第3章液压执行元件
左健民液压与气压传动第五版课后答案1-11章资料
液压与气压传动课后答案(左健民)第一章液压传动基础知识1-1液压油的体积为331810m -⨯,质量为16.1kg ,求此液压油的密度。
解: 23-3m 16.1===8.9410kg/m v 1810ρ⨯⨯ 1-2 某液压油在大气压下的体积是335010m -⨯,当压力升高后,其体积减少到3349.910m -⨯,取油压的体积模量为700.0K Mpa =,求压力升高值。
解: ''33343049.9105010110V V V m m ---∆=-=⨯-⨯=-⨯由0P K V V ∆=-∆知: 643070010110 1.45010k V p pa Mpa V --∆⨯⨯⨯∆=-==⨯ 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm,外筒转速n=8r/s 时,测得转矩T=40N ⋅cm,试求其油液的动力粘度。
解:设外筒内壁液体速度为0u08 3.140.1/ 2.512/2fu n D m s m s F TA r rl πτπ==⨯⨯===由 dudy du dyτμτμ=⇒= 两边积分得0220.422()()22 3.140.20.0980.10.0510.512a a T l d D p s p s u πμ-⨯-⨯⨯∴===1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s ,20C ︒时200Ml 的蒸馏水流过的时间为2t =51s ,求该液压油的恩式粘度E ︒,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ︒=== 62526.31(7.31)10/ 1.9810/E m s m s Eν--=︒-⨯=⨯︒ 21.6810Pa s μνρ-==⨯⋅1-5 如图所示,一具有一定真空度的容器用一根管子倒置一液面与大气相通的水槽中,液体与大气相通的水槽中,液体在管中上升的高度h=1m,设液体的密度为31000/kg m ρ=,试求容器内真空度。
[工学]第3章 液压动力元件
QL
ApsX
p
Ctp PL
Vt
4e
sPL
ApPL mts2X p BpsX p KX p FL
根据阀控液压缸的拉氏变换方程式绘出系统方框图。
2021/8/26
7
由方框图求得液压缸输出位
移传递函数: X p
mtVt
4e Ap2
s3
Kq Ap
Xv
Kce Ap2
1
Vt
4 e K ce
s FL
思考题
• 10、阀控液压马达和泵控液压马达的特性有何不同,为什 么?
• 11、为什么把称为速度放大系数?速度放大系数的量纲是 什么?
• 12、何谓负载匹配?满足什么条件才算最佳匹配? • 13、如何根据最佳负载匹配确定动力元件参数? • 14、泵控液压马达系统有没有负载匹配问题?满足什么条
件才是泵控液压马达的最佳匹配? • 15、在长行程时,为什么不宜采用液压缸而采用液压马达?
2
2
x
x0
Ft (K
Bx
m2 )
x0
1
负载特性曲线:
2021/8/26
31
二、负载匹配
负载匹配定义:
根据负载轨迹来进行负载匹配时,只要使动力元件的输出持性曲 线能够包围负载轨迹,同时使输出特性曲线与负载轨迹之间的区域 尽量小,便认为液压动力元件与负载相匹配。
输出特性曲线:
2021/8/26
第二项:
是惯性力引起的泄漏流量所产生的
2021/8/26
mt Kce Ap2
s2活X p塞速度;
8
第三项: BpVt
4e Ap2
s2
X
是粘性力变化引起的压缩流量产生
第三章 液压泵和液压马达
二、轴向柱塞式液压马达
轴向柱塞式液压马达的工作原理可参照轴向柱塞泵
斜盘 2-缸体 3-柱塞 4-配流盘 5-轴 6-弹簧
2、结构特点
齿轮马达和齿轮泵在结构上的主要区别如下:
(1)齿轮泵一般只需一个方向旋转,为了减小径向不平衡液压力,
因此吸油口大,排油口小。而齿轮马达则需正、反两个方向旋转,
因此进油口大小相等。
(2)齿轮马达的内
泄漏不能像齿轮泵那样直接引到低压腔去,而必须单独的泄漏通
道引到壳体外去。因为齿轮马达低压腔有一定背压,如果泄漏油
积每转内吸油、压油两次,
称为双作用泵。双作用使
流量增加一倍,流量也相
应增加。
压油
吸油
图3-13 双作用叶片工作原理
2、结构上的若干特点
(1)保持叶片与定子内表面接触
转子旋转时保证叶片与定子内表面接触时泵正常工作的必要 条件。前文已指出叶片靠旋转时离心甩出,但在压油区叶片顶部 有压力油作用,只靠离心力不能保证叶片与定子可靠接触。为此, 将压力油也通至叶片底部。但这样做在吸油区时叶片对定子的压 力又嫌过大,使定子吸油区过渡曲线部位磨损严重。减少叶片厚 度可减少叶片底部的作用力,但受到叶片强度的限制,叶片不能 过薄。这往往成为提高叶片泵工作压力的障碍。
容积式液压泵的共同工作原理如下:
(1)容积式液压泵必定有一个或若干个周期变化的密封容积。密 封容积变小使油液被挤出,密封容积变大时形成一定真空度,油液 通过吸油管被吸入。密封容积的变换量以及变化频率决定泵的流量。 (2)合适的配流装置。不同形式泵的配流装置虽然结构形式不同, 但所起作用相同,并且在容积式泵中是必不可少的。
结束
§3-3 叶片泵和叶片油马达
叶片泵有两类:双作用和单作用叶片泵,双作用 叶片泵是定量泵,单作用泵往往做成变量泵。而马达只 有双作用式。
液压执行元件
