62°)=59°.【解答】解:由折叠可得,∠2=∠BEF,又∵∠1=62°,∴∠2=(180°﹣62°)=59°,故答案为:59°.【点评】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.29.如图,直线m∥n,若∠1=70°,∠2=25°,则∠A等于45°.【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=25°,∴∠A=45°,故答案为:45°.【点评】本题考查了平行线的性质和三角形的外角性质,解决问题的关键是求出∠3的度数.30.如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=2α﹣90°(用含α的式子表示)【分析】先利用平行线的性质得到∠AEH=∠CFH=α,再根据角平分线定义得到∠MEH=∠AEH=α,则利用邻补角的定义得到∠MEN=180°﹣2α,然后根据三角形内角和计算∠EMN的度数.【解答】解:∵AB∥CD,∴∠AEH=∠CFH=α,∵EH平分∠AEM,∴∠MEH=∠AEH=α,∴∠MEN=180°﹣2α,∵MN⊥AB,∴∠MNE=90°,∴∠EMN=90°﹣(180°﹣2α)=2α﹣90°.故答案为2α﹣90°.【点评】本题考查了平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.31.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是40°.【分析】先根据a∥b得出∠1=∠3=20°,再求出∠4的度数,由b∥c即可得出结论.【解答】解:∵a∥b,∠1=20°,∴∠1=∠3=30°,∴∠4=60°﹣20°=40°.∵b∥c,∴∠2=∠4=40°.故答案为:40°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.32.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2=35°.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.33.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=135°.【分析】直接利用平行线的性质结合邻补角的性质得出答案.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.34.如图,D、E分别是AB、AC上的点,DE∥BC,若∠C=50°,则∠AED=50°.【分析】依据DE∥BC,可得∠AED=∠C,利用∠C=50°,即可得到∠AED=50°.【解答】解:∵DE∥BC,∴∠AED=∠C,又∵∠C=50°,∴∠AED=50°,故答案为:50.【点评】本题考查了平行线的性质和判定的应用,主要考查学生运用定理进行推理的能力.35.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.36.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=60°.【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.37.如图是一架婴儿车,其中AB∥CD,∠BFG=50°,∠D=40°,那么∠AEF=90°.【分析】直接利用平行线的性质得出∠A=∠D=40°,再利用三角形内角和定理得出答案.【解答】解:∵AB∥CD,∴∠A=∠D=40°,∵∠BFG=50°,∴∠AFE=50°,∴∠AEF=180°﹣40°﹣50°=90°.故答案为:90°.【点评】此题主要考查了平行线的性质以及三角形内角和定理,正确得出∠A度数是解题关键.38.如图,已知直线a∥b,∠1=72°,∠2=38°,则∠3=70°.【分析】依据a∥b,即可得到∠2=∠4=38°,再根据∠1=72°,即可得到∠3的度数.【解答】解:∵a∥b,∴∠2=∠4=38°,又∵∠1=72°,∴∠3=180°﹣38°﹣72°=70°,故答案为:70.【点评】本题考查了平行线的性质和平角的定义,熟练掌握性质定理是解题的关键.39.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.三.解答题(共11小题)40.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,求∠FAG的度数.【分析】由平行线的性质得到∠BAC=∠ECF=70°;利用邻补角的定义、角平分线的定义,即可求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC 的度数是解题的难点.41.如图,点D,E,F分别在AB,BC,AC上,且DE∥AC,EF∥AB,下面写出了证明“∠A+∠B+∠C=180°”的过程,请补充完整:证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠C,∠3=∠B,∠4=∠A(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4(两直线平行,内错角相等)∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°(平角的性质)∴∠A+∠B+∠C=180°(等量代换).【分析】先由DE∥AC,AB∥EF,根据平行线的性质得出∠1=∠C,∠3=∠B,∠2=∠4,进而得到∠A+∠B+∠C=180°.【解答】证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠C,∠3=∠B,∠4=∠A(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4(两直线平行,内错角相等)∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°(平角的性质)∴∠A+∠B+∠C=180°(等量代换).故答案为:C;B;A;两直线平行,内错角相等;平角的性质.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等.42.如图,已知EF∥AB,∠1=∠B,求证:∠EDC=∠DCB.【分析】证明∠EDC=∠DCB,只需具备DE∥BC即可,可以考虑证得∠ADE=∠B,而∠1与这两个角都相等.【解答】证明:∵EF∥AB,∴∠1=∠ADE,∵∠1=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠EDC=∠DCB.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.【分析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE即可得出答案.【解答】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A=105°.∴∠ACD=75°.∵∠DCE=∠ACD﹣∠ACE,∠ACE=51°.∴∠DCE=24°.∵CD∥EF(已知).∴∠E=∠DCE(两直线平行、内错角相等).∴∠E=24°.【点评】此题主要考查了平行线的性质,正确得出∠DCE的度数是解题关键.44.如图DE⊥AB,EF∥AC,∠A=35°,求∠DEF的度数.【分析】先根据DE⊥AB可知∠ADE=90°,再由三角形外角的性质求出∠DGC的度数,根据平行线的性质即可得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠DGC是△ADG的外角,∠A=35°,∴∠DGC=∠A+∠ADG=35°+90°=125°,∵EF∥AC,∴∠DEF=∠DGC=125°.【点评】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.45.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,问:EP⊥FP吗?请说明理由.【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.【解答】解:EP⊥FP.理由:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.【点评】本题主要考查了平行线的性质,解决问题的关键就是找到∠PEF+∠EFP 与∠BEF+∠EFD之间的关系,运用整体代换思想.46.已知AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.【分析】直接利用平行线的性质得出∠AGF=∠BAD,∠CAD=∠F,再利用角平分线的定义得出答案.【解答】证明:∵EF∥AD,∴∠AGF=∠BAD,∠CAD=∠F,又∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠AGF=∠F.【点评】此题主要考查了平行线的性质,得出相等的角是解题关键.47.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由.(2)求∠AFE的度数.【分析】(1)先延长AF、DE相交于点G,根据两直线平行同旁内角互补可得∠CDE+∠G=180°.又已知∠CDE=∠BAF,等量代换可得∠BAF+∠G=180°,根据同旁内角互补,两直线平行得AB∥DE;(2)先延长BC、ED相交于点H,由垂直的定义得∠B=90°,再由两直线平行,同旁内角互补可得∠H+∠B=180°,所以∠H=90°,最后可结合图形,根据邻补角的定义求得∠AFE的度数.【解答】解:(1)AB∥DE.理由如下:延长AF、DE相交于点G,∵CD∥AF,。

