晶体结构晶格
晶体结构
晶体结构和布拉菲格子的区别
晶体结构和布拉菲格子的区别
基矢 原胞 晶胞(单胞)
初基元胞 点阵的基本 平移矢量。
有多种取法。
12面体
14面体
布拉伐格子 晶向 晶面
标志?
互质的整数(h1h2h3)-----晶面指数
若以单胞的棱a,b,c为坐标系对应的指数(h1h2h3)----miller index
33 23
13
32 22 12
31
33 11
21 31 13;32 12 32 0
11
23 21 21 0
同样若沿Z轴作对称操作-转动900
0 1 0 A 1 0 0
0 0 1
A1A
22
0
0
11
0
13
11
0
0
22
13
0
0 31 33
31 0 33
7晶系14种Bravais Lattice介绍
可以证明,由于对称性的要求,共有14种Bravais Lattice, 分为7个晶系(点阵只有7种点群)。 对称操作群{D/t} D--点(宏观)对称操作; t--平移对称操作. 点阵点群-------{D/t=0}7个7个晶系 点阵空间群-------{D/t}14个14 lattices
绪论
������ 固体物理是研究固体的结构和其组成粒子之间的相互作用 及运动规律,以阐明其性能和用途的学科。
固体的分类 晶体(晶态):原子按一定的周期规则排列的固体(长程有序)。 非晶体(非晶态):原子排列没有明确的周期性(短程有序)。
晶体结构.01
1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。
材料的晶体结构
正交晶系一些重要晶向的晶向指数
一、晶向与立方晶系晶向指数源自试说明一个面心立方等于一个体心四方结构。
01
02
在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(1 0)晶面。
三、六方晶系晶面与晶向指数
1、晶面指数:
建立坐标系:在六方晶系中,为了明确的表示晶体底面的(六次)对称性,底面用互成120度的三个坐标轴x1、x2、x3,其单位为晶格常数a,加上垂直于底面的方向Z,其单位为高度方向的晶格常数c。注意x1、x2、x3三个坐标值不是独立的变量。 方法同立方晶系, (hkil)为在四个坐标轴的截距倒数的化简,自然可保证关系式h+k+I=0。底面指数为(0001),侧面的指数为(1010)。
晶向指数:表示晶向方位符号。 标定方法: 建立坐标系 结点为原点,三棱为方向,点阵常数为单位 ; 在晶向上任两点的坐标(x1,y1,z1) (x2,y2,z2)。(若平移晶向或坐标,让第一点在原点则下一步更简单); 计算x2-x1 : y2-y1 : z2-z1 ; 化成最小、整数比u:v:w ; 放在方括号[uvw]中,不加逗号,负号记在上方 。
晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。
晶面指数:表示晶面方位的符号。 标定方法: 建立坐标系 结点为原点,三棱为方向,点阵常数为单位 (原点在标定面以外,可以采用平移法); 晶面在三个坐标上的截距a1 a2 a3 ; 计算其倒数 b1 b2 b3 ; 化成最小、整数比h:k:l ; 放在圆方括号(hkl),不加逗号,负号记在上方 。
一、体心立方
第二节 纯金属常见的晶体结构
原子位置 立方体的八个顶角和体心
晶体的结构与晶格常数
晶体的结构与晶格常数晶体是由具有规则的、无序的、周期性重复的排列方式组成的固体材料。
它的结构是由晶格和晶体结构单元组成的。
晶格是指晶体中的原子、离子或分子按照规则、有序的方式排列成的一个平行于晶体表面、经过晶体内部的无限重复网格。
晶格常数是指晶体中晶胞平衡状态下,晶胞沿各个晶胞轴的最小长度,用a、b和c表示。
不同的晶体具有不同的结构和晶格常数。
下面将介绍几种常见的晶体结构及其对应的晶格常数。
1. 立方晶系立方晶系是最简单的晶体结构之一,其晶格常数在三个晶胞轴上相等。
具体包括以下几种类型:- 体心立方结构(BCC):其晶格常数a=4R/√3,其中R为原子半径。