第三章液压执行元件液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。
液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。
第一节液压马达一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。
由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。
按液压马达的额定转速分为高速和低速两大类。
额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大(仅几十N·m到几百N·m)所以又称为高速小转矩液压马达。
低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N·m到几万N·m),所以又称为低速大转矩液压马达。
液压与气动技术(第二版)—按章节课件02 第二节 液压马达
3.柱塞式液压马达 柱塞式液压马达有轴向式和径向式两种,径向式由于结构尺 寸较大。 (1)径向柱塞式液压马达 图3-24所示为多作用内曲线径向柱塞式液压马达。当压力油 经固定的配流轴6的窗口进入缸体内柱塞的底部时,柱塞向外伸 出,紧紧顶住定子的内壁,由于定子的内壁为曲面,所以在柱塞 与定子接触处,定子对柱塞的反作用力为F。F力可分解为径向 力Fr 和切向力Ft 两个分力。其中Ft力对缸体产生一转矩,使缸体 旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。
第三章 液压执行元件
第二节 液压马达
主要内容:
液压马达的类型和性能参数 液压马达的工作原理与结构 液压马达的选用 液压马达的常见故障及排除
液压马达是将液体的压力能转换成旋转运动机械能的转换元 件,它能起到与电动机相类似的作用,因而在液压设备中被广泛 应用。 一、液压马达的类型与性能参数
1. 液压马达的类型
所以,齿轮式液压马达一般用于低精度、低负载的工程机 械、农业机械以及对转矩均匀性要求不高的机械设备上。
2. 叶片式液压马达 如图3-22(a)所示为叶片式液压马达的实物图,图3-22(b) 所示为其工作原理图。当压力油进入压油腔后,在叶片1、3上 一面作用有压力油,另一面为低压回油。由于叶片3伸出的面 积大于叶片1伸出的面积,所以液体作用于叶片3上的作用力大 于作用于叶片1上的作用力,从而由于作用力不等而使叶片带 动转子作逆时针方向旋转。
液压马达的图形符号如图3-20所示。
2.液压马达的特点
(1)液压马达的排油口压力稍大于大气压力,进、出油口直径 相同。 (2)液压马达往往需要正、反转,所以在内部结构上应具有对 称性。 (3)在确定液压马达的轴承形式时,应保证在很宽的速度范围 内都能正常工作。 (4)液压马达在启动时必须保证较好的密封性。 (5)液压马达一般需要外泄油口。 (6)为改善液压马达的起动和工作性能,要求扭矩脉动小,内 部摩擦小。
第三章 液压与气压执行元件
在液压缸中最具有代表性的结构是双作用单杆活塞式 液压缸的结构,它可以通过差动连接,在不增加液压 泵流量的前提下实现快速运动,广泛应用于组合机床 的液压动力滑台和各类专用机床中,是工程机械中常 用的液压缸。液压缸的结构一般由缸体组件、活塞组 件、密封装置、缓冲装置和排气装置所组成。
阶段三 液压缸的组成
1.缸体组件 缸体组件包括缸筒、前后缸盖和导向套等
图3-9缸筒与端盖的连接形式
2.活塞组件
活塞组件由活塞活塞杆和连接件等组成,活塞 和活塞杆连接形式有多种,随着工作压力、安 装形式、工作条件等的不同有很多种。
活塞与活塞杆连接形式
3.液压缸的缓冲
液压缸的缓冲装置是为了防止活塞在行
程终了时和缸盖发生撞击。 分为: (1)环状间隙式缓冲装置。 (2)圆锥形环隙式缓冲装置。 (3)可变节流式缓冲装置。 (4)可调节流式缓冲装置。
4.多作用内曲线径向柱塞马达
内曲线马达有轴转式、壳 转式,定量式、变量(可调 式),单排柱塞、双排柱塞 、多排柱塞等多种形式。
5.曲轴连杆式径向马达
连杆柱塞马达具有结构简单,制造容易,价格 较低等优点;但其体积和重量较大,转矩脉动 较大,低速稳定性差。常用的马达额定工作压 力为21MPa,最高工作压力为31.5MPa,最 低稳定转速可达3r/min。
任务二 液压马达
液压马达是将液压能转变为机械能的一种能量转换装 置,是液压设备执行机构实现旋转运动的执行元件。 从结构形式上分,液压马达和液压泵的分类完全一样 ,有齿轮式、叶片式、柱塞式和螺杆式。从工作原理 看,液压马达和液压泵是可逆的,但实际上由于二者 在结构上存在微小差异,故液压泵一般不能作为液压 马达使用。
第三章 液压马达解读
配流轴圆周均布2x 个配流窗口,其中x 个窗口对应于 a段,通高压油,x 个窗口对应于b段,通低压油(x≠z );
输出轴 ,缸体与输出轴连成一体。
13
• 排量公式 v =(πd 2/4)sxyz
– s 为柱塞行程; x 为作用次数; y 为柱塞排数; z 为每排柱塞数 。
• 应用 转矩脉动小,径向力平衡,启 动转矩大,能在低速下稳定运转,普 遍用于工程、建筑、起重运输、煤矿、 船舶、农业等机械中。
接方式被称为差动连接。
27
两腔进油,差动联接
A1 A2
A1 A2
F3 F3
P1
v3
ΔP
等效
P1
v3
q
q
活塞的运动速度为:
(c)差动联接
?