初中数学 平行线有哪些性质

初中数学  平行线有哪些性质

初中数学平行线有哪些性质平行线是初中数学中的一个重要概念,具有许多性质。

在本文中,我将为您详细介绍平行线的各种性质。

1. 平行线的定义性质:-平行线是在同一平面上永远不相交的两条直线。

这意味着它们没有共同的交点。

-平行线具有相同的斜率。

斜率是用来描述直线的倾斜程度的数值。

如果两条直线有相同的斜率,那么它们是平行线。

-平行线之间的距离是恒定的。

对于任意两条平行线,它们之间的距离在整个线段上是相等的。

2. 平行线的角度性质:-平行线之间的所有内角相等。

如果一条直线与两条平行线相交,那么所形成的内角是相等的。

-平行线之间的所有外角相等。

如果一条直线与两条平行线相交,那么所形成的外角是相等的。

-平行线之间的同位角相等。

如果两条平行线被一条直线割分,那么所形成的同位角是相等的。

3. 平行线的传递性:-平行线的传递性定理:如果直线L1与直线L2平行,直线L2与直线L3平行,那么直线L1与直线L3也平行。

-这个定理的意思是,如果有三条直线,其中任意两条平行,那么第三条直线也与这两条直线平行。

4. 平行线的副交角性质:-平行线的副交角定理:如果两条直线被一对平行线割分,那么所形成的副交角是相等的。

这意味着在两条平行线之间,对应的副交角是相等的。

5. 平行线的交角性质:-线与平行线的交角定理:如果一条直线与两条平行线相交,那么所形成的内角、外角和同位角之间的关系是具有特定的等式。

-内角和同位角之和等于180度:如果一条直线与两条平行线相交,那么所形成的内角和同位角之和等于180度。

-外角等于内角的补角:如果一条直线与两条平行线相交,那么所形成的外角等于内角的补角。

以上是平行线的一些重要性质。

这些性质可以帮助我们解决各种几何问题,如计算角度、线段长度等。

此外,平行线的概念在实际生活中也有广泛的应用,如城市规划中的道路设计、光线的传播路径等。

希望以上内容能够帮助您更好地理解平行线的性质。

新初中数学相交线与平行线解析含答案(2)

新初中数学相交线与平行线解析含答案(2)