- 面心立方结构 (FCC):其晶格常数a=2R/√2。
- 简单立方结构 (SC):其晶格常数a=2R。
2. 正交晶系正交晶系的晶体结构具有与立方晶系类似的特点,但其晶胞轴长度不相等。
其晶格常数表达为:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
3. 单斜晶系单斜晶系的晶格常数也具有不同的长度。
其中a轴、b轴和c轴的长度分别为:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
4. 菱面晶系菱面晶系的晶胞具有菱形形状,晶胞轴长度如下:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
5. 六方晶系六方晶系的晶胞具有六角形形状,a轴和c轴的长度为:- a轴:a=2R。
- c轴:c=2R。
以上仅是几种常见的晶体结构及其晶格常数的示例,实际晶体的结构和晶格常数还可能受到其他因素的影响,如晶体的成分、原子尺寸等。
总结起来,晶体的结构与晶格常数密切相关,不同的晶体结构及其晶格常数决定了晶体的物理性质和化学性质。
通过深入研究晶体的结构与晶格常数,可以更好地理解晶体的性质,并为材料科学和应用提供基础。
晶体结构(共78张PPT)
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
晶格结构
重难点
晶胞的概念;原子坐标以及体心 平移、面心平移、底心平移;晶 体结构模型;
教学方法
3-1 晶 体
1、 晶体的宏观特征 远古时期,人类从宝石开始认识晶体。红宝石、 蓝宝石、祖母绿等晶体以其晶莹剔透的外观, 棱角分明的形状和艳丽的色彩,震憾人们的感 官。名贵的宝石镶嵌在帝王的王冠上,成为权 力与财富的象征,而现代人类合成出来晶体, 如超导晶体YBaCuO、光学晶体BaB2O4、 LiNbO3、磁学晶体NdFeB等高科技产品,则推 动着人类的现代化进程。
Na原子的电子组态为1S22S22P63S1,1S,2S,2P电 子正好填满,形成满带,3s轨道形成的能带只填 一半,形成导带。Mg原子的3s 轨道虽已填满, 但它与3p轨道的能带重叠。从3s3p 总体来看, 也是导带。能带的范围是允许电子存在的区域, 而能带间的间隔,是电子不能存在的区域,叫禁 带。金属在外电场作用下能导电。导带中的电子, 受外电场作用,能量分布和运动状态发生变化, 因而导电。满带中电子已填满,能量分布固定, 没有改变的可能,不能导电,空带中没有电子, 也不能导电。若空带与满带重叠,也可形成导带。
离子半径的变化规律
1.同主族, 从上到下, 电子层增加, 具有相同电荷数的离子 半径增加. 2.同周期: 主族元素, 从左至右 离子电荷数升高, 最高价离 子, 半径减小. 3.同一元素, 不同价态的离子, 正电荷高的半径小。 4.一般负离子半径较大; 正离子半径较小 5.周期表对角线上, 左上元素和右下元素的离子半径相似. 如: Li+ 和 Mg2+, Sc3+ 和 Zr4+ 的半径相似. 6. 镧系元素离子半径,随原子序数增加,缓慢减小
晶体的晶格结构及其特点
晶体的晶格结构及其特点晶体是一种具有高度有序、有规律的固态物质。
它的组成粒子按照一定的方式排列并且具有周期性的结构。
晶体的晶格结构是指晶体中原子、离子或分子的排列方式和它们之间的空间关系。
本文将介绍晶体的晶格结构及其特点。
一、晶体的晶格结构1. 单位胞晶体的晶格是由一个或多个相同的单元胞组成的,单元胞是最小可重复单元结构。
晶体中的所有原子、离子或分子都可以通过平移并保持周期性的方式填满整个晶体。
每个单位胞的形状和尺寸由晶体的晶系、晶格参数和点群对称性确定。
2. 晶体结构分类晶体根据它们的晶格结构可以分为几个主要类型:立方晶体、正交晶体、单斜晶体、菱面晶体、三斜晶体、四方晶体和六方晶体。
每种类型的晶体都具有不同的晶格对称性和晶格参数。
3. 晶格点晶体的晶格由晶格点组成,晶格点是晶体中原子、离子或分子的位置。