q 4q v3 v 2 v A1 A2 d
在忽略两腔连通油路压力损失的情况下,差动连 接液压缸的推力为:
2 F3 p1 ( A1 A2 ) m d p1 v 4
24
A1
A2
有杆腔进油
P1 P2
F2
q
v2
(b)有杆腔进油
活塞的运动速度 v2 和推力 F2 分别为:
q 4q v2 v v 2 2 A2 (D d )
2 2 F2 ( p2 A2 p1 A1 ) m [( D d ) p2 D 2 p1 ] m 4
14
液压泵及液压马达的工作特点
液压泵的工作特点
液压泵的吸油腔压力过低将会产生吸油不足、
异常噪声,甚至无法工作。 液压泵的工作压力取决于外负载,为了防止 压力过高,泵的出口常常要采取限压措施。 变量泵可以通过调节排量来改变流量,定量 泵只有用改变转速的办法来调节流量。 液压泵的流量脉动。 液压泵(齿轮泵) “困油现象”。
液压传动电子课件3-执行元件
v2 D2 2 v1 D d2
2.柱塞式液压缸 特点:(1)柱塞和缸体内壁不接触,加工 工艺性好、成本低,适用于行程较长的场合(2) 属单作用缸,回程要靠外力或成对配合使用 (3) 工作时柱塞端面受压,当输出较大推力时,柱塞 通常都较粗、较重。一般垂直使用。 柱塞缸输出的推力和速度分别为:
第3章 液压缸与液压马达
第3 章
液压执行元件
3.1
液压马达
3.2
液压缸
3.1 液压马达
3.1.1 液压马达的分类和应用 以结构形式分:齿轮式、叶片式、柱塞式和螺 杆式。 以性能参数分:高速小扭矩液压马达 和低速大 扭矩液压马达。 另外,液压马达同液压泵一样有单向和双向 定量和变量之分 。 应用:不同形式、性能参数的液压马达应用 范围也不同。
(3)伸缩缸 由两级或多级活塞缸 套装而成,它的前一 级活塞缸的活塞就是 后一级的缸体 。
3.1.2 液压马达的工作原理 1.液压马达的基本工作原理 同液压泵一样,也是通过密封工作容积的变化来来实 现能量传递和转换的,只不过液压马达在密封工作腔容积 由小变大时输入的是压力油密封工作腔容积由大变小时 排除的是低压油。 从原理上说,除阀式配流的液压泵外(具有单向性), 其它形式的液压泵和液压马达可以互相通用。由于各自 的工作要求不一样 ,液压马达和液压泵在结构上往往又 存在一些差别 一般情况下液压马达和液压泵不能直接互 换。
双杆活塞液压缸的推力F和速度υ: 2 2 推力: F pA ( D d ) p
4
速度: (2)单杆活塞式液压缸
v
q 4q A (D 2 d 2 )
单杆活塞式液压缸的压力油供油方式:
无杆腔进压力油,有杆腔回油时: q 4q 2 v F1 p A1 D p 1 A1 D 2 4 有杆腔通压力油,无杆腔回油 时:
3第三章液压泵及液压马达(1)
2. 工作原理
3. 流量
q 2 k z m2 b n V
4. 特点
流量和压力的脉动较小;无困油区,噪声较低; 加工难价格高;轮齿接触应力小,泵的寿命较长。
(二)摆线形内啮合齿轮泵
1 . 主要组成
摆线齿轮泵又称为转子泵,由两齿轮及 前后端盖等组成。且两齿轮相差一个齿。
2. 工作原理
吸油 —— 左半部分,轮齿脱开啮合,容积↑ 压油 —— 右半部分,轮齿进入啮合,容积↓
三 液压泵(马达)的性能参数
液压泵(马达)的性能参数主要有: 压力 转速
排量和流量 功率和效率
一、 排量、流量和压力
1. 压 力
⑴ 工作压力(p) —— 液压泵(或马达)工作时输出液体的实际压力。 其值取决于负载(包括管路阻力)。
(2) 额定压力(p n)—— 油泵(或马达)铭牌上标注的压力值。指在 连续运转情况下所允许使用的工作压力。它能使泵(或马达)具有较高的 容积效率和较长的使用寿命。
轴套 采用浮动轴套的中高压齿轮泵结构图
2. 高压内啮合齿轮泵
➢ 轴向间隙补偿原理
与外啮合齿轮泵浮动侧板的补偿相似,也是利用背压使两侧的浮 动侧板紧贴在小齿轮、内齿环和填隙片端面上;磨损后,也可利用背 压自动补偿。
➢ 径向间隙补偿原理
径向半圆支承块(15)的下面也有两个背压室,各背压室均与压 油腔相同。在背压作用下,半圆支承块推动内齿环,内齿环(6)又 推动填隙片与小齿轮齿顶相接触,形成高压区的径向密封。同时,可 自动补偿各相对运动间的磨损。
qt qm
qm q qm
1
q qm
(6) 马达总效率(ηm)
