平方根课件[1].ppt
合集下载
3.1 平方根(一)(课件)湘教版数学八年级上册
知1-练
感悟方新法知点拨:求一个正数的平方根的方法:先找出 知1-练
平方等于这个正数的数,这样的数有两个,它们 互为相反数,因而这两个数均为这个正数的平方 根 . 如果一个数为带分数,一般先将其转化为假 分数,再求平方根;如果有乘方运算,那么先求 出乘方运算的结果,针对结果再求平方根;如果 一个正数 a 不能写成有理数的平方的形式,那么 可以将 a 的平方根表示成 ± a.
综上所述, x = 4 或 x = 1.
感悟新知
知1-练
方法点拨:利用平方根的定义解方程的一般步骤: 第一步:移项,使含未知数的项在等号的一边,常 数项在等号的另一边; 第二步:系数化为 1,将方程化为“ x2=a”的形式; 第三步:根据平方根的定义求出未知数 x 的值 .
2-1. (1)若 x2 = 4,则x =___±__2__ ;
第三章 实 数
3.1 平方根
感悟新知
知识点 1 平方根及其性质
知1-讲
1. 定义 : 如果有一个数 r,使得 r2=a,那么我们把 r 叫作 a 的 一个平方根,也叫作二次方根 . 这就是说,若 r2=a,则 r 是 a 的一个平方根 . 表示方法:非负数 a 的平方根记作± a ,读作“正、负根 号 a”
知1-讲
特别解读 1.平方根的定义中a是非负数,即a ≥ 0. 2.平方与开平方互为逆运算,平方的结果叫作
幂,而开平方的结果叫作平方根 .
2. 平方根的性质:
知1-讲
(1)正数有两个平方根,它们互为相反数;
(2)0 的平方根是 0;(3)负数没有平方根 .
3. 开平方 : 求一个非负数的平方根的运算,叫作开平方 .
∵ 0.9 2=0.81,0.2 2=0.04, ∴ 0.81 =0.9,
平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
2024年人教版数学七年级下册6.1第3课时平方根[1]-课件
36,2 9 5 ,1.21.
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36=±6.
(2) 2 5 9
有两个平方根
解:
由于 =
5
2
3
25 9
,
因此
25 9
的平方根是
5 3
与-
5 3
.
即±
25 9
=±
5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
填一填2
写出左圈和右圈中的“?”表示的数:
x
8 -8
3
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
x2
?64
9 ?
16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75
是
2 4
5 9
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)1 6 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.
下
所
有
父
母
我们,还在路上……
4.
分别求
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36=±6.
(2) 2 5 9
有两个平方根
解:
由于 =
5
2
3
25 9
,
因此
25 9
的平方根是
5 3
与-
5 3
.
即±
25 9
=±
5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
填一填2
写出左圈和右圈中的“?”表示的数:
x
8 -8
3
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
x2
?64
9 ?
16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75
是
2 4
5 9
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)1 6 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.
下
所
有
父
母
我们,还在路上……
4.
分别求
七级数学下册六实数平方根一新版新人教版PPT课件
.-6
D.-8
课后巩固
23.计算下列各题:
(1)(1 0.09 1 0.25) 100
;(1)23
5
(2) 196 6( 5 4 20
27
(3) 2 1 (2)2 1 9 25
;4
25
(3)7
课后巩固
24.学校小会议室面积为27 m2,小明数了一下地面 所铺的地砖,正好是300块一样大小的正方
(2)∵ 6 =
5
,
∴
的算
课堂导学
1. 3
对点训练一 表示3的__算__术__平__方__根_________;
2.5的算术平方根可写成_____5_____;
3.(1)4的算术平方根是____2______;
3
(2)2的算术平方根是2__________;
(3)0的算术平方根是0__________.
核心目标
了解算术平方根的概念,会用根号表示正数的算术 平方根,并了解算术平方根的非负性.
课前预习
1.如果一个正数x的平方等于a,即x2=a,那么这个 正数x叫做a算的术__平__方__根________,记作a______.
2.25的算术平方根是____5____,49的算术平方根是 7________.