根据晶体的晶系和点群对称性,晶体的晶格点可以具有不同的排列模式,如正方形排列、三角形排列等。
二、晶体的特点1. 高度有序晶体具有高度有序的结构,其中的原子、离子或分子按照规则的方式排列。
晶体的有序排列使得晶体具有明确的晶面和晶向。
2. 周期性晶体的晶格结构是周期性的。
晶体中的晶格点在空间中周期性地重复出现,这种周期性使得晶体具有特定的晶面、晶向和晶面间距等特点。
周期性结构决定了晶体的物理、化学性质以及晶体的衍射性质。
3. 同质性晶体内部各个部分的性质是相同的,即具有同质性。
晶体的晶格结构决定了它的同质性,使得晶体的性质在空间上是均匀分布的。
4. 各向同性晶体的各向同性是指在晶体的不同晶向上性质相同。
然而,有些晶体具有部分各向异性,即在特定的晶向上显示出不同的性质。
5. 晶体缺陷晶体中可能存在一些缺陷,如点缺陷(空位、杂质等)、线缺陷(位错、螺旋走步等)和面缺陷(晶粒边界、层间错等)。
这些缺陷会影响晶体的物理和化学性质。
总结:晶体的晶格结构是由具有周期性排列的晶格点构成的。
晶体具有高度有序、周期性、同质性和各向同性的特点。
金属晶体结构特征
金属晶体结构特征
1、金属晶体的晶格结构:金属晶体的晶格结构可以分为立方晶系、四方晶系、六方晶系、三斜晶系、正交晶系、单斜晶系等六种,其中立方晶系最为常见。
2、金属晶体的原子排列方式:金属晶体中的原子排列方式通常为紧密堆积和面心堆积两种。
紧密堆积指的是原子之间的距离最小,而面心堆积则是将原子填充在立方体的面心处。
3、金属晶体的晶格常数:晶格常数是指晶体中最小重复单元的长度和角度,它决定了晶体的物理和化学性质。
4、金属晶体的配位数:配位数指的是一个原子周围的最近邻原子的数目,不同的晶体结构具有不同的配位数。
金属晶体结构特征对于金属的物理和化学性质有着重要的影响。
通过对金属晶体结构的研究,可以更好地理解金属的性质,并且为设计新型金属材料提供有力的理论支持。
- 1 -。
第一章 晶体结构
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3
由
v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn
•
v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)
固体物理课件第二章_晶体的结构
Na+构成面心立方格子 Cl-也构成面心立方格子
(6) CsCl: 由两个简单立方子晶格彼此沿 立方体空间对角线位移1/2 的长度套构而成
(7) 闪锌矿结构
化合物半导体 —— 锑化铟、砷化镓、磷化铟 面心立方的嵌套
(8) 钙钛矿结构
钛酸钙(CaTiO3) 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)等
面心立方格子:原点和12个近邻格点连线的垂 直平分面围成的正十二面体
体心立方格子:原点和8个近邻格点连线的垂直 平分面围成的正八面体,沿立方轴的6个次近 邻格点连线的垂直平分面割去八面体的六个角, 形成的14面体 —— 八个面是正六边形,六个面是正四边形
§1.2 晶列和晶面
思考: 金刚石为什么有固定的面? 这些面和晶格结构有什么关系?
根据周期性:
f e
k k
ikx
fk e
k
ik ( x na )
f k eikx f k eik( x na)
k k
e
ik na
1
m 0,1,2,
k na k Rn 2m
2 k h Gh a
k=b的波传过一个晶格长度,相位改变2π
晶面:所有结点可以看成分布在一系列相互平 行等距的平面族上,每个平面族称为一个晶面 晶面用法向或晶面指数标志
例:同一个格子,两组不同的晶面族
晶面的性质: –晶格中一族的晶面不仅平行,并且等距 –一族晶面必包含了所有格点 –三个基矢末端的格点必分别落在该族的不 同晶面上(有理指数定理)
晶面(米勒)指数:晶面把基矢 a1 , a2 , a3 分别
晶体的结构晶格与晶体缺陷
晶体的结构晶格与晶体缺陷晶体是由具有规则排列的原子、离子或分子构成的固态物质。