液压马达的总效率是实际输出功率与实际输入功率的比值,即:
m
第三章液压执行元件
p1
p2 )D2
p2d 2 ]
v1
q A1
4q
D 2
b)从有杆腔进油时,活塞上所产生的推力
F2和速度v2
F2
A2 p1
A1 p2
4 [( p1
p2 )D2
p1d 2 ]
q
4q
v2 A2 (D 2 d 2 )
C)速度比
v
v2 v1
1 1 (d / D)2
3.差动液压缸——单杆活塞缸的左右两腔同 时通压力油,称为差动液压缸。
(二)液压缸的组成 液压缸的结构基本上可以分为缸筒和
缸盖、活塞和活塞杆、密封装置、缓冲装 置和排气装置五个部分。
1、缸筒与缸盖
2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。
3.液压马达的转速和低速稳定性
1)转速
n
q V
v
2)爬行现象——当液压马达工作转速过低 时,往往保持不了均匀的速度,进入时动 时停的不稳定状态,这就是所谓爬行现象
• 和其低速摩擦阻力特性有关。
• 另外,液压马达排量本身及泄漏量也在 随转子转动的相位角变化作周期性波动, 这也会造成马达转速的波动
4.调速范围 液压马达的调速范围以允许的最大转速和 最低稳定转速之比表示,即
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
pc
E2 Ac l c
节流口可调式则最大的缓冲压力即冲击压
力为
pc max
pc
mv02 2 Aclc
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力
《液压执行元》课件
螺杆泵
总结词
低噪声、流量稳定、自吸能力强、适合输送粘性液体
详细描述
螺杆泵是一种低噪声、流量稳定的液压执行元件,具有自吸能力强、适合输送粘性液体等特点。其工 作原理是依靠螺杆的旋转来推动液体向前流动,螺杆与泵壳之间的紧密配合减少了泄漏,保证了流量 的稳定性。
03
液压执行元件的性能参数
压力
压力
指液压执行元件在单位 面积上所承受的液压力
工作原理与特点
工作原理
液压执行元件通过密封容积的变化实 现运动,利用液体的压力能转换为机 械能。
特点
具有较大的输出力矩和转速,可实现 无级调速,但易受温度影响,效率较 低。
应用领域与重要性
应用领域
广泛应用于工程机械、农业机械、机床、船舶、航空航天等 领域。
重要性
液压执行元件是液压系统的关键部分,其性能直接影响整个 系统的性能和工作可靠性。
。
额定压力
液压执行元件正常工作 时所能承受的最大压力
。
最高允许压力
液压执行元件允许承受 的最大压力,超过此压
力可能会损坏元件。
压力调节
通过调节溢流阀、减压 阀等液压元件来改变液 压执行元件的工作压力
。
流量
01
02
03
04
流量
指液压执行元件在单位时间内 所能传递的液体体积或质量。
额定流量
液压执行元件正常工作时所能 传递的最大流量。
最大流量
液压执行元件所能传递的最大 流量,通常为额定流量的1.25
倍。
流量调节
通过调节节流阀、调速阀等液 压元件来改变液压执行元件的
流量。
效率
效率
指液压执行元件输出功率与输 入功率的比值,通常用百分比
第3章 液压泵与液压马达
启动性能
液压马达的启动性能主要由启动转矩和启动机械效率来描述。 启动转矩是指液压马达由静止状态启动时液压马达轴上所能输 出的转矩。 启动机械效率是指液压马达由静止状态启动时,液压马达实际 输出的转矩与它在同一工作压差时的理论转矩之比。
3.1 液压泵与液压马达概述
液压马达的主要性能参数
液压泵与液压马达概述 齿轮泵 叶片泵 柱塞泵 液压泵的选用 液压马达
3.1 液压泵与液压马达概述
液压泵的工作原理
1—偏心轮 2—柱塞 3—缸体 4—弹簧 5—压油单向阀 6—吸油单向阀 a—密封油腔 单柱塞容积式泵的工作原理图
• 构成容积式液压泵必须具备三个条件:
• 1.容积式泵必定具有一个或若干个密封工作腔。 • 2.密封工作腔的容积能产生由小到大和由大到小的 变化,以形成吸油、排油过程。 • 3.具有相应的排油机构以使吸油、排油过程能各自 独立完成,该方式称为配流。
3.1 液压泵与液压马达概述
液压马达的主要性能参数
液压马达的主要性能参数有压力、排量和流量、转速和容积效率、 转矩和机械效率、效率与总功率、启动性能、最低稳定转速、制动性能、 工作平稳性及噪声。