课堂导学
知识点:算术的平方根
【例题】求下列各数的算术平方根: (1)0.11215; (2)
25
【解析】尝试哪一个数的平方等于已知数,然后依据
算术平方根的概念进行计算.
【答案】解:(1)∵0.52=0.25,
方根是0.5 ,=
∴0.25的算术平
1 11
36
62 ()
36
25 25 5 25
北师大版八年级数学上册《平方根(1)》课件
谢谢观赏
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
1.第2课时算术平方根PPT课件(沪科版)
;(3) .;(4) (-) .
第2课时
算术平方根
解: (1)因为 52=25,所以 =5.
(2)因为
2
= ,所以
= .
(3)因为(0.2)2=0.04,所以 .=0.2.
(4)因为(-4) =16=4 ,所以 (-) = =4.
2
2
第2课时
平方米,
= =0.8(米).
所以这种正方形地板砖的边长为 0.8 米.
第2课时
算术平方根
总结反思
算
术
平
方
根
概
念
正数a的正的 平方根叫做a的
算术平方根, 0的算术平方根
是0
求一个非负数的
算术平方根
应
用
用计算器求一个数
的算术平方根
算术平方根的实
际应用
性
质
算术平方根的
双重非负性:
± ≥0
(a ≥0)
第2课时
算术平方根
小结
知识点一 算术平方根的概念
正数 a 的正的平方根叫做 a 的算术平方根,用 Nhomakorabea
表示.
[点拨] 算术平方根的双重非负性: 是一个非负数,
而被开方数 a 也是一个非负数,因此 具有双重非负性,即
a≥0, ≥0.
第2课时
算术平方根
知识点二
算术平方根的性质
一下,用 25 块某种正方形的地板砖正好铺满客厅,请你计算一下
这种正方形地板砖的边长.
第2课时
算术平方根
[解析] 根据题意可知,25 块这种正方形地板砖的面积
人教版《平方根》上课课件PPT
方形图片,他还想设计一个面积与其相等的圆,请你帮助 他求出该圆的半径.
解:设圆的半径为r,则有 πr2140π35π, 解得 r 70 .
21. 把二次根式 2 3 a 与 8 分别化简后,被开方数相同. (1)如果a是正整数,那么符合条件的a的值有哪些? (2)如果a是整数,那么符合条件的a的值有多少个?最大 值是什么?有没有最小值?
9. (例4)计算:
(1)3 6 2 8; 解:原式=3 2 6 8
=6 42 3 =64 3 =24 3
(2) 18 32;
解:原式= 1 8 3 2 = 32 42 22 =3 4 2 =24
(3) 3x
(23) ==________________=_=________;_;
7. (例3)化简:
(1) 5 1 0 =_____5_2___2_______=___5 __2___; (2) 9 a 2 =______3_2__a_2______=____3 _a ___; (3) 4 a b 2 =_____2_2__b_2__a_____=__2_b__a___; (4) 1 2 a 2 b =_____2_2_a__2 _3_b_____=__2_a__3_b__.
(解4):设=圆__的_半__径__为__r,__则__有___=______,__;
(D3.) =________;
(,7) ,=____,____;,
(4) =________;
(正4)方形的=面__积__为__5_0_,_则__它__的__边_=长_为________. _.
积,的算术,平方根,
积的算术平方根
1. 填空:1 2 = 1 ,2 2 = 4 ,3 2 = 9 ,4 2 = 16 ,5 2 = 25 , 1 = 1 ,4 = 2 ,9 = 3 ,1 6 = 4 ,2 5 = 5 , 6 2 = 36 ,7 2 = 49 ,8 2 = 64 ,9 2 = 81 ,
解:设圆的半径为r,则有 πr2140π35π, 解得 r 70 .
21. 把二次根式 2 3 a 与 8 分别化简后,被开方数相同. (1)如果a是正整数,那么符合条件的a的值有哪些? (2)如果a是整数,那么符合条件的a的值有多少个?最大 值是什么?有没有最小值?