新初中数学相交线与平行线解析含答案(2)一、选择题1.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;2.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.3.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.4.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.5.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.下列结论中:①若a=b,则a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】,则a=b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离④|3-2|=2-3,正确正确的个数有②④两个故选B8.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A 、B 、C 正确,D 错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c ∥d ,故正确; 根据同位角相等,两直线平行,可知因为∠3=∠4,所以c ∥d ,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a ∥b ,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4 ∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a 交c 于点M ,∵b ∥c ,a ⊥b ,∴a ⊥c ,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B .【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识13.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.14.如图,△ABC 中,∠C=90°,则点B 到直线AC 的距离是 ( )A .线段ABB .线段AC C .线段BCD .无法确定【答案】C【解析】【分析】直接利用点到直线的距离定义得出答案.【详解】解:如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是:线段BC . 故选:C .【点睛】本题考查点到之间的距离,正确把握相关定义是解题关键.15.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE ∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【答案】C【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.20.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质2一.选择题(共30小题)1.如图所示,a∥b且∠4=110°,则∠1的度数是()A.20°B.70°C.80°D.110°2.如图AD是∠BAC的平分线,EF∥AC交AB于点E,交AD于点F,∠BAC=70°,∠1的度数为()A.25°B.30°C.35°D.70°3.如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°4.AF是∠BAC的平分线,DF∥AC,若∠BAC=70°,则∠1的度数为()A.175°B.35°C.55°D.70°5.如图,直线a,b被直线c所截,a∥b,若∠2=45°,则∠1等于()A.125°B.130°C.135°D.145°6.已知直线l1∥l2,将一块含30°角的直角三角板ABC按如图所示方式放置,若∠1=85°,则∠2等于()A.35°B.45°C.55°D.65°7.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°8.如图,BD∥CE,∠1=76°,∠2=28°,则∠A的度数是()A.104°B.38°C.48°D.53°9.如图所示,直线m∥n,∠1=63°,∠2=34°,则∠BAC的大小是()A.73o B.83o C.77o D.87o10.如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()A.108°B.120°C.136°D.144°11.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°12.如图,一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为()A.15°B.30°C.45°D.60°13.如图,将一张长方形纸片ABCD沿AE折叠,若∠BAD′=26°,则∠AED′等于()A.68°B.64°C.58°D.26°14.如图,直线a,b被直线m所截,若a∥b,∠2=62°,则∠1=()A.62°B.108°C.118°D.128°15.如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°16.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为()A.20°B.30°C.40°D.50°17.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°18.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.30°B.40°C.50°D.60°19.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为()A.15°B.35°C.25°D.40°20.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.68°C.60°D.58°21.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°22.如图,AB∥CD,∠E=40°,∠A=120°,则∠C的度数为()A.60°B.80°C.75°D.70°23.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°24.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.若∠1=55°,则图中∠2的大小为()A.25°B.30°C.35°D.15°25.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°26.如图,已知CD∥BE,如果∠1=60°,那么∠B的度数为()A.70°B.100°C.110°D.120°27.如图所示,已知直线a,b,其中a∥b,点C在直线b上,∠DCB=90°,若∠1=75°,则∠2=()A.25°B.15°C.20°D.30°28.如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于()A.100°B.90°C.70°D.50°29.如图,直线a∥b,∠1=120°,则∠2的度数是()A.120°B.80°C.60°D.50°30.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.60°B.68°C.70°D.72°二.填空题(共10小题)31.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=40度,则∠2=______.32.如图,AB∥CD,EF,GH相交于点O,若∠1=40°,∠2=60°,则∠EOH=______.33.