压力
为保证液压马达运转的平稳性,一般取液压马达的背压 为(0.5--1)MPa。
3.1 液压泵与液压马达概述
第3章
液压泵与液压马达
液压泵与液压马达,是液压系统中的能量转换装置。 本章主要介绍几种典型的液压泵与液压马达的工作 原理、结构特点、性能参数以及应用。
液压泵
将原动机输出的机械能转换成压力能,属于动力元件, 其功用是给液压系统提供足够的压力油以驱动系统工作。因此,液压 泵的输入参量为机械参量(转矩T和转速n),输出参量为液压参量(压 力p和流量q)。
液压执行元件
第三章液压执行元件一、填空题1.液压执行元件有和两种类型,这两者不同点在于:将液压能变成直线运动或摆动的机械能,液压马达将液压能变成连续回转的机械能。
2.液压缸按结构特点的不同可分为缸、缸和摆动缸三类。
液压缸按其作用方式不同可分为式和式两种3.缸和缸用以实现直线运动,输出推力和速度;缸用以实现小于300°的转动,输出转矩和角速度。
4.活塞式液压缸一般由、、缓冲装置、放气装置和装置等组成。
选用液压缸时,首先应考虑活塞杆的,再根据回路的最高选用适合的液压缸。
5.两腔同时输入压力油,利用进行工作的单活塞杆液压缸称为差动液压缸。
它可以实现的工作循环。
6.液压缸常用的密封方法有和两种。
7.式液压缸由两个或多个活塞式液压缸套装而成,可获得很长的工作行程。
二、单项选择题1.液压缸差动连接工作时,缸的(),缸的()。
A.运动速度增加了B.输出力增加了C.运动速度减少了D.输出力减少了2.在某一液压设备中需要一个完成很长工作行程的液压缸,宜采用()A.单活塞液压缸B.双活塞杆液压缸C.柱塞液压缸D.伸缩式液压缸3.在液压系统的液压缸是()A.动力元件B.执行元件C.控制元件D.传动元件4.在液压传动中,液压缸的()决定于流量。
A.压力B.负载C.速度D.排量5. 将压力能转换为驱动工作部件机械能的能量转换元件是()。
A、动力元件;B、执行元件;C、控制元件。
6.要求机床工作台往复运动速度相同时,应采用()液压缸。
A、双出杆B、差动C、柱塞D、单叶片摆动7.单杆活塞液压缸作为差动液压缸使用时,若使其往复速度相等,其活塞直径应为活塞杆直径的()倍。
A、0B、1 C8. 一般单杆油缸在快速缩回时,往往采用()。
A、有杆腔回油无杆腔进油;B、差动连接;C、有杆腔进油无杆腔回油。
9.活塞直径为活塞杆直径2倍的单杆液压缸,当两腔同时与压力油相通时,则活塞()。
A、不动;B、动,速度低于任一腔单独通压力油;C、.动,速度高于任一腔单独通压力油。
第三章:液压泵和液压马达(含习题答案)
第三章液压泵和液压马达第一节液压泵第二节齿轮泵第三节叶片泵第四节柱塞泵第五节液压马达第六节液压泵和液压马达的选用重点:液压泵和液压马达的工作原理、效率功率计算难点:结构教学目的:理解原理,熟悉结构在液压系统中,液压泵和液压马达都是能量转换装置。
液压泵:把驱动电动机的机械能转换成液压系统中油液的压力能,供系统使用;液压马达:把输来的油液的压力能转换成机械能,使工作部件克服负载而对外做功。
工作原理上,大部分液压泵和液压马达是可逆的。
一、液压泵的工作原理二、液压泵的性能参数三、液压泵的分类一、液压泵的工作原理容积式液压泵:靠密封工作腔的容积变化进行工作,其输出流量的大小由密封工作容积变化的大小来决定。
i P T ω=o V P pq =η=ηV按结构形式分为:齿轮式、叶片式、柱塞式三大类。
按输出(输入)流量分为:定量液压泵和变量液压泵。
第一节液压泵三、液压泵的分类a)单向定量液压泵b)双向定量液压泵c)单向变量液压泵d) 双向变量液压泵液压泵的图形符号作业:3-2齿轮泵优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸能力强、对油液污染不灵敏、维修方便及工作可靠,因此在汽车上得到了广泛的应用。
齿轮泵缺点:泄漏较大,流量脉动大,噪声较高,径向不平衡力大,所能达到的额定压力不够高,目前其最高工作压力30MPa 。
第二节齿轮泵齿轮泵按结构形式分为:①外啮合齿轮泵②内啮合齿轮泵泵的泵体内装有一对相同的外啮合齿轮,齿轮两侧靠端盖密封。
泵体、端盖和齿轮的各个齿间一、外啮合齿轮泵1. 外啮合齿轮泵工作原理第二节齿轮泵槽组成了许多密封的工作腔。