9. (例4)计算:
(1)3 6 2 8; 解:原式=3 2 6 8
=6 42 3 =64 3 =24 3
(2) 18 32;
解:原式= 1 8 3 2 = 32 42 22 =3 4 2 =24
(3) 3x
(23) ==________________=_=________;_;
7. (例3)化简:
(1) 5 1 0 =_____5_2___2_______=___5 __2___; (2) 9 a 2 =______3_2__a_2______=____3 _a ___; (3) 4 a b 2 =_____2_2__b_2__a_____=__2_b__a___; (4) 1 2 a 2 b =_____2_2_a__2 _3_b_____=__2_a__3_b__.
(解4):设=圆__的_半__径__为__r,__则__有___=______,__;
(D3.) =________;
(,7) ,=____,____;,
(4) =________;
(正4)方形的=面__积__为__5_0_,_则__它__的__边_=长_为________. _.
积,的算术,平方根,
积的算术平方根
1. 填空:1 2 = 1 ,2 2 = 4 ,3 2 = 9 ,4 2 = 16 ,5 2 = 25 , 1 = 1 ,4 = 2 ,9 = 3 ,1 6 = 4 ,2 5 = 5 , 6 2 = 36 ,7 2 = 49 ,8 2 = 64 ,9 2 = 81 ,
算术平方根课件
直接开平法
对于形如a^(1/2)的算术平方根, 可以直接开平方得到结果。
迭代法
通过不断逼近的方式求得算术平方 根的值。
算术平方根的运算性质
非负性
有序性
算术平方根的结果总是非负的,即对 于任意实数a,其算术平方根√a≥0。
对于任意两个实数a和b(a≥0,b≥0 ),如果a≥b,那么√a≥√b。
唯一性
进行因式分解或化简。
几何学
在几何学中,算术平方根用于计 算图形的边长、面积和体积等, 例如,求圆的半径、矩形的宽或
长等。
数学分析
在数学分析中,算术平方根用于 研究函数的单调性、极值和积分
等。
算术平方根在物理中的应用
力学
在力学中,算术平方根用于计算速度、加速度和力的关系,例如 ,根据牛顿第二定律计算物体的加速度。
在此添加您的文本16字
题目:计算 $sqrt{25}$。
在此添加您的文本16字
答案:5
在此添加您的文本16字
解析:同样根据算术平方根的定义,$sqrt{25}$ 的解为 5 。
进阶练习题
题目:计算 $sqrt{16}$。
解析:进阶题目需要理解平方根的性质,$sqrt{16}$ 的 解为 4。 答案:9
电磁学
在电磁学中,算术平方根用于计算与电场、磁场相关的物理量,例 如,计算带电粒子的洛伦兹力。
热学
在热学中,算术平方根用于计算热量、温度和压力等物理量的关系 ,例如,计算热容和热传导系数。
算术平方根在日常生活中的应用
1 2 3
建筑学
在建筑学中,算术平方根用于计算建筑物的横梁 、立柱和地基等结构的尺寸和强度。
03
答案
约等于 1.73205(四舍五入到小数点后五位 )
实数 (平方根)ppt课件
16
解:设长方形纸片的长为3x cm,宽为2x cm . 根据边长与面积的关系得
3x·2x=300, 2x2=300, x2=50,
x 50 .
因此长方形纸片的长为3 50 cm . 因为50>49,所以 50 >7.
由上可知3 50 >21,即长方形纸片的长应该大于
21 cm .
因为 400 =20,所以正方形纸片的边长只有20cm.
23
再见!
24
所以大正方形的边长是 2 dm.
小正方形的对角线 的长是多少呢?
7
8
9
探究
2 有多大呢?
因为12=1,22=4, 所以1< 2 <2; 因为1.42=1.96,1.52=2.25, 所以1.4< 2 <1.5; 因为1.412=1.988 1,1.422=2.016 4, 所以1.41< 2 <1.42; 因为1.4142=1.999 396,1.4152=2.002 225, 所以1.414< 2 <1.415; ……
即
(2)因为
7
2
49 ,所以
49 7 ; 8 64
49 的算术平方根是
.012=0.000 1,所以0.000 1的算术平方
根是 0.01,即 0.0001 =0.01.
从例1可以看出:被开方数越大,对应的算术平 方根也越大.这个结论对所有正数都成立.
5
探究
计算器
12
例 2 用计算器求下列各式的值:
(1) 3136 ;
(2) 2(精确到0.001).