晶体结构的产生与晶格有着密切的关系,晶体缺陷则是晶格中存在的非完美的部分。
本文将依次介绍晶体的结构晶格以及晶体缺陷的相关内容。
一、晶体的结构晶格晶体的结构是由晶格确定的。
晶格是指在空间中规则排列的点阵或周期性结构。
不同的晶体结构有不同的晶格类型,最常见的晶格类型是立方晶格、六方晶格、四方晶格等。
1. 立方晶格立方晶格是最简单的晶格类型之一,它具有等边、等角的特点。
立方晶格可分为面心立方晶格、体心立方晶格和简单立方晶格。
其中,面心立方晶格具有最高的密堆率,每个原子周围都密集地包围着12个相邻的原子。
2. 六方晶格六方晶格是由一个六边形晶胞构成,其顶角分别为120度和60度。
六方晶格是较为常见的晶格类型,许多金属和陶瓷材料都具有这种结构。
3. 四方晶格四方晶格是晶格的一种,具有和立方晶格相似的特征,但其在z轴方向上具有不同的长度。
二、晶体缺陷及其分类晶体缺陷是指晶体中存在的非完美的部分,可以分为点缺陷、线缺陷和面缺陷三种类型。
1. 点缺陷点缺陷是指晶体中由于原子或离子的位置发生变化而产生的缺陷。
常见的点缺陷有原子空位、杂质原子和间隙原子等。
- 原子空位是指晶体中存在不被原子占据的空位,其产生原因可以是晶体生长过程中的缺陷或中子轰击等因素。
- 杂质原子是指进入晶体中的与主要晶体原子不同的原子。
杂质原子的存在可以影响晶体的导电性、光学性能等特性。
- 间隙原子是指位于晶体原子间隙处的原子,其存在可以引起晶格的畸变和物理性质的变化。
2. 线缺陷线缺陷是指沿晶体表面或晶体内部存在的缺陷线。
常见的线缺陷有位错、脆性裂纹和位移等。
- 位错是指晶体中原子排列出现的错位或位移,常见的有边界位错、螺位错和混合位错等。
- 脆性裂纹是晶体中的裂纹缺陷,由于内部应力超过晶体的强度而导致裂纹的产生和扩展。
- 位移是晶体中原子在晶体平面方向上的滑移或背斜,它对晶体材料的塑性形变和变形行为有着重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.铁碳相图 (Fe-Fe3 C相图) (1) Fe-Fe3 C相图的组元
● Fe —— α –Fe、δ -Fe (bcc) 和γ -Fe (fcc) 强度、硬度低,韧性、塑性好。
● Fe3 C —— 熔点高,硬而脆,塑性、韧性几乎为零。
导入
金属材料简介 1. 金属材料分为黑色金属(钢铁材料)和有色金 属。汽车上各种结构零件,钢铁材料约占80%。 2. 汽车工程材料不断向轻量化发展,各种新的汽 车工程材料相继被推出并应用于汽车工业之中。
3. 重点介绍金属材料特别是钢铁材料的性能、结 构、牌号及在汽车上的应用。
材料按照原子(离子或分子)在三维空间排列 方式的不同,可分为晶体与非晶体两大类。
这种溶质原子溶入溶剂晶格而仍保持溶剂晶格 类型的金属晶体叫做固溶体。
置 换 固 溶 体
Z
Z 置换原子
间 隙 固 溶 体
间隙原子
Y Y
X X
晶格畸变
小原子置换引起的 晶格畸变
间隙原子引起的 晶格畸变
固溶强化
形成固溶体使金属强度和硬度提高,而塑性下降的现象.
正常晶格
晶格畸变
2.金属化合物 是指合金各组元的原子按一定的整数比
匀晶相图
L+A
共晶相图
L
D
E
A
G 共析相图
A+ A+F S Fe3CⅡ F P ( F+ Fe3C )
P
Q P+F P+Fe3CⅡ
1148℃
C( A+Fra biblioteke3C )Ld
A+Ld+Fe3CⅡ
P+Ld’+Fe3CⅡ Ld’
( P+Fe3C )
L+ Fe3CⅠ F
Ld+Fe3CⅠ
727℃ K
Ld’+Fe3CⅠ
(1)点缺陷
(2)线缺陷
(3)面缺陷
(二)金属的结晶过程
1.纯金属的结晶过程 纯金属的结晶过程基本是在恒定的温度下进行
的,其结晶过程的冷却曲线如图所示。
二、合金的晶体结构及结晶
合金:合金是以一种金属为基础,加入其它金属或 非金属,经过熔合而获得的具有金属特性的材料。