b zm Dhb V 22ππ==排量:b zm V 266.6=排量修正:排量近似计算:假设齿间的工作容积与轮齿的有效体积相等,则齿轮每转排量等于主动齿轮的所有齿间容积及其所有轮齿的有效体积之和(1)困油现象:齿轮泵要平稳而连续地工作,齿轮啮合的重合度系数必须大于1,因此总有两对轮齿同时啮合,并有一部分油液被围困在两对轮齿所形成的封闭容积之间,困油容积由大变小,再由小变大,使油压变化,产生振动和噪声。
液压与气动控制技术辛连学3液压执行元件答案
3.在液压系统的液压缸是( )
A.动力元件B.执行元件C.控制元件D.传动元件
4.在液压传动中,液压缸的( )决定于流量。
A.压力B.负载C.速度D.排量
5. 将压力能转换为驱动工作部件机械能的能量转换元件是( )。
A、动力元件; B、执行元件; C、控制元件。
6.要求机床工作台往复运动速度相同时,应采用( )液压缸。
5.根据工作压力和材料,确定液压缸的壁厚尺寸、活塞杆尺寸、螺钉尺寸及端盖结构。
6.可靠的密封是保证液压缸正常工作的重要因素,应选择适当的密封结构。
7.根据缓冲要求,选择适用的缓冲机构,对高速液压缸必须要设置缓冲装置。
8.在保证获得所需要的往复运动行程和驱动力条件下,尽可能减小液压缸的轮廓尺寸。
9.对运动平稳性要求高的液压缸应设置排气装置。
A、不动 ; B、动,速度低于任一腔单独通压力油; C、.动,速度高于任一腔单独通压力油。
2021/1/4
28
第三章 液压执行元件
思考题与习题
二、单项选择题
1.液压缸差动连接工作时,缸的( ),缸的( )。
A.运动速度增加了B.输出力增加了C.运动速度减少了D.输出力减少了
2.在某一液压设备中需要一个完成很长工作行程的液压缸,宜采用( )
A.单活塞液压缸B.双活塞杆液压缸C.柱塞液压缸D.伸缩式液压缸
2021/1/4
15
第三章 液压执行元件
第一节 液压缸 四、其他液压缸
3.增压缸 在某些短时或局部需要高压的液压系统中,常用增压缸与低压大流量泵配合作用,单作用增压缸的 工作原理如图3-16a所示,输入低压力p1的液压油,输出高压力为p2的液压油,
单作用式增压缸不能连续向系统供油,图3-16b为双作用式增压缸,可由两个高压端连续向系统供油。
第三章液压执行元件-PPT
二、液压马达得工作原理
1、叶片式液压马达
叶片式液压马达工作原理
大家学习辛苦了,还是要坚持
❖继续保持安 静
• 原理——由于压力油作用,受力不平衡使转子 产生转矩。
• 输出转矩T——与液压马达得排量VM和液压马
达进出油口之间得压力差有关,
• 转速n——输入液压马达得流量qM大小来决定。
❖ 转动特性——能正反转(压、回油互换) ❖ 结构特点: ❖ 叶片要径向放置---适应正反转
❖ 双杆活塞缸在工作时,一个活塞杆是受拉得,而另一 个活塞杆不受力,(活塞杆始终不受压力)因此这种液 压缸得活塞杆可以做得细些。
连杆式径向 柱塞马达
❖ 曲线定子 式
定子有多段曲线,转子每转一转柱塞来回往复多次, 排量大,所以转矩大。 定子内表面采用正弦曲线,(或等加速曲线、阿基米德曲
线),保证在低转速下也能稳定工作。 为增大转矩,也有做成多排转子,各排错开可减小脉动。
❖ 多作用指定子得内曲面可以多达十几段(多次行程)。转子每转 一转,每个柱塞经过每一段时都要吸排油各一次,柱塞要进行多 次进退,对输出轴产生多次渐增转矩,并通过输出轴带动负载旋 转,因此称为多作用马达。
❖ 原因——液压n马M 达内Vq部MM 有M泄v 漏,
❖ 式中,nM —液压马达得实际转速
❖
qM —液压马达得输入流量;
❖
VM —液压马达得理论排量
❖
ηMV —液压马达得容积效率
❖ 转速过低时得爬行现象——当液压马达工作 转速过低时,往往保持不了均匀得速度,进入 时动时停得不稳定状态。
❖ 为防止“爬行” :高速液压马达工作转速不应
七、液压马达常见故障及其排除
一、转速低输出转矩小
1、由于滤油器阻塞,油液粘度过大,泵间隙过大, 泵效率低,使供油不足。清洗滤油器,更换粘度适 合得液油,保证供油量。
(液压与气压传动技术)第3章执行元件
第一节 液压缸
一、液压缸的作用、类型和特点
2、液压缸的类型 按结构形式,可以分为:
1)活塞式液压缸 2)柱塞式液压缸
双杆活塞缸 单杆活塞缸
3) 伸缩式液压缸
双杆活塞缸
活塞两侧的活塞杆直径相等。