解:(1)依次按键 显示:56. ∴ 3136 =56.
3 136 = ,
(2)依次按键 2 = , 显示:1.414 213 562. ∴ 2 ≈1.414.
解:设长方形纸片的长为3x cm,宽为2x cm . 根据边长与面积的关系得
3x·2x=300, 2x2=300, x2=50,
x 50 .
因此长方形纸片的长为3 50 cm . 因为50>49,所以 50 >7.
由上可知3 50 >21,即长方形纸片的长应该大于
21 cm .
因为 400 =20,所以正方形纸片的边长只有20cm.
23
再见!
24
所以大正方形的边长是 2 dm.
小正方形的对角线 的长是多少呢?
7
8
9
探究
2 有多大呢?
因为12=1,22=4, 所以1< 2 <2; 因为1.42=1.96,1.52=2.25, 所以1.4< 2 <1.5; 因为1.412=1.988 1,1.422=2.016 4, 所以1.41< 2 <1.42; 因为1.4142=1.999 396,1.4152=2.002 225, 所以1.414< 2 <1.415; ……
即
(2)因为
7
2
49 ,所以
49 7 ; 8 64
49 的算术平方根是
.012=0.000 1,所以0.000 1的算术平方
根是 0.01,即 0.0001 =0.01.
从例1可以看出:被开方数越大,对应的算术平 方根也越大.这个结论对所有正数都成立.
5
探究
计算器
12
例 2 用计算器求下列各式的值:
(1) 3136 ;
(2) 2(精确到0.001).
解:(1)依次按键 显示:56. ∴ 3136 =56.
3 136 = ,
(2)依次按键 2 = , 显示:1.414 213 562. ∴ 2 ≈1.414.
人教版教材《平方根》课件ppt1
合起来,一个正数a的平方根就用“ a”表示,(读作“正、负根号a”)。
根号
a 被开3.1 平方根 课件
湘教版初中数学八年级上册3.1 平方根 课件
2的平方根: 2
2的正的平方根: 2 2的负的平方根: 2
25 表示25的正的平方根。
7 表示7的平方根。
∵ (_±__4_)2 = 16 , ∴ 16的平方根是__±__4_ ∵(_±__0_._7_)2 = 0.49 ,∴ 0.49的平方根是_±__0_._7
∵ (__0__)2 = 0 , ∴ 0的平方根是__0__ ∵ ( 不存在 )2 = - 4 , ∴ -4____没__有_平方根.
(1)一个正数有两个平方根,它们 互为相反数.
湘教版初中数学八年级上册3.1 平方根 课件
湘教版初中数学八年级上册3.1 平方根 课件
3 2=( 9 ) (- 3 )2= ( 9 )
( ±3 )2 = 9
已知一个数求它的平方。 已知一个数求它的平方根。
平方运算
开平方运算
◆求一个数的平方根的运算叫做开平方, 平方根是开平方运算的结果.
◆平方运算与开平方运算互为逆运算
动
脑
如果这样一个方正队伍的面积 是225平方米,你知道这个正方
筋?形的边长是多少吗?
25 m² 15 m²
以上问题实际上是:
已知一个数的平方, 求这个数.
即:( ? )2=225
2
15
=
225
225是15的平方 , 15是225的__?___。
1、理解数的平方根和算术平方根的概念, 能运用根号表示一个数的平方根和算术平方 根;
2、了解开方与乘方互为逆运算,会用平方
根的定义求某些数的平方根、算术平方根。
根号
a 被开3.1 平方根 课件
湘教版初中数学八年级上册3.1 平方根 课件
2的平方根: 2
2的正的平方根: 2 2的负的平方根: 2
25 表示25的正的平方根。
7 表示7的平方根。
∵ (_±__4_)2 = 16 , ∴ 16的平方根是__±__4_ ∵(_±__0_._7_)2 = 0.49 ,∴ 0.49的平方根是_±__0_._7
∵ (__0__)2 = 0 , ∴ 0的平方根是__0__ ∵ ( 不存在 )2 = - 4 , ∴ -4____没__有_平方根.
(1)一个正数有两个平方根,它们 互为相反数.