组元:组成合金最简单的、最基本的、能够独立存 在的元素称为组元,简称元。组元一般是指元素, 但有时稳定的化合物也可以作为组元,如Fe3C、 Al2O3、CaO等。合金按组元的数目可分为二元合金、 三元合金及多元合金。
化合而成的一种新的金属化合物。 其性能特点是熔点高、硬度高、脆性大。
例如铁碳合金中的Fe3C。当合金中出现金属 化合物时,能提高其强度、硬度和耐磨性, 但会降低其塑性和韧性。
3.机械混合物
当组成合金的各组元在固态下既互不溶解,又 不形成化合物,而是按一定的重量比例以混合方式 存在着,形成各组元晶体的机械混合物。
0.0218%C 0.77%C 2.11%C Fe
4.3%C
6.69%C Fe3C
Fe-Fe3C相图的分析
五个重要的成份点: P、S、E、C、K。 四条重要的线: EF、ES、GS、FK。 两个重要转变: 共晶转变、共析转变。 二个重要温度: 1148 ℃ 、727 ℃ 。
(2) Fe-Fe3 C相图的相
● 液相 L ● δ 相 (高温铁素体 )—— δ –Fe(C)固溶体 ● γ 相(A ,奥氏体)—— γ -Fe(C)固溶体 ● α 相 (F,铁素体) —— α -Fe(C)固溶体
● Fe3 C ( Cem, Cm,渗碳体)—— 复杂晶体结构
A T°
Fe - Fe3C 相图
晶体 —— 材料中的原子(离子、分子)在三维空 间呈规则,周期性排列。
非晶体 —— 原子无规则堆积,也称为 “过冷液体 ”
晶体:固态金属
金刚石、NaCl、冰 等。
非晶体 : 蜂蜡、玻璃 等。
液体
一、纯金属的晶体结构与结晶
汽车中的各种导电体、传热器等大多由纯铜、 纯铝等纯金属材料制成。纯金属是典型的晶体材料。
组成机械混合物的物质可能是纯组元、固溶体 或者是化合物各自的混合物,也可以是它们之间的 混合物。
绝大多数工业用合金都是混合物,它们 的性能决定于组成混合物各部分的性能, 以及它们的形态、大小和分布。
三、 铁碳相图及铁碳合金平衡组织
碳钢和铸铁是现代汽车工业极为重要的金 属材料,它们都属于以铁和碳两个组元组成 的合金,称为铁碳合金。
合金系:由两个或两个以上组元按不同比例配制成 一系列不同成分的合金,这一系列合金构成一个合 金系统,简称合金系。例如黄铜是由铜和锌组成的 二元合金系。
相:合金中具有同一化学成分、同一晶格形式并以 界面分开的各个均匀组成部分称为相。如均匀的液 体称为单相,液相和固相同时存在则称为两相。
组织:由单相或多相组成的具有一定形态的聚合物, 纯金属的组织是由一个相组成的,合金的组织可以 是一个相或多个相组成。
(一)合金的晶体结构
合金的内部结构比较复杂,但根据各元素在结晶 时相互作用的不同可以把它们归纳为三种。
1.固溶体 2.化合物 3.机械混合物
1.固溶体 固溶体就是在固态下两种或两种以上的物质互
相溶解构成的单一均匀的物质。例如,铜镍合金就 是以铜(溶剂)和镍(溶质)形成的固溶体,固溶体具 有与溶剂金属同样的晶体结构。
1.常见晶格类型
1)体心立方晶格 这一类的金属有铬(Cr)、钼(Mo)、钨(W)、
钒(V)和α-Fe(温度小于912℃纯铁)。 这类金属有相当大的强度和较好的塑性。
2)面心立方晶格
属于这种晶格的金属有铝(Al)、铜(Cu)、 镍(Ni)、铅(Pb)和γ-Fe等(温度在1394℃~ 912℃纯铁)。
(一)纯金属的晶体结构 晶体中原子(离子或分子)的空间排列方式称为
晶体结构。 晶格描述晶体结构
● 晶体结构
原子(离子)的刚球模型
原子中心位置
晶格:表示晶体中原子排列形式的空间格子。 晶胞:组成晶格的最小的几何单元称为晶胞。
晶格与晶胞 晶胞中原子排列的规律能完全代表整个晶格中
原子排列的规律,人们研究金属的晶格结构,一般 都是取出晶胞来研究的。
3)密排六方晶格
属于这种晶格的金属有铍(Be)、镁(Mg)、锌 (Zn)、镉(Cd)等。
2.实际的金属晶体结构
单晶体:内部晶格位向完全一致 的晶体(理想晶体)。 如单晶Si半导体。
多晶体:由许多位向不同的晶粒构成的晶体。
晶粒(单晶体)
晶界
晶体缺陷
晶体缺陷类型 (1)点缺陷:空位、间隙原子、异类原子 (2)线缺陷:位错 (3)面缺陷:晶界与亚晶界