进、出油口位于缸筒两端; 工作台移动范围约为活塞有 效行程的三倍。
进、出油口在活塞杆上,或 用软管连接在缸筒两端; 工作台移动范围约为活塞有 效行程的二倍。
1-缸底2-弹簧挡圈3-套环4-卡环5-活塞6- 型密封圈7-支承环8-挡圈9- 形密封圈 10-缸筒 11-管接头 12-导向套 13-缸盖 14-防尘圈 15-活塞杆 16-定位螺钉 17-耳环
一、液压缸的典型结构 液压缸的结构形式很多,在此以单杆活塞缸
为例,说明液压缸的基本组成。
1-缸底2-弹簧挡圈3-套环4-卡环5-活塞6- 型密封圈7-支承环8-挡圈9- 形密封圈 10-缸筒 11-管接头 12-导向套 13-缸盖 14-防尘圈 15-活塞杆 16-定位螺钉 17-耳环
第二节 液压缸的典型结构和组成
b. 速度
v1
qv
A1
4qv D2
v2
qv
A2
(D 4q2vd2)
特点:同样 q ,v1 < v2 ;
p 一样,F1 > F2 。
4. 应用:往返运动速度及推力不同的场合。
例:液压刨床
单杆活塞缸
单活塞杆液压缸左右两 腔同时接通压力油,这种 连接方式称为差动连接, 此缸称为差动缸。
此时液压缸两腔压力相等,但两腔活塞的工作 面积不相等,活塞将向有杆腔方向运动。
(3)参数计算
推力:
F
pApd2
4
速度:
液压与气动技术)第3章液压执行元件
液压马达的维护与保养
液压马达的润滑
定期为液压马达添加适当的润滑油,以减少 摩擦和磨损。
工作温度的检查
定期检查液压马达的工作温度,防止过热导 致损坏。
密封件的检查与更换
定期检查液压马达的密封件,如发现有磨损 或老化,应及时更换。
工作压力的检查
定期检查液压马达的工作压力,确保其在规 定的范围内。
常见故障及排除方法
THANKS
感谢观看
柱塞式液压缸
总结词
柱塞式液压缸是一种特殊类型的液压 缸,其特点是缸筒固定,柱塞在缸筒 内作往复运动。
详细描述
柱塞式液压缸的结构紧凑,输出力矩 大,但密封性能要求较高,通常用于 需要较大推力和拉力的场合,如压力 机、起重机等。
摆动式液压缸
总结词
摆动式液压缸是一种能够实现旋转运动的液压缸,通常用于 各种机械臂、回转台等装置。
液压执行元件的维护与保养
液压缸的维护与保养
液压缸的清洁
定期清洗液压缸,保持其内部 的清洁,防止杂质的积累。
密封件的检查与更换
定期检查液压缸的密封件,如 发现有磨损或老化,应及时更 换。
润滑油的添加
定期为液压缸添加适当的润滑 油,以减少摩擦和磨损。
工作压力的检查
定期检查液压缸的工作压力, 确保其在规定的范围内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 当缸筒固定时,运动部件移动范围是活塞有效行程的三倍;当活
塞杆固定时,运动部件移动范围是活塞有效行程的两倍 。
如果供油压力和流量不变,活塞往复运动时两个方向 的作用力和速度均相等。适用于往返速度相等且推力 不大的场合,如用来驱动外圆磨床的工作台。
▪ 配流盘为对称结构。
▪ 应用 作变量马达。改变斜盘倾角,不仅影响马达的转矩,
而且影响它的转速和转向。斜盘倾角越大,产生的转矩越大,转 速越低。
低速大扭矩马达 单作用连杆型径向柱塞马达 单作用连杆型径向柱塞式液压马达
▪ 结构组成
–呈五星状(或七星状)的壳体内 均匀分布着柱塞缸。
–柱塞与连杆铰接,连杆的另一端 与曲轴偏心轮外圆接触。曲轴为输 出轴。
双杆活塞缸的速度推力特性
F
p 4
D2 d 2
m , v
qv A
4qv D2 d 2
2、单杆活塞液压缸
单杆活塞液压缸
▪单杆活塞缸只有一端带活塞杆,它也有缸
筒固定和活塞杆固定两种安装方式,两种 方式的运动部件移动范围均为活塞有效行 程的两倍。
单杆活塞缸速度推力特性
▪单杆活塞液压缸往
用静压支承或静压平衡后最低转速可达3 r/min。
目前,这种马达的额定工作压力为21MPa,最高工 作压力达31.5MPa。
第二节 液压缸
一、液压缸的分类 液压缸分类
液压缸与马达一样,也是将液压能转变为机械能的装置,它将
液压能转变为直线运动或摆动的机械能。
单杆活塞液压缸
1、按液压缸的运动方式分
单作用液压缸 双杆活塞液压缸
一般所用的叶片马达 都是双作用式的叶片 马达。
高压 窗口
高压 窗口
工作原理:通入压力油产生扭矩使转子(带动负载)转动的。