湘教版初中数学八年级上册3.1 平方根 课件
湘教版初中数学八年级上册3.1 平方根 课件
3 2=( 9 ) (- 3 )2= ( 9 )
( ±3 )2 = 9
已知一个数求它的平方。 已知一个数求它的平方根。
平方运算
开平方运算
◆求一个数的平方根的运算叫做开平方, 平方根是开平方运算的结果.
◆平方运算与开平方运算互为逆运算
动
脑
如果这样一个方正队伍的面积 是225平方米,你知道这个正方
筋?形的边长是多少吗?
25 m² 15 m²
以上问题实际上是:
已知一个数的平方, 求这个数.
即:( ? )2=225
2
15
=
225
225是15的平方 , 15是225的__?___。
1、理解数的平方根和算术平方根的概念, 能运用根号表示一个数的平方根和算术平方 根;
2、了解开方与乘方互为逆运算,会用平方
根的定义求某些数的平方根、算术平方根。
14.1 平方根 - 第1课时课件(共20张PPT)
-3
-
-1
0
1
3
...
x2
...
...
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.
平方根的性质:
归纳:
平方根的表示方法:正数a的正的平方根记作: 读作“根号a”.正数a的负的平方根记作: 读作“负根号a”.正数a的两个平方根记作:
2.某正数的两个不同的平方根是2a-1与-a+2,则这个数是( )A.1 B.3 C.-3 D.93.7的平方根是________.
Dห้องสมุดไป่ตู้
4.求下列各数的平方根:(1)64;(2)1.21;(3)2
拓展提升
1.若一个数的平方等于5,则这个数等于________.2.
C
3.若3x-2和5x+6是一个正数a的平方根,求这个正数a的值.
新知引入
做一做
定义:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.
一起探究
1.填写下表:2.观察填写后的表格,探究:(1)正数的平方根有几个,它们之间有什么关系?(2)0有平方根吗?如果有,它是什么数?(3)负数有平方根吗?
x
...
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
被开方数
读作:正、负根号a
观察框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
谈一谈
我们把求一个数的平方根的运算,叫做开平方.
对于正数来说,开平方与平方互为逆运算.
例1 求下列各数的平方根:(1)81;(2);(3)0.04.
例题解析
随堂练习
-
-1
0
1
3
...
x2
...
...
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.
平方根的性质:
归纳:
平方根的表示方法:正数a的正的平方根记作: 读作“根号a”.正数a的负的平方根记作: 读作“负根号a”.正数a的两个平方根记作:
2.某正数的两个不同的平方根是2a-1与-a+2,则这个数是( )A.1 B.3 C.-3 D.93.7的平方根是________.
Dห้องสมุดไป่ตู้
4.求下列各数的平方根:(1)64;(2)1.21;(3)2
拓展提升
1.若一个数的平方等于5,则这个数等于________.2.
C
3.若3x-2和5x+6是一个正数a的平方根,求这个正数a的值.
新知引入
做一做
定义:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.
一起探究
1.填写下表:2.观察填写后的表格,探究:(1)正数的平方根有几个,它们之间有什么关系?(2)0有平方根吗?如果有,它是什么数?(3)负数有平方根吗?
x
...
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
被开方数
读作:正、负根号a
观察框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
谈一谈
我们把求一个数的平方根的运算,叫做开平方.
对于正数来说,开平方与平方互为逆运算.
例1 求下列各数的平方根:(1)81;(2);(3)0.04.