如图所示,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数为______.34.如图,AB∥CD,EF⊥BD,垂足为F,∠1=43°,则∠2的度数为______.35.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=______.36.如图,AB∥CD,DE∥CB,∠B=35°,则∠D=______°.37.如图,直线a,b被直线c所截,a∥b,∠1=80°,则∠2=______.38.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=98°,若∠1=35°,则∠2=______度.39.如图所示,∠ABC=36°,DE∥BC,DF⊥AB于点F,则∠D=______.40.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF=70°,则∠ABE=______度.平行线的性质2参考答案与试题解析一.选择题(共30小题)1.解:∵∠4=110°,∴∠3=180°﹣110°=70°,∵a∥b,∴∠1=∠3=70°,故选:B.2.解:∵AD是∠BAC的平分线,∠BAC=70°,∴∠CAF=∠BAC=35°.∵EF∥AC,∴∠1=∠CAF=35°.故选:C.3.解:∵∠EFB=65°,AD∥CB,∴∠DEF=65°,由折叠可得∠NEF=∠DEF=65°,∴∠AEN=180°﹣65°﹣65°=50°,故选:B.4.解:∵∠BAC=70°,AF平分∠BAC,∴∠F AC=∠BAC=35°,∵DF∥AC,∴∠1=∠F AC=35°,故选:B.5.解:如图,∵a∥b,∠2=45°,∴∠3=∠2=45°,∴∠1=180°﹣∠3=135°,故选:C.6.解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°,∴∠4=65°.∵直线l1∥l2,∴∠2=∠4=65°.故选:D.7.解:如图所示,∵AB∥CD,∴∠1=∠BAC=85°,又∵∠BAC是△ABE的外角,∴∠2=∠BAC﹣∠E=85°﹣30°=55°,故选:C.8.解:∵BD∥CE,∴∠BDC=∠1=76°,∵∠BDC=∠2+∠A,∴∠A=∠BDC﹣∠2=76°﹣28°=48°.故选:C.9.解:∵直线m∥n,∴∠3=∠2=34°.∵∠1+∠BAC+∠3=180°,∠1=63°,∠3=34°,∴∠BAC=180°﹣63°﹣34°=83°.故选:B.10.解:由折叠的性质,可知:∠AEF=∠FEH.∵∠BEH=4∠AEF,∠AEF+∠FEH+∠BEH=180°,∴∠AEF=×180°=30°,∠BEH=4∠AEF=120°.∵AB∥CD,∴∠DHE=∠BEH=120°,∴∠CHG=∠DHE=120°.故选:B.11.解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.12.解:∵AB∥CD,∴∠ABD=∠EDF=45°,∴∠CBD=∠ABD﹣∠ABC=45°﹣30°=15°.故选:A.13.解:根据折叠可知:∠D′=∠D=90°,∠DAE=∠D′AE=∠DAD′=(90°﹣26°)=32°,∴∠AED′=90°﹣32°=58°.故选:C.14.解:如图,∵a∥b,∴∠3=∠2=62°,∵∠3+∠1=180°,∴∠1=180°﹣62°=118°.故选:C.15.解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.16.解:∵∠ACE=20°,CE平分∠ACD,∴∠ACD=2∠ACE=40°,∵AB∥CD,∴∠BAF=∠ACD,∴∠BAF=40°,故选:C.17.解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D.18.解:∵∠1=30°,∠BAC=90°,∴∠3=180°﹣90°﹣30°=60°,∵直尺对边互相平行,∴∠2=∠3=60°.故选:D.19.解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选:C.20.解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:D.21.解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.22.解:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=120°,∴∠AFD=60°,∴∠CFE=∠AFD=60°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣60°=80°,故选:B.23.解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.24.解:∵AB∥CD,∴∠1=∠3=55°,∵∠3=∠1+30°,∴∠2=∠3﹣30°=55°﹣30°=25°.故选:A.25.解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故选:C.26.解:∵∠1=60°,∴∠2=180°﹣60°=120°.∵CD∥BE,∴∠2=∠B=120°.故选:D.27.解:∵∠1=75°,∠1与∠3是对顶角,∴∠3=∠1=75°,∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣75°﹣90°=15°.故选:B.28.解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠ACD=∠1=40°,∠BCD=∠2=60°,∴∠3=∠ACD+∠BCD=100°.故选:A.29.解:∵a∥b∴∠3=∠2,∵∠3=180°﹣∠1,∠1=120°,∴∠2=∠3=180°﹣120°=60°,故选C.30.解:∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:C.二.填空题(共10小题)31.解:∵∠E=30°,∠1=40°,∴∠3=70°,∵AB∥CD,∴∠2=∠3=70°,故答案为:70°.32.解:∵AB∥CD,∴∠1=∠OHF=40°,∴∠EOH=∠OHF+∠2=40°+60°=100°.故答案为100°.33.解:∵两三角板的斜边互相平行,∴∠3=∠2=45°.∵∠3=∠4+∠5,∴∠5=∠3﹣∠4=45°﹣30°=15°.又∵∠1+∠5+90°=180°,∴∠1=75°.故答案为:75°.34.解:∵AB∥CD,∴∠D=∠1=43°.∵EF⊥BD,垂足为F,∴∠DFE=90°,∴∠2=180°﹣90°﹣43°=47°.故答案为:47°.35.解:过点E作FE∥AB,∵AB∥CD,∴AB∥FE∥CD,∴∠ABE+∠BEF=180°,∠FED+∠EDC=180°,∴∠ABE+∠BEF+∠FED+∠EDC=360°∵BE⊥DE,∴∠BEF+∠FED=90°,∴∠ABE+∠CDE=270°,故答案为:270°.36.解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=145°.故答案为:145.37.解:∵∠1=80°,∴∠3=80°.∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣80°=100°.故答案为:100°.38.解:∵直线a∥b,∴∠3=∠1=35°.∵∠2+∠3+∠BAC=180°,∠BAC=98°,∠3=35°,∴∠2=180°﹣∠3﹣∠BAC=47°.故答案为:47.39.解:∵DE∥BC,∴∠DAF=∠ABC=36°.∵DF⊥AB,∴∠DAF+∠D=90°,∴∠D=90°﹣∠DAF=54°.故答案为:54°.40.解:∵∠DEF=∠BEF=70°,∠AEB+∠BEF+∠DEF=180°,∴∠AEB=180°﹣2×70°=40°.∵AD∥BC,∴∠EBF=∠AEB=40°,∴∠ABE=90°﹣∠EBF=50°.故答案为:50.。

相关文档
最新文档