叶片马达结构特点:
(1)采用弹簧预紧叶片,将叶片贴紧在定子内表面,防 叶片马达的结构特点
止起动时高、低压腔互相串通,保证马达有足够的起动扭 马达正、反 转变换进、出油口时,叶片底部总是通高压油,以保证叶 片与定子紧密接触;
二、液压马达的特性参数
起动性能
马达的起动性能主要用起动扭矩T0和起动机械效率η来描述。
起动机械效率低,起动扭矩就小,马达的起动性能就差。
制动性能
马达的制动性能与容积效率有直接关系。若容积效率低,泄 漏大,马达的制动性能就差。
最低稳定转速
最低稳定转速是指液压马达在额定负载下,不出现爬行现象的 最低转速。实际应用中,一般最低稳定转速越小越好,这样可扩 大马达的调速范围。
推力液压缸 双作用液压缸
组合液压缸
动力液压缸
单叶片摆动液压缸
摆动液压缸 双叶片摆动液压缸
2、按液压缸结构形式分 活塞式液压缸 单活塞杆式
动力液压缸 柱塞式液压缸 双活塞杆式
叶片式液压缸
二、常用液压缸的结构、工作原理及其特性
1、双杆式活塞液压缸 双杆活塞液压缸
双杆活塞液压缸的两 端都有活塞杆伸出。两活 塞杆直径通常相等,活塞 两端有效面积相同。根据
•排量公式 v =πd 2e z / 2 单作用连杆型径向柱塞马达工作原理 –d 为柱塞直径; –e 为曲轴偏心距; –z 为柱塞数。
应用 单作用连杆型径向柱塞马达工作原理 单作用连杆型径向柱塞马达应用
结构简单,工作可靠,可以是壳体固定曲轴旋转, 也可以是曲轴固定壳体旋转(可驱动车轮或卷筒),
但体积重量较大,转矩脉动,低速稳定性较差。采
(3)叶片沿转子体径向布置,进、出油口大小相同,叶 片顶部呈对称圆弧形,以适应正、反转要求。
▪ 应用 转动惯量小,反应灵敏,能适应较高频率的换向。但
泄漏大,低速时不够稳定。适用于转矩小、转速高、机械性能要 求不严格的场合。
3)轴向柱塞马达
工作原理
轴向柱塞马达
▪ 结构特点
▪ 轴向柱塞泵和轴向柱塞马达是互逆的。
F
q
式中D和d分别为活和活塞杆直径。
活塞的运动速度 v 为
D d
ns>500r/min 为高速液压马达:齿轮马达, 叶片马达,轴向柱塞马达 ns< 500r/min 为低速液压马达:径向柱塞 马达(单作用连杆型径向柱塞马达,多作用内 曲线径向柱塞马达)
2、液压马达与液压泵结构特点:
液压马达结构特点
(1)液压泵吸油口尺寸大于出油口,液压马达则相同。 ( 2 )液压泵在结构上保证具有自吸能力,液压马达没 有这一要求。 ( 3 )液压马达需要正、反转,内部结构上具有对称性, 液压泵一般是单方向旋转,内部结构不对称。 ( 4 )液压马达的轴承结构形式及其润滑方式需保证在 较大范围内都能正常工作,液压泵没有这一要求。 ( 5 )液压马达应有较大的起动扭矩。
复运动的速度不等。
往返速比 λv= v2 / v1=1/[1-(d /D)2 ]
3、液压缸的差动连接(差动液压缸)
当压力油同时供给单杆活差塞动液压液缸 压缸的两腔时,由于无杆腔 的总作用力较大,活塞以一定速度向有杆腔方向运动。这种工况
称为差动连接。差动连接的液压缸常被称为“差动液压缸”。
p1 p2
–曲轴的一端通过十字接头与配流 轴相连。
–配流轴上“隔墙”两侧分别为进 油腔和排油腔。
• 工作原理
高压油进入马达的进油 腔后,经壳体上的油 道进入部分柱塞缸头 部,高压油作用在柱 塞上的作用力通过连 杆传递到曲轴的偏心 轮上,对曲轴旋转中 心形成转矩。
另外部分柱塞缸与回 油口相通。
– 配流轴随曲轴同步 旋转,各柱塞缸依 次与高压进油和低 压回油相通(配流 套不转),保证曲 轴连续旋转。
调速范围
i=nmax/nmin
2、液压马达的符号
液压马达的符号
单向定量 液压马达
单向变量 液压马达
双向定量 双向变量 液压马达 液压马达
三、各类液压马达 1)叶片式液压马达的工作原理
叶片马达分为单作用 和双作用式两大类。 前者可以调节转子的 偏心来改变排量而制 成变量马达,后者只 能是定量的。
液压传动
第三章 液压执行元件
第一节 液压马达
液压能 p, Q
液压马达
机械能 n, Mn
一、液压马达的分类及特点
液压马达的工作原理正好与液压泵的工作原理相反。
液压泵和液压马达具有可逆性。从原理上讲,任何一台
液压泵都可以作为液压马达使用。但实际上马达与泵的 结构稍微有些差别。
1、液压马达的分类
液压马达的分类