例题解析
随堂练习
平方根ppt课件
平方根ppt课件
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子
《算术平方根》课件
06 总结与回顾
本课重点回顾
01
02
03
04
算术平方根的定义:非负实数 的平方根。
平方根的性质:正数有两个平 方根,互为相反数;0的平方 根是0;负数没有实数平方根
。
平方根的表示方法:使用 “√”符号表示,读作“根号
”。
平方根的运算性质:平方根具 有交换律、结合律和分配律。
学习心得分享
掌握了算术平方根的基本概念 和性质,能够正确判断一个数 的平方根。
平方根近似值的实际应用
大数开方
在处理大数时,直接计算其平方 根可能超出计算机的表示范围, 此时需要使用近似值进行计算。
科学计算
在物理、工程、金融等领域中,经 常需要计算平方根,近似值可以满 足实际应用的需求。
数学建模
在数学建模中,平方根的近似值可 以用于解决一些实际问题,如求解 线性方程、优化问题等。
开方运算的性质
开方运算具有非负性,即对于任何实数a,其算术平方根√a都是非负的。此外, 开方运算还具有正值性,即对于任何正实数a,其算术平方根√a都是正的。
开方运算的规则
开方运算的运算法则
在进行开方运算时,需要注意运算法则的运用。首先,对于 任何实数a,都有√(a^2) = |a|。此外,对于任何实数a和b, 都有√(a^2 + b^2) = √(a + b)^2 = |a + b|。
通过实例练习,加深了对平方 根运算的理解和应用。
在学习过程中,遇到了一些困 难,但通过与同学讨论和请教 老师,最终克服了困难。
下一步学习计划
深入学习平方根的性质和应用, 掌握更多关于平方根的运算技巧
。
学习其他与数学相关的内容,如 乘方、开方等,以扩展数学知识
1平方根和开平方PPT课件
巩固练习
3.求下列各数的正的平方ቤተ መጻሕፍቲ ባይዱ:
225; 0.0001; 9
121
4.若一个正数的两个平方根 是2m-5与4m-9,求m的值.
课堂小结
1.平方根的意义是什么? 平方根有怎样的性质?
2.开平方运算与平方运算有 怎样的关系?
3.求完全平方数的平方根 时应该把被开方数化成 怎样的数?
作业布置
1 . 复习知识点. 2. 课本和练习册上的练习; 3. 选做补充题;
第十二章 开平方
12.2 平方根和开平方(1)
问题1:小丽家一张方桌的桌面
是面积为64平方分米的正方形, 这个正方形桌面的边长是多少?
平方根:已知一个数的平方等
于a,那么这个数叫做a的平方 根,即x2=a,x叫做a的平方 根,a叫做被开方数.
开平方运算:求一个数a的平方根
的运算叫做开平方运算.
例1:求下列各数的平方根,并
( 3)2 __
(1)2 __ 3
( 1)2 __ 3
102 __
(10)2 __
归纳总结:
a2 a ( a )2 a
巩固练习
1.下列等式是否正确?不正确 的请说明理由并加以改正.
49 7
81 9
(2)2 2
(5)2 5
2、计算: (1) (9)2 (2) 42
(3) (a)2
根据你的解答过程总结:正数、 0、负数的平方根有什么不同?
9
-0.16
0
25
性质:
1、负数没有平方根;
2、正数有两个互为相反数的 平方根,其中正的平方根也 可以称算术平方根.
3、0的平方根就是0.
问题拓展:由以下计算你能
平方根ppt课件
别
取值范
正数的算术平方根
正数的平方根是一
围不同
一定是正数
正一负
感悟新知
知3-讲
续表:
算术平方根
具有包
联 含关系
平方根
平方根包含算术平方根,算术平方根是
平方根中正的那个(0除外)
系 存在条 平方根和算术平方根都只有非负数才有,
件相同
0的平方根与算术平方根都是0
感悟新知
知3-讲
特别提醒
1. 任何一个数的平方都是非负数,所以求算术平方根时,被开
C. ±6是36的平方根: =±6
D. -2是4的负的平方根: =-2
感悟新知
知3-练
6-2. 求下列各式的值:
(1) ;
(2)-
;
解: 1 600=40.
-
14
2 =-
25
(3)± (-);± (-2)2=±2.
(4) . .
0.003 6=0.06.
解:因为152=225,所以225的算术平方根是15.
(2)72;
72的算术平方根是7.
感悟新知
知3-练
(3)(-6)2;
解:因为(-6)2=36=62,所以(-6)2的算术平方根是6.
(4) .
因为 16=4=22,所以 16的算术平方根是 2.
感悟新知
知3-练
例 5 已知a的算方:根据平方根的性质,找出两个平方根
之间的关系列方程求值.
感悟新知
知2-练
(1)一个正数的两个平方根分别是3a-5 和a-3,则这个正
数是多少?
解:根据题意,得(3a-5)+(a-3)=0,
解得a=2,所以这个正数为(3a-5)2=(3×2-5)2=1.
《平方根》课件ppt
总结词
掌握平方根加减运算法则
详细描述
介绍平方根的加减运算规则,例如,对同一个平方根的加减运算,可以将这个平 方根放在括号外面,然后进行加减运算,而对于不同的平方根的加减运算,则需 要分别将每个平方根放在括号外面,再进行加减运算。
平方根的乘除运算
总结词
掌握平方根乘除运算法则
详细描述
介绍平方根的乘除运算规则。例如。对于乘法运算。可 以将两个平方根相乘。即 $(a \times b) \sqrt{c} \times \sqrt{d} = (a \times b \times c \times d) \sqrt{c \times d}$ 。而对于除法运算。可以将除数的 平方根放在分母上。再将分子分母同时乘以这个除数的 平方根
主讲教师
具有丰富的教学经验和专业的背景,能够准确把握学生的学 习特点和需求,擅长运用多种教学方法和手段,深受学生喜 爱。
辅导教师
具有高度的责任心和敬业精神,能够及时解决学生在学习中 遇到的问题,帮助学生更好地掌握知识和技能。
02
平方根的概念及性质
平方根的引入
介绍生活中的例子,如求解正方形的面积,从而引出平方根的概念。 引出平方根的符号“√”和读法“平方根”。
利用平方根理解算数平方根和平方根的关系
算术平方根的概念
非负数的平方根叫算术平方根。
平方根和算术平方根的关系
平方根和算术平方根是互为相反数的关系,即正数的平方根有两个,而算术 平方根只有一个。
05
课程总结与展望
本课程学习内容总结
平方根的概念和性质 平方根的应用举例
平方根的运算规则 平方根与算术平方根的区别
学习方法总结
注重数学思想的渗透
对比学习法——平方根与立方根 的对比
掌握平方根加减运算法则
详细描述
介绍平方根的加减运算规则,例如,对同一个平方根的加减运算,可以将这个平 方根放在括号外面,然后进行加减运算,而对于不同的平方根的加减运算,则需 要分别将每个平方根放在括号外面,再进行加减运算。
平方根的乘除运算
总结词
掌握平方根乘除运算法则
详细描述
介绍平方根的乘除运算规则。例如。对于乘法运算。可 以将两个平方根相乘。即 $(a \times b) \sqrt{c} \times \sqrt{d} = (a \times b \times c \times d) \sqrt{c \times d}$ 。而对于除法运算。可以将除数的 平方根放在分母上。再将分子分母同时乘以这个除数的 平方根
主讲教师
具有丰富的教学经验和专业的背景,能够准确把握学生的学 习特点和需求,擅长运用多种教学方法和手段,深受学生喜 爱。
辅导教师
具有高度的责任心和敬业精神,能够及时解决学生在学习中 遇到的问题,帮助学生更好地掌握知识和技能。
02
平方根的概念及性质
平方根的引入
介绍生活中的例子,如求解正方形的面积,从而引出平方根的概念。 引出平方根的符号“√”和读法“平方根”。
利用平方根理解算数平方根和平方根的关系
算术平方根的概念
非负数的平方根叫算术平方根。
平方根和算术平方根的关系
平方根和算术平方根是互为相反数的关系,即正数的平方根有两个,而算术 平方根只有一个。
05
课程总结与展望
本课程学习内容总结
平方根的概念和性质 平方根的应用举例
平方根的运算规则 平方根与算术平方根的区别
学习方法总结
注重数学思想的渗透
对比学习法——平方根与立方根 的对比
11.算数平方根PPT课件(华师大版)
归纳
算术平方根具有双重非负性,被开方数是非 负数,它的算术平方根也是非负数.
1 (2015·滨州)数5的算术平方根为( ) A. 5 B.25 C.±25 D.± 5
2 下列说法错误的是( ) A. 3 表示3的平方根 B. 3 表示3的算术平方根 C. 3 表示3的正平方根 D.± 3表示3的平方根
总结
(1) 求一个数的算术平方根时,第一要弄清是求哪个 数的算术平方根,分清求 81 与81的算术平方根 的不同意义,不要被表面现象迷惑.
(2) 求一个非负数的算术平方根常借助于平方运算, 因此熟记常用平方数对求一个数的算术平方根十 分有用.
1 (中考·日照) 4 的算术平方根是( )
A.2
B.±2
1 设a-2是一个数的算术平方根,那么( )
A.a≥0
B.a>0
C.a>2
D.a≥2
2 下列算式有意义的是( )
A. 5
B.
2
5
C. 52
D. 52
平方根与算数平方根的区分
名称关系
算术平方根
平方根
定义不同 区
别 个数不同
表示方 法不同 取值范 围不同
正数a的正的平方根, 叫做a的算术平方根
一个正数的算术平 方根只有一个
(2)2 1
4
因为
3 2
2
=
9 4
=2
1 4
,所以2
1 4
的算术平方根是
Байду номын сангаас
3 2
.
(3)0.36 因为0.62=0.36,所以0.36的算术平方根是0.6.
(4) 412-402 . 因为 412-402 81, 又因为92=81, 所以 81=9,而32=9,所以 412-402 的算术平方根是3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)一个数的算术平方根等于它 本身,这个数是 0、1 ;
3)一个数的平方根等于它本身, 这个数是 0 。
(1)若a+1没有平方根,那么a的范围 是 a﹤-1 。 (2)若4a+1的平方根是±5,则a= 6 。
(3)一个正数x的平方根等于m+1和m-3, 则m= 1 ,x= 4 。
例3说出下列各式的含义,求下 列各式的值:
祝你进步,再见!
1) 144
— 2)
0.81
2 (-7)
3)
121 196
4)
例4:求下列各式中的x: (1) x² =16
(2) 4x² =81
(3)(x-1)2=25
请谈谈你这节课的收获
请谈谈你这节课的收获
指数 根指 数
根号
2
x a
2
底数 幂
ቤተ መጻሕፍቲ ባይዱ
互为
逆运算
x a
a的平方根 被开方数
布置作业:1)书75页3和4题 2)预习下一课.
问题.
1)什么是算术平方根?
问题.
2)说出下列各式的意义,并
说出它们的值
√
25
√
1 4
√0
一个数的平方是9,
那么这个数是什么数?
3 9, 3 9
2 2
所以这个数是3或-3.
(简记为±3)
13.1 平方根(2)
•完成下表
2 X
1
16
36
0.49
4/ 25
X ±1 ±4 ± 6
2、下列说法对不对?为什么?
①4有一个平方根 ②只有正数有平方根 ③任何数都有平方根
1) 1.21 的平方根是 ± 1.1 2) 9 的平方根是 3
(
√ √
)
(×) ( )
3) -5 是 25 的平方根 4) 16的平方根是 ± 4
( ×)
5) 平方根是本身的数有0 ,1
( ×)
1)一个数的平方等于它本身, 这个数 是 0、1 ;
思考:
-4、-8、-36有平方根吗? 为什么?
正数的平方根有什么特点?
0的平方根是多少?
负数有平方根吗?
正数有 两个 平方根,它们 互为相反数 0的平方根是 0 ; 负数 没有平方根 。
仔细看一看
1、下列各数是否有平方根, 为什么? 2 ① 2 ② 0 2 ③ -0.01 ④ (-3)
认真辨一辨
±0.7
±2/5
一、平方根: 一般地,如果一个数的平方
等于a,这个数就叫做 a的平方根
(二次方根).
就是说,如果 x 2 a,那么x就叫做a的平方根.
例1:填表
原数 算术平 方根 平方根
81 0
49 121
7 11
7 ± 11
(-25)2 11
(a≥0)
a
9
0
25
±25
±
11
a
±9 0
11 ± a
观察 讨论
X
+1 -1 +2 -2 +3 -3
x
2
X
2
X
+1 -1 +2 -2 +3 -3
1 4
1
4
9
9
平方运算
开平方运算
例2 . 求下列各数的平方根: (1)81 (3) 0.49
16 ( 2) 25
1 ( 4) 2 4
练一练
1、说出下列各数的平方根: (1)49 (2)1600; (3)1.44 (4)